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The distillation process is vital in many fields of chemical industries, such as the two-coupled distillation columns that are usually
highly nonlinear Multi-Input Multi-Output (MIMO) coupled processes. The control of MIMO process is usually implemented via
a decentralized approach using a set of Single-Input Single-Output (SISO) loop controllers. Decoupling the MIMO process into
group of single loops requires proper input-output pairing and development of decoupling compensator unit.This paper proposes a
novel intelligent decoupling approach for MIMO processes based on new MIMO brain emotional learning architecture. A MIMO
architecture of Brain Emotional Learning Based Intelligent Controller (BELBIC) is developed and applied as a decoupler for 4
input/4 output highly nonlinear coupled distillation columns process. Moreover, the performance of the proposed Brain Emotional
LearningBased IntelligentDecoupler (BELBID) is enhanced using Particle SwarmOptimization (PSO) technique.Theperformance
is comparedwith the PSOoptimized steady state decoupling compensationmatrix.Mathematicalmodels of the distillation columns
and the decouplers are built and tested in simulation environment by applying the same inputs.The results prove remarkable success
of the BELBID in minimizing the loops interactions without degrading the output that every input has been paired with.

1. Introduction

In chemical industries, distillation is one of the most impor-
tant processes. The objective of distillation is to separate a
mixture of chemical components. The purpose of control
is to maintain bottom and top product (distillate) purity
despite variations in feed flow and feed concentration. As
the distillation columns process is a MIMO system, many
researches utilize decentralized approaches to control it [1].
The two-coupled distillation columns is a 4 input/4 output
process. Normally, control engineers decouple the process
into four independent loops via a decoupler [2]. Then, every
loop is controlled separately by SISO controller [3].This work
is aimed at proposingMIMO decoupling unit based on brain
emotional learning technique and applying it to the two-
coupled distillation columns.

The design of intelligent systems is one of the most
growing fields that have received considerable attentions
in recent years. Biologically motivated intelligent control is

the discipline in which control algorithms are developed
by emulating certain characteristics of intelligent biolog-
ical systems. Many control techniques, such as artificial
neural networks [4, 5], fuzzy control [6, 7], and genetic
algorithms [8, 9], had proven its effectiveness in solving
wide range of complex control problems. Recently, a new
member was added to this family of biologically motivated
intelligent control, which mimics the emotional learning
process in the limbic system of the mammalian brains.
The model of brain emotional learning algorithm had been
proposed in [10, 11] and then was developed and shared for
control engineering applications [12]. Since then, BELBIC
is increasingly being utilized in many control engineering
applications such as electric motors [13, 14], servo systems
[15, 16], motion control [17, 18], and power systems [19, 20].
Some recent researches utilize other intelligent techniques in
cooperation with BELBIC to control the system such as fuzzy
logic [21, 22]. These applications had utilized BELBIC as a
SISO system. In [3], the two-coupled distillation columns is
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controlled by 4 separate BELBIC controllers and a steady-
state decoupling compensation unit. BELBIC controllers had
proven its effectiveness in controlling the distillation columns
comparedwith the particle swarmoptimized PID controllers.
This paper proposes a new MIMO structure of the BELBIC
model which is utilized as a decoupler of MIMO system.

PSO, introduced by Kennedy and Eberhart [23] and
Eberhart et al. [24], is a population-based stochastic approach
for solving continuous and discrete optimization problems.
In PSO, simple software agents, called particles, move in the
search space of an optimization problem. The position of a
particle represents a candidate solution to the optimization
problem at hand. Each particle searches for better positions
in the search space by changing its velocity according to
rules originally inspired by behavioral models of bird or
fish flocking. In this paper, PSO is used to optimize the
performance of the BELBID.

The rest of this paper is organized as follows: A literature
review including mathematical modeling of the two-coupled
distillation columns is presented in Section 2. In Section 3, a
literature review including mathematical modeling of brain
emotional learning and its applications is presented. In
Section 4, a new MIMO brain emotional learning model is
introduced and utilized to work as a decoupler for the two-
coupled distillation columns. In Section 5, the simulation and

results are discussed. Finally, the paper is concludedwith brief
remarks in Section 6.

2. Modeling and Decoupling of the
Two-Coupled Distillation Columns Process

2.1. Mathematical Modeling of the Two-Coupled Distillation
Columns. The distillation process is an active topic in chem-
ical and control research fields. Modeling and control of the
distillation process is vital for the chemical industry. Many
researches are conducted to model the distillation process
dynamics and to provide a robust control of it [25–28].
Among the distillation processes, the two-coupled distillation
columns is a 4 input/4 output process as shown in Figure 1.
The objective of distillation process is to separate a mixture of
chemical components based on the differences of the boiling
points of these components. The outputs are tray tempera-
tures: 𝑇11, 𝑇30, 𝑇34, and 𝑇48. Keeping the tray temperatures
within a specified range around their steady state values is
essential for specifying top and bottom product purity. The
inputs are the heat added (QE), steam from column A to
column B (SAB), reflux produced from column A (RLA),
and reflux produced from column B (RLB). More details are
listed in [2, 3]. The two-coupled distillation columns process
is described by the following transfer function equations:

[[[[[
[

𝑇11𝑇30𝑇34𝑇48

]]]]]
]
= 𝐻 (𝑠) [[[[[

[

QE
SAB
RLA
RLB

]]]]]
]
, (1)

𝐻(𝑠) =
[[[[[[[[[[[[
[

2.61.96𝑠 + 1 −6.0983.5𝑠 + 1 −4.99 (0.2𝑠 + 1)(4.5𝑠 + 1) (0.06𝑠 + 1) 0.0713.5𝑠 + 17.32 (1.05𝑠 + 1)(10.4𝑠 + 1) (0.14𝑠 + 1) −1.450.4𝑠 + 1 −1.57 (0.23𝑠 + 1)(1.34𝑠 + 1) (0.2𝑠 + 1) −0.141.92𝑠 + 14.6 (0.53𝑠 + 1)(2.78𝑠 + 1) (0.09𝑠 + 1) −2.37 (0.23𝑠 + 1)(2𝑠 + 1) (0.3𝑠 + 1) −2.71.75𝑠 + 1 −0.36 (0.02𝑠 + 1)(2.47𝑠 + 1) (0.04𝑠 + 1)2.110.92𝑠 + 1 −2.11 (0.06𝑠 + 1)(2.38𝑠 + 1) (0.05𝑠 + 1) −1.752.16𝑠 + 1 −0.3 (1.89𝑠 + 1)(4.35𝑠 + 1) (0.16𝑠 + 1)

]]]]]]]]]]]]
]

. (2)

2.2. Decoupling of the Two-Coupled Distillation Columns.
Two main approaches are utilized to control MIMO systems,
namely, centralized and decentralized techniques. Papers that
have addressed the decentralized control deal with resolution
of two design problems, namely, proper input-output pairing
and interaction minimization.The proper input-output pair-
ing is usually achieved through the development of relative
gain array (RGA) [29, 30]. The interaction minimization
is achieved through the design of decoupling compensator
matrix, which was introduced in many papers [31, 32]. The
design of decoupling unit includes estimating the elements’
values of steady state decoupling compensation matrix using
detailed analytical techniques with very high mathematical
burdens, specially, for high order MIMO processes. After
decoupling, a set of SISO controllers are used to control

the system in a decentralized way. Figure 2 shows general
2 input/2 output decoupled control system. In Figure 2, 𝐺
represent SISO controller, 𝜆 represents compensation matrix
parameter, and 𝐻 represents the coupled system transfer
function. This technique was applied to the two-coupled
distillation columns (4 input/4 output process); then the
decoupling compensationmatrix is optimized via PSO in [2].
This work will be considered for comparison and evaluation
of our work.

The decentralized approach, which is using a set of SISO
controllers to control the process, is preferred by many
researchers [33, 34]. Using a decoupling unit decreases the
interactions between the controlled loops. The decoupling
compensation matrix proposed in [2] is used in further
research [3]. According to [2], the coupled pairs are chosen
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Figure 1: Graphical representation of the two-coupled distillation columns process.
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Figure 2: 2 input/2 output decentralized control system.

to be (QE, 𝑇30), (SAB, 𝑇11), (RLA, 𝑇34), and (RLB, 𝑇48). In
addition, the steady state decoupling compensation matrix is
given in the following equations and connected as shown in
Figure 3:

[[[[[
[

𝑇11𝑇30𝑇34𝑇48

]]]]]
]
= 𝐻Λ[[[[[

[

QE
SAB
RLA
RLB

]]]]]
]
, (3)

where 𝐻 is the process transfer function given in (2), and Λ
is the steady state decoupling compensation matrix given by
[2]

Λ = [[[[[
[

1 0.1788 0.0608 −0.0078
−1.9273 1 −0.7906 0.4555
2.9263 0.8865 1 −0.5466
3.5183 −10.9464 0.1548 1

]]]]]
]
. (4)

Figure 3 declares the decoupled system.

3. Brain Emotional Learning

3.1. Computational Model of Emotional Learning. The brain
emotional learningwas introduced for the first time by Balke-
nius and Morén [10, 11]. They developed a computational
model that mimics the parts of the mammalian brain that
process the emotions. The model is powerful in real time
control and decision making systems due to its simplicity,
low computational complexity, and fast training [35]. The
model is successfully utilized in many fields including system
identification and prediction [36, 37], forecasting [38, 39],
and pattern recognition [40].

Amygdala, orbitofrontal cortex, thalamus, and sensory
input cortex are parts of the brain thought to be responsible
for processing of emotions. The sensory input signals are
received via the thalamus. After preprocessing in the tha-
lamus, processed input signal will be sent to the amygdala
and the sensory cortex. The amygdala and the orbitofrontal
cortex are used to compute their outputs based on emotional
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Figure 4: Graphical depiction of brain emotional learning.

signal (primary reward or reinforcing signal) received from
the environment.The final output is calculated by subtracting
the amygdala and the orbitofrontal cortex outputs. More
details are declared in [10–12]. Figure 4 represents a graphical
depiction of brain emotional learning.

As shown in Figure 4, the vector 𝑆 shows stimuli inputs to
the system. There is one 𝐴 node for each stimulus 𝑆. 𝐴 th is a
node in the amygdala which directly receives the maximum
stimuli signals via a path from the thalamus:

𝐴 th = max (𝑆𝑖) . (5)

The output of each node 𝐴 is calculated based on the
multiplication of prespecified plastic connection weight (𝑉)
into the corresponding input:

𝐴 𝑖 = 𝑆𝑖𝑉𝑖. (6)

The 𝑉𝑖 is adjusted proportionally to the difference
between the activation of the 𝐴 nodes and the reinforcing
signal Rew. The 𝛼 term is a constant used to adjust the
learning speed:
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Δ𝑉𝑖 = 𝛼(𝑆𝑖max(0,Rew −∑
𝑗

𝐴𝑗)) . (7)

The weights 𝑉 cannot decrease, and it is a good reason
for this design choice because once an emotional reaction is
learned, this should be permanent and cannot be unlearned.
It is the task of the orbitofrontal part to inhibit this reaction
when it is inappropriate. The orbitofrontal learning rule
is very similar to the amygdala rule but the orbitofrontal
connection weight can both increase and decrease. The 𝑂
nodes behave analogously, with a connection weight 𝑊
employed to the input signal to create an output

𝑂𝑖 = 𝑆𝑖𝑊𝑖. (8)

Δ𝑊𝑖 is calculated as

Δ𝑊𝑖 = 𝛽 (𝑆𝑖 (𝐸󸀠 − Rew)) , (9)

where 𝛽 is another learning rate constant. The 𝐸 node simply
sums the outputs from the 𝐴 nodes and then subtracts the
inhibitory outputs from the 𝑂 nodes. The result is the output
from the model. The 𝐴 nodes give outputs proportionally to
their contribution in predicting the reward Rew, while the𝑂 nodes inhibit the output of 𝐸 as necessary. The 𝐸󸀠 node
sums the outputs from 𝐴 except 𝐴 th and then subtracts from
inhibitory outputs from the 𝑂 nodes:

𝐸 = ∑
𝑖

𝐴 𝑖 −∑
𝑖

𝑂𝑖 (including 𝐴 th) ,
𝐸󸀠 = ∑

𝑖

𝐴 𝑖 −∑
𝑖

𝑂𝑖 (not including 𝐴 th) .
(10)

3.2. BELBIC Model. There are two main approaches of
applying the brain emotional learning in a control process:
either using BELBIC as a controller or using it to adapt an
existing controller online. Figure 5 declares BELBIC as amain
controller within a typical feedback control block diagram.

The choice of sensory inputs and reward signal differs
from research to another. Generally, the sensory inputs must
include signals that provide necessary information to control

the system (e.g., the plant output, the controller output,
the error, etc.). These signals are chosen and reshaped in a
function chosen by BELBIC designer to produce the sensory
inputs. On the other hand, the reward signal comes as
a function of signals which can validate a cost function
chosen by the designer. The output is enforced by the reward
signal (by applying reward or punishment) to validate the
preselected cost function. Sensory inputs and reward signal
are represented mathematically as follows:

𝑆𝑖 = 𝑓𝑖 (𝑒, 𝑢, 𝑦) ,
Rew = 𝐽 (𝑆𝑖, 𝑒, 𝑢, 𝑦) , (11)

where 𝑒 is the error between plant output 𝑦 and reference
signal 𝑟, while 𝑢 is the BELBIC output. Each research
dedicates part of its effort to develop sensory input generator
and reward signal generator. In addition, many researches
optimize the gains of the generators by an optimization tech-
nique. Among other techniques, particle swarm optimization
is utilized for optimizing the gains of the generators and the
learning rates of the BELBIC [3].

Particle Swarm Optimization. Particle swarm optimization
is a heuristic global optimization method. It is based on
the research of bird and fish flock movement behavior.
In PSO algorithm, particle swarm consists of 𝑀 particles
(𝑖 = 1, 2, . . . ,𝑀), and the position of each particle 𝑥𝑖𝑑
represents the potential solution in 𝐷-dimensional space
(𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑑, . . . , 𝑥𝑖𝐷). The particles change its condition
(velocity (]𝑖𝑑) and position (𝑥𝑖𝑑)) according to its most opti-
mist position (𝑝𝑖𝑑) and the swarm’s most optimist position
(𝑝𝑔𝑑) while maintaining its inertia by a preselected factor
called inertia weight (𝑤𝑖). The following equations represent
the particles movement in the search space:

]𝑧+1𝑖𝑑 = 𝑤𝑧+1𝑖 ]𝑧𝑖𝑑 + 𝑐1𝑟𝑧1 (𝑝𝑧𝑖𝑑 − 𝑥𝑧𝑖𝑑) + 𝑐2𝑟𝑧2 (𝑝𝑧𝑔𝑑 − 𝑥𝑧𝑖𝑑) ,
𝑥𝑧+1𝑖𝑑 = 𝑥𝑧𝑖𝑑 + ]𝑧+1𝑖𝑑 , (12)

where 𝑧 = 1, 2, . . . , 𝑛𝑧 determines the iteration number and 𝑛𝑧
is the maximal times of iteration.There are many approaches
to choose 𝑤𝑖, which is used to adjust the global and local
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searching capability. One of these approaches is decreasing𝑤𝑖 gradually (from 0.9 to 0.4) during the iteration.

4. Proposed MIMO Brain Emotional Learning

4.1. Proposed MIMO-BELBIC Model. The BELBIC model
introduced by [12] has one output. It is used widely to control
SISO linear and nonlinear systems. The BELBIC controllers
have the capability to overcome uncertainty and complexity
issues of control applications. Although it is used to control
MIMO systems in some applications [12, 41], the researchers
used a set of BELBIC controllers to control every loop/output
individually. In other words, they used the single output
BELBIC model introduced in [12] rather than MIMOmodel.
In [12, 41], they used 2 and 4 BELBIC controllers, respectively.
In this research, we introduce MIMO-BELBIC model that
can be utilized to controlmany loops/outputs simultaneously.
This configuration allows the model to control every loop
taking into consideration the state of other loops. This
property allows compensating for the interactions between
loops and providing more stable performance. Therefore, as
a first application of the MIMO-BELBIC model, we applied
the model as a decoupler to test its ability to compensate for
the interactions between the controlled loops.

Many emotions can be generated in the mammalian
brains. Sometimes, the same action (sensory inputs) can
generate more than one emotion simultaneously. Receiving
a gift may make us feel happy, hopeful, grateful, and so forth.
The paper proposes a new brain emotional learning model,
which is MIMO, (MIMO-BELBIC model) as illustrated in
Figure 6. As declared in Figure 6, the new brain emotional
learning model suggests that every emotion (output) has its𝐴, 𝑂, 𝐸, and 𝐸󸀠 nodes and is connected to all necessary
sensory inputs. Each emotion has its reinforcing signal
which validates its cost function and its own sensory inputs
if necessary. Sensory inputs generator and reward signals
generator are involved to build MIMO-BELBIC model. All
the gains of the MIMO-BELBIC in addition to learning rates
should be optimized together to minimize a specified cost
function.

The following sets of equations are considered for the
MIMO-BELBIC:

𝐴1th = max (𝑆1𝑖) ,
...

𝐴𝑁th = max (𝑆𝑁𝑖) ,
𝐴1𝑖 = 𝑆1𝑖𝑉1𝑖,

...
𝐴𝑁𝑖 = 𝑆𝑁𝑖𝑉𝑁𝑖,
Δ𝑉1𝑖 = 𝛼1(𝑆1𝑖max(0,Rew1 −∑

𝑗

𝐴1𝑗)) ,
...

Δ𝑉𝑁𝑖 = 𝛼𝑁(𝑆𝑁𝑖max(0,Rew𝑁 −∑
𝑗

𝐴𝑁𝑗)) ,
𝑂1𝑖 = 𝑆1𝑖𝑊1𝑖,

...
𝑂𝑁𝑖 = 𝑆𝑁𝑖𝑊𝑁𝑖,
Δ𝑊1𝑖 = 𝛽1 (𝑆1𝑖 (𝐸󸀠1 − Rew1)) ,

...
Δ𝑊𝑁𝑖 = 𝛽𝑁 (𝑆𝑁𝑖 (𝐸󸀠𝑁 − Rew𝑁)) ,
𝐸1 = ∑

𝑖

𝐴1𝑖 −∑
𝑖

𝑂1𝑖 (including 𝐴 1th) ,
...

𝐸𝑁 = ∑
𝑖

𝐴𝑁𝑖 −∑
𝑖

𝑂𝑁𝑖 (including 𝐴𝑁th) ,
𝐸󸀠1 = ∑

𝑖

𝐴1𝑖 −∑
𝑖

𝑂1𝑖 (not including 𝐴 th) ,
...

𝐸󸀠𝑁 = ∑
𝑖

𝐴𝑁𝑖 −∑
𝑖

𝑂𝑁𝑖 (not including 𝐴 th) ,
𝑆𝑖1 = 𝑓𝑖1 (𝑒1, . . . , 𝑒𝑁, 𝑢1, . . . , 𝑢𝑁, 𝑦1, . . . , 𝑦𝑁) ,

...
𝑆𝑖𝑁 = 𝑓𝑖𝑁 (𝑒1, . . . , 𝑒𝑁, 𝑢1, . . . , 𝑢𝑁, 𝑦1, . . . , 𝑦𝑁) ,
Rew1 = 𝐽1 (𝑆1𝑖, . . . , 𝑆𝑁𝑖, 𝑒1, . . . , 𝑒𝑁, 𝑢1, . . . , 𝑢𝑁, 𝑦1, . . . , 𝑦𝑁) ,

...
Rew𝑁 = 𝐽𝑁 (𝑆1𝑖, . . . , 𝑆𝑁𝑖, 𝑒1, . . . , 𝑒𝑁, 𝑢1, . . . , 𝑢𝑁, 𝑦1, . . . , 𝑦𝑁) .

(13)

It is obvious that the reward signals are function of all
inputs. This construction gives the ability to compensate for
the coupling in order to decrease the loops interaction. The
proposed MIMO-BELBIC is tailored in this paper to work as
a decoupler of MIMO nonlinear systems, namely, BELBID.
This approach is applied to the two-coupled distillation pro-
cess and PSO is used to optimize the decoupler performance.

4.2. The Proposed BELBID. The proposed BELBID model is
4 input/4 output BELBIC and is employed as a decoupler for
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Figure 6: Graphical depiction of MIMO brain emotional learning.

the two-coupled distillation columns process. We produce 16
sensory input and 4 reward signals. The sensory signals are
divided into 4 groups, 4 signals each. Each group of sensory
signal is fed to𝐴 nodes and𝑂 nodes belong to one decoupler
output as shown in Figure 7. In this design, 𝐴 th is set to zero
(i.e., there is no maximum stimuli signal output from the

thalamus). The following equations represent the first group
of sensory inputs which are related to the BELBID output 𝑢1:

𝑠1 = 𝑘𝑝11𝐼1 + 𝑘𝑖11 ∫ 𝐼1𝑑𝑡,
𝑠2 = 𝑘𝑝12𝐼2 + 𝑘𝑖12 ∫ 𝐼2𝑑𝑡,
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𝑠3 = 𝑘𝑝13𝐼3 + 𝑘𝑖13 ∫ 𝐼3𝑑𝑡,
𝑠4 = 𝑘𝑝14𝐼4 + 𝑘𝑖14 ∫ 𝐼4𝑑𝑡.

(14)

The 𝑘𝑝11, 𝑘𝑝12, . . ., and so forth are gains to be optimized.
The following equation represents the first reward signal:

Rew1 = 𝑘𝑟𝑝11𝐼1 + 𝑘𝑟𝑑11 𝑑𝑑𝑡𝐼1 + 𝑘𝑟𝑖11 ∫ 𝐼1𝑑𝑡 + 𝑘𝑟𝑝12𝐼2
+ 𝑘𝑟𝑑12 𝑑𝑑𝑡𝐼2 + 𝑘𝑟𝑖12 ∫ 𝐼2𝑑𝑡 + 𝑘𝑟𝑝13𝐼3
+ 𝑘𝑟𝑑13 𝑑𝑑𝑡𝐼3 + 𝑘𝑟𝑖13 ∫ 𝐼3𝑑𝑡 + 𝑘𝑟𝑝14𝐼4
+ 𝑘𝑟𝑑14 𝑑𝑑𝑡𝐼4 + 𝑘𝑟𝑖14 ∫ 𝐼4𝑑𝑡.

(15)

The rest of sensory inputs and reward signals equations
are defined by the analogy to (14)-(15). Note that the above
constants (𝑘𝑝11, 𝑘𝑖11, 𝑘𝑝12, 𝑘𝑖12, etc.) are related to the BELBID
output 𝑢1 and it will be called (𝑘𝑝21, 𝑘𝑖21, 𝑘𝑝22, 𝑘𝑖22, etc.) for 𝑢2
and so on.

All gains in addition to learning rate constants (𝛼1,2,3,4,𝛽1,2,3,4) are optimized via PSO. The inertia weight 𝑤𝑖 of the
PSO is reduced gradually from 0.9 to 0.4. Step changes are
applied at the inputs, one at a time, and zero are applied to
other inputs. For ideal decoupler, all outputs of the process
should remain zero except the output paired to this input.

So, the responses at the unpaired outputs are considered as a
coupling error.Thebest solution is chosen to be theminimum
total coupling error. For PSO, number of particles is chosen
to be 100 and both 𝑐1 and 𝑐2 are set to 0.5. The cost function
which is used to evaluate the particles and to be minimized
is the sum of all coupling errors of all unpaired outputs. The
errors are represented by the Integral Squared Error (ISE)
form. Regarding that the paired inputs and outputs are (𝐼1-𝑦2,𝐼2-𝑦1, 𝐼3-𝑦3, 𝐼4-𝑦4), so the cost function 𝐹𝑚 is given by

𝐹𝑚 = ∫ 𝑒211𝑑𝑡 + ∫ 𝑒213𝑑𝑡 + ∫ 𝑒214𝑑𝑡 + ∫ 𝑒222𝑑𝑡 + ∫ 𝑒223𝑑𝑡
+ ∫ 𝑒224𝑑𝑡 + ∫ 𝑒231𝑑𝑡 + ∫ 𝑒232𝑑𝑡 + ∫ 𝑒234𝑑𝑡
+ ∫ 𝑒241𝑑𝑡 + ∫ 𝑒242𝑑𝑡 + ∫ 𝑒243𝑑𝑡,

(16)

where 𝑒𝑖𝑗 is the coupling error at output 𝑗 due to input 𝑖.
Generally, the cost function can be written as follows:

𝐹𝑚 = 𝑁∑
𝑖=1

𝑁−1∑
𝑗=1

∫ 𝑒2𝑖𝑗𝑑𝑡, (17)

where 𝑖 and 𝑗 are unpaired inputs and outputs, respectively,
and𝑁 is the number of inputs/outputs.

The optimization results are detailed in Table 1.

5. Simulation and Results

The model is built in MATLAB environment, where the
results are compared with the decoupling compensation
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Table 1: The optimized gains and learning rate constants of the BELBID.

(a)

Sensory inputs
∗𝑘𝑝11 𝑘𝑖11 𝑘𝑝12 𝑘𝑖12 𝑘𝑝13 𝑘𝑖13 𝑘𝑝14 𝑘𝑖14𝑢1 0.91442 0.30504 0.98729 1.49 ∗ 10−6 0.87959 0.02545 1.00007 0.01003𝑢2 0.99802 −4.78 ∗ 10−6 1.23042 1.68921 0.11573 0.76184 3.30517 4.27 ∗ 10−5𝑢3 0.98515 1.21 ∗ 10−4 0.76503 −1.71535 0.93271 −1.09 ∗ 10−4 5.19011 1.09261𝑢4 1.07348 −0.36335 0.59586 0.21164 −0.3116 −0.01136 1.57765 9.83 ∗ 10−4

(b)

Reward signals𝑘𝑟𝑝11 𝑘𝑟𝑑11 𝑘𝑟𝑖11 𝑘𝑟𝑝12 𝑘𝑟𝑑12 𝑘𝑟𝑖12 𝑘𝑟𝑝13𝑢1 0.99997 14.12 −1.89 ∗ 10−8 0.17881 45.74 −1.09 ∗ 10−5 0.0608𝑢2 −1.9273 1.52 −5.74 ∗ 10−8 0.99942 12.87 −1.93 ∗ 10−4 −0.7905𝑢3 2.92619 3.56 −4.52 ∗ 10−6 0.8862 48.25 7.29 ∗ 10−5 1.00002𝑢4 3.51817 −11.32 9.63 ∗ 10−7 −10.9445 669.07 8.06 ∗ 10−4 0.15296
(c)

Reward signals Learning rates𝑘𝑟𝑑13 𝑘𝑟𝑖13 𝑘𝑟𝑝14 𝑘𝑟𝑑14 𝑘𝑟𝑖14 𝛼 𝛽𝑢1 14.12 1.29 ∗ 10−8 −0.00828 −3.17 6.97 ∗ 10−6 0.55172 0.66156𝑢2 5.95 4.96 ∗ 10−8 0.45465 −1.43 6.1 ∗ 10−6 1.29339 0.77388𝑢3 2.98 −2.17 ∗ 10−7 −0.54673 −8.74 8.91 ∗ 10−6 0.56890 0.75954𝑢4 −221.31 9.04 ∗ 10−6 0.99994 75.42 −3.25 ∗ 10−6 2.08 ∗ 10−4 1.20009
∗Note that 𝑘𝑝11 is for 𝑢1, and it is called 𝑘𝑝21 for 𝑢2 and 𝑘𝑝31 for 𝑢3 and so on for all constants.

matrix provided in [2].The authors of [2] proposed technique
uses RGA to select proper pairing and PSO technique to
estimate the optimal values of steady state decoupling com-
pensation matrix constituting the decoupling compensator
unit. The matrix is used in further works [3]. The model of
the compensatormatrix decoupler is built and comparedwith
the BELBIC decoupler. Both models of the decouplers are
tested by applying the same step changes in system inputs
and the coupling errors for all unpaired outputs aremeasured
by the technique descried in the last section. The sum of all
integral squared errors due to coupling given by (17) is used
to evaluate the decouplers. Equation (17) can be rewritten as
follows:

ISEtotal = 𝑁∑
𝑖=1

𝑁−1∑
𝑗=1

∫ 𝑒2𝑖𝑗𝑑𝑡 = 𝑁∑
𝑖=1

𝑁−1∑
𝑗=1

ISE𝑖𝑗, (18)

where 𝑖 and 𝑗 represent the response of unpaired output 𝑗 due
to input 𝑖. It is found that the BELBID remarkably decreases
the total coupling error compared with the compensation
matrix. The optimization process of the BELBID tunes its
parameters simultaneously. As the cost function depends on
the total error, it is expected that the best improvement of
the BELBID should be in the worst case of the coupling. The
detailed responses to the 4 inputs are declared in Figure 8. It is
clear that the worst coupling error of the decoupled system by
the compensation matrix occurs between input 1 and output
1. The ISE due to coupling between input 1 and output 1
exceeds 57% of total ISE. BELBID is remarkably decreases

this coupling error. On the other hand, the BELBID does
not degrade the outputs of the coupled pairs (𝐼1-𝑦2, 𝐼2-𝑦1,𝐼3-𝑦3, and 𝐼4-𝑦4). Figure 9 compares the coupling errors of
the two decouplers by a bar graph. It declares that the choice
of the cost function as the sum of all coupling errors lets
the optimization process give a higher priority to the biggest
coupling errors. As shown in Figure 9, the biggest coupling
errors of the compensation matrix are 𝑒11, 𝑒22, and 𝑒31,
respectively.These errors represent themain deficiency of the
compensation matrix. It is clear that the BELBID overcomes
this problem and remarkably decreases these errors. The
integration in the ISE motivates the optimization process
to prefer the solutions that produce coupling responses like
narrowglitches that decay rapidly. All the 12th coupling errors
produced by the BELBID are smaller than the errors that are
produced by the compensation matrix except 𝑒14 and 𝑒34. It
is found that improving these errors will produce increase in
more important errors and degrade the overall improvement.
For example, improving 𝑒14 will cause big increase in 𝑒11
which is the most important error. Finally, according to (18),
the total ISE due to coupling of the systems is reduced by
85.3% compared with the compensation matrix results.

6. Conclusion

In this paper, the control of distillation columns, which is
usually highly nonlinear and coupled process, is enhanced by
applying a novel MIMO model of brain emotional learning.
The model mimics the brain ability to introduce many
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Figure 8: Continued.
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Figure 8: Detailed transient responses of the decoupled two-coupled distillation columns process via BELBID (solid line) and previous work
(dashed line): (a) responses to step change in input 1, (b) responses to step change in input 2, (c) responses to step change in input 3, and (d)
responses to step change in input 4.
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Figure 9: Bar graph of the coupling errors (ISE) of the BELBID and
previous work.

emotions via the same inputs. This model is tailored to
work as a MIMO decoupler of the two-coupled distillation
columns. The decentralized approach of controlling MIMO
systems,which include decoupling of the systemandusing set
of SISO controllers, is preferable for many researches to deal
withMIMOnonlinear systems.The gains’ values and training
rates of BELBID are optimized via PSO. In comparison
with the PSO optimized compensation matrix, the BELBID
remarkably decreases the coupling error due to the loops
interactions. The total integral squared coupling error of the
system is reduced by 85.3%. The detailed responses declare
that the BELBID decreases the total coupling error without
degrading the responses of the paired outputs.
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