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This research proposes new approaches to deal with the production planning and scheduling problem in brewery facilities. Two
real situations found in factories are addressed, which differ by considering (or not) the setup operations in tanks that provide
liquid for bottling lines. Depending on the technology involved in the production process, the number of tank swaps is relevant
(Case A) or it can be neglected (Case B). For both scenarios, new MIP (Mixed Integer Programming) formulations and heuristic
solution methods based on these formulations are proposed. In order to evaluate the approach for Case A, we compare the results
of a previous study with the results obtained in this paper. For the solution methods and the result analysis of Case B, we propose
adaptations of Case A approaches yielding an alternative MIP formulation to represent it. Therefore, the main contributions of this
article are twofold: (i) to propose alternative MIP models and solution methods for the problem in Case A, providing better results
than previously reported, and (ii) to propose new MIP models and solution methods for Case B, analyzing and comparing the

results and benefits for Case B considering the technology investment required.

1. Introduction

The underlying manufacturing process in the brewery indus-
try can be basically divided into two main production stages.
Stage I prepares liquids using most of the time fermentation
and maturation tanks. The time spent on this step is estimated
for several days and each tank is for the liquid assigned to
it from the beginning to the end of the fermentation and
maturation processes. The tank can be refueled only when it is
empty. Stage II bottles the liquids in the filling lines, making
products with different liquids and package sizes and types,
resulting in the final items. This stage can only start after the
liquid is ready in the tanks, in other words, when Stage I
has been completed, making the liquid ready to be bottled.
A tank can simultaneously supply several filling lines, when

they are bottling final items containing the same liquid type.
In contrast, a filling line can only receive ready liquid from
only one tank at each time.

The main planning decisions in Stage I establish how
much, when, and which liquid will be assigned to each tank
in the course of the planning horizon in order to fulfill the
demand required by Stage II, considering the limitations of
the available resources and the required times to conclude
the fermentation and maturation processes (i.e., lot-sizing
problem). In Stage II, in addition to the problem of deciding
when, which, and how many resources will be used for
each item production during the planning horizon, it is also
necessary to deal with the coupling of production scheduling
in the problem. For each bottling line, the capacity available
depends on both the lot sizes and the sequences of produced
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items. For example, when a single malt beer production
lot has ended, the line needs to be prepared (cleaned and
adjusted) in order to be able to start the production of a beer
that contains corn grits in its composition. This preparation
time is much less in the opposite way, that is, first the
beer with corn grits and then the single malt. Concluding,
Stage I and Stage II decisions are taken aiming to minimize
the number of changeovers in the filling lines and also to
minimize the inventory and backlog costs.

Integrated lot-sizing and scheduling (sequencing) are a
widely studied area [1, 2]. The recent literature reviews by
Almada-Lobo et al. [3] and Copil et al. [4] highlight an
increasing interest in simultaneous lot-sizing and schedul-
ing problems in many companies, resulting in researches
motivated by industrial practical applications, such as glass
container [5], animal nutrition [6], soft drink [7], wood floor
(8], pulp and paper mill [9], food [10], automotive appli-
cations [11], supermarkets [12], and thin film transistor and
liquid crystal display [13]. In these studies different models
are used to represent lot-sizing and scheduling problems
with sequence-dependent setups. The two most widely used
models are the general lot-sizing and scheduling problem
(GLSP) [14] and the capacitated lot-sizing problem with
sequence-dependent setup (CLSD) [15]. These models are
also known for their complexity and loose bounds; therefore
they need to be reformulated, seeking stronger models and
better bounds. Examples for the lot-sizing problem include
the network flow-based model proposed by Eppen and
Martin [16] and the Simple Plant Location (SPL) model [17].
These reformulation efforts motivated the models presented
in the following sections.

Despite the vast literature, lot-sizing and scheduling in
brewery facilities are still relatively understudied. Related
research was carried out by Guimarées et al. [18], who studied
the problem of annual production in a beverage company
(soft drinks and beers), considering a multiplant environ-
ment, the seasonality of demand, and other particularities
of this company, for example, permitting final item transfer-
ences between plants. However, this paper does not explicitly
consider the decisions involving Stage I. Guimaraes et al. [18]
proposed a VNS (Variable Neighborhood Search) algorithm
to find feasible solutions for this production problem.

Another related study is presented in Baldo et al. [19],
who propose a mathematical programming approach to solve
the problem considering both stages simultaneously. This
is the only study found in the literature that performs the
integration of both stages to address this problem. Due to
the difficulty of solving or even finding a feasible solution to
the problem, two MIP-heuristics using relax-and-fix and fix-
and-optimize strategies are proposed. The solutions are able
to provide feasible production plans aimed at minimizing
inventory costs and backlogs of final items (commercialized
beers), while minimizing the number of setup changeovers
in the filling lines. Preparation in such bottling lines is
dependent on the production item sequences and tank swaps
that provide ready liquid for the filling lines. That is, before
starting the bottling process, the lines need to be adjusted
for a specific item, to fill the right quantity of liquid in
the packaging, and it must be connected to a single tank
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which supplies the liquid during production of the respective
final item. Thus, each change of item or tank on the filling
line results in a setup operation consuming the available
production capacity.

The present article proposes new approaches to deal with
the lot-sizing and scheduling problems that occur in brewery
facilities. The main integrated decisions in Stages I and II
are considered and two different situations often found in
brewing industry, according to the production process tech-
nology, are analyzed. These situations can be distinguished
by the consideration (or not) of the operations responsible
for swapping the tanks that feed the bottling lines when the
production plan is being developed. In other words, at the
end of the fermentation and maturation processes, the liquid
is available in the tank to fill packages of final items, a process
that occurs in the bottling lines. However, before starting a
new production run, each line must be prepared, adjusted,
and also connected to the respective tank that will supply it.
Figures 1(a)-1(c) illustrate the possibilities encountered in a
case study, regarding the preparation of a filler. Figure 1(d)
presents a summary of the pictures (a—c), introducing the
information about the number of setup changeovers (last row
of the table) that occur in the consecutive periods illustrated
by the pictures. To sum up, Case A usually occurs in less
automated breweries, while, in Case B, the automation of the
plant results in a fast setup of the tank and this spending of
time does not need to be considered.

Figure 1(a) depicts the production in the first period,
when a tank filled with ready liquid supplies the bottling
line, producing a final item (glass bottle type). Figure 1(b)
describes the continuous production of bottles in the sec-
ond period, when the liquid tank illustrated in Figure 1(a)
becomes empty and the line is switched to the tank that
has the same liquid type available for supplying it. If this
setup changeover is a time consuming operation (Case A), its
explicit consideration is necessary for the preparation of real-
istic production plans. If the setup is close to immediate (Case
B), as it happens in more automated filling lines, it can be
disregarded (see Figure 1(d), Cases A and B, resp.). Figure 1(c)
describes the third period, which illustrates a situation in
which the production of bottles ends and the production of
cans starts, in both Cases A and B. This changeover between
final items generates a sequence-dependent preparation in
the machine, regardless of the technology involved.

This article aims to contribute to the literature by propos-
ing the following:

(a) For Case A (with explicit setup changeover of tanks),
it contributes the following:

(i) an alternative mathematical formulation using
SPL (Simple Plant Location) strategies [20], to
represent both stages (I and II)

(ii) two other models, obtained by the combination
of the SPL model and the model presented in
Baldo et al. [19].

(b) For Case B (disregarding the setup changeover when
swapping tanks), it contributes the following:

(i) model adjustments from Case A to Case B
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(a) First period (b) Second period (c) Third period

Pictures (a) (b) (c)

Cases A A B A B

Number of setup changeovers 0 0 1 0 1

F1GuURe 1: Difference between Cases A and B regarding the tank swaps to supply the bottling line.

(ii) an alternative mathematical formulation for
Stage II using strategies based on ATSP (Asym-
metric Traveling Salesman Problem) [21].

(¢) For both cases, a MIP-based heuristic that considers
the lot-sizing and scheduling decisions in a sequen-
tial fashion is proposed. This MIP-heuristic method
consists of two main steps:

(i) (Step 1) solve Stage I considering some informa-
tion of Stage II (lot-sizing decisions).

(ii) (Step 2) the solution obtained for Stage I is fixed
and used during Stage II resolution.

Several computational tests were run supported by an
optimization solver and the analysis of the results shows that
the new approaches proposed for Case A obtained better
results than the ones previously reported in the literature [19].
The computational tests also quantify the benefits of using
more advanced technology available for brewery production
processes, in order to reduce the setup changeover times
(consequently costs) of the tanks that supply the filling lines,
when considering Case B.

The remainder of this paper is organized as follows.
Section 2 briefly describes the beer production process and
presents a detailed description of the problem. Section 3
includes a short explanation regarding the model described
in Baldo et al. [19]. Section 4 describes the mathematical
formulations proposed to represent Case A and Section 5 the
mathematical models for Case B. Section 6 proposes the MIP-
heuristics to solve both scenarios. The computational results
are shown in Section 7. The conclusions and future research
perspectives are discussed in Section 8.

2. Problem Description

In the context of this study, the production process in a
brewery is considered divided into two main stages and there
are several tasks that comprise them. They are described
below.

(i) Liquid Preparation (Stage I). This starts with the wort
preparation (mashing and lautering). Mashing involves mix-
ing the milled grain with water, which is then submitted to
a heating process. During lautering, the mixture is filtered
making it ready for boiling and adding the hops. The wort is
cooled before adding the yeast, yielding green beer. All the
previous processes take a few hours to complete. The wort
and yeast cells are then placed into fermentation tanks to
start the fermentation phase. At the end of the fermentation
process, the yeast is separated by decanting, leading to
the maturation phase. The fermentation and maturation
processes occur inside the same tank and usually take several
days to complete. Depending on the type and style of beer,
these two phases can take from 3 to 41 days. The final step to
create the ready liquid (beer) is filtration and carbonation. At
this point, the beer is ready to be bottled. If the filling line is
not available, the liquid can wait within its own fermentation
and maturation tanks, or it can be filtered and kept at buffer
tanks while waiting to be bottled. Nevertheless, after being
filtered, the beer must be bottled within a few days.

(ii) Bottling (Stage II). This is the final stage of the production
process, where the beer is bottled in containers (glass bottles,
aluminum cans, or barrels) and packed. The filling process
occurs on a conveyor belt, moving the containers between
procedures: washing and sterilizing returnable containers
(this can be suppressed for cans, because they are purchased
and sterilized), followed by filling, sealing, labeling, and
packing. The filling lines are initially adjusted to produce beer
of a given liquid and type of container/package and, in each
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Models Stage Stage II (Case A)

BSAM-I  SPL-I BSAM-II SPL-II
BSAM-I + BSAM-II X X
BSAM-I + SPL-II X X
SPL-I + BSAM-II X X
SPL-T + SPL-II X X

(A)
Stage I Stage II (Case B)

Models BSAM-I SPL-I BSAM'-II SPL'-l ATSP-II
BSAM-I + BSAM'-11 X X
BSAM-I + SPL'-II X X
BSAM-I + ATSP-II X X
SPL-I + BSAM'-II X X
SPL-I + SPL'-1I X X
SPL-I + ATSP-II X X

FIGURE 2: Different approaches used to mathematically represent the problem.

changeover of liquid and/or container/package (depending
on the situation, also the tank that supplies liquid) in the
filling lines, a set of setup operations (cleaning and/or filling
line adjustments) need to be performed, which depend on the
production sequence.

The production bottlenecks in each of these stages are
the focus of this study. The bottleneck of Stage I is the
fermentation/maturation process, because the tanks are busy
for several days until the liquid becomes ready and available
for bottling. Regarding Stage II, the main bottleneck is in the
filling, because the speed at which the packages are filled with
liquid directly influences the release (or not) of the tanks.
In the production environment studied in this paper, the
possibility of using buffer tanks between Stages I and II is not
considered.

To solve this problem, new mathematical models aimed
at optimizing the main decisions involved in Stages I and
IT are proposed. The objective in the mathematical models
is to minimize the inventory and backlog costs, as well as
the number of setup changeovers in the filling lines (each
change implies a small penalty in the objective function). The
third term in the objective function is of a second order in
comparison with the first two terms (observe that the value
of alpha is a sufficiently small number; see function (1)). This
small penalty aims at ensuring that, among the minimum
cost solutions (first two terms), the optimal solution results
in a small number of setup changeovers in periods with idle
capacity. The models have a set of constraints that represent
the main process limitations found in Stages I and II, as
well as the decisions that integrate both stages. According
to the literature, this paper deals with a multilevel lot-
sizing problem with sequence-dependent setup times and
costs between the production of different items in different
parallels filling lines (Almada-Lobo et al. [3] and Copil et
al. [4]). The logical structure of each mathematical model is
shown in Figure 2(a).

Note in Figure 2(a) that Stage I is represented by two
different mathematical formulations: BSAM-I is described
in Baldo et al. [19] (see Section 3) and SPL-I is presented
in Section 4.1. SPL-I uses a Simple Plant Location problem
strategy [20] for modeling production and inventory deci-
sions in Stage I. For Stage II, when it comes to Case A,
the problem can be modeled by two different approaches.
The first was already presented in the literature using the
GLSP (General Lot-sizing and Scheduling Problem [14]) in
BSAM-II (see Section 3). The second approach, SPL-II, also
uses a Simple Plant Location reformulation and is presented
in Section 4.2. Still describing Stage II models, but now
for Case B, BSAM-II and SPL-II models of Case A are
adapted to this problem situation (BSAM'-II and SPL'-II),
as well as an alternative proposal modeling (ATSP-II) using
the Asymmetric Traveling Salesman Problem [21] to capture
scheduling decisions, as presented in Section 5.2. For Case A,
there are four possible modeling approaches, by combining
Stages I and II models, and each complete model structure
can be seen in Figure 2(b)-(A) (BSAM-I + BSAM-II, BSAM-
I + SPL-I, SPL-I + BSAM-II, and SPL-I + SPL-II). For Case
B, the combination of Stages I and II models is shown in
Figure 2(b)-(B) (BSAM-I + BSAM'-II, BSAM-I + SPL'-I,
BSAM-I + ATSP-II, SPL-I + BSAM'-II, SPL-I + SPL’-II, and
SPL-I + ATSP-II).

3. Literature Mathematical Model

This section briefly presents the mathematical model
described in Baldo et al. [19]. The mathematical model
considers a planning horizon composed of a few weeks and
each week is divided into periods corresponding to days or
shifts. At Stage I, the periods add up to a total of |T| days.
The decisions involved in Stage II need to be synchronized
with the ones in Stage I; therefore for Stage II the |T| days
are divided into two disjoint parts, T} and T,, having a
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different time segmentation for each. Thus, each day ¢ € T is
subdivided into a set A, consisting of s subperiods of flexible
size (see Figure 3). For each t € T}, |A,| < Q and, fort € T},
[A,| = 1; that is, the number of subperiods per day varies
only in T, keeping a similar division used for tanks in T,
(T =T, UT,; T, NT, = @). Qis a maximum number of
preparations in a filling line in a period. The first part of the
planning horizon, T, first periods, provides greater detail at
the beginning of the planning horizon.

Sets

N:items (i, j € N),
L:liquids (I € L),

M: filling lines (m € M),
O: tanks (o € O),

T,: periods in the first part of the planning horizon
(teTy),

T,: periods in the second part of the planning horizon
(t € Tz))

T: periods in the planning horizon (T = T, UT,, T, N
T, =0),
y,: items that use liquid [ in their composition,

Uy,: items that can be produced in filling line m.

Parameters

A;: number of periods required to process liquid /
(duration of the fermentation/maturation plus tanks’
cleaning operations),

d;;: demand of item i in period t,

h;: inventory cost for one unit of item i over one time
period,

h;: backlogging cost for one unit of item i over one
time period,

a,,,;: production time of one unit of item i in filling line
m,

C,,;: total filling line m capacity in period ¢ (time),
ry;: quantity of liquid I necessary for the production of
one unit of item i,

b+ required setup time in filling line m when

switching from items j to i,

Cap) . : lower bound in the amount of liquid in tank
o,

Cap! ,.: upper bound in the amount of liquid in tank
o,

Q: maximum number of preparations in each filling
line in period t,

a: sufficiently small number,
B: sufficiently large number,

I,y = 0: no stock of items i at the start of the planning
horizon,

I, = 0: no backlog items i at the start of the planning

horizon,

Ko = 0: no ready liquid [ inside tank o at the start of

O
the planning horizon.

Auxiliary

¥: defining the item production quantities depends
on the Stage II model that is used.

Varibles

Both: stages,
Xomip: amount of item i produced in filler m at

subperiod p with liquid supplied by tank o.

K,;: amount (i.e., inventory) of liquid / ready and

available inside tank o at subperiod t,

Q,y: amount of liquid [ that gets ready in tank o at
subperiod ¢,

Y., 1, if liquid I gets ready in period t in tank o, 0

Oi
otherwise.

Stage IT

Y2 . 1if filler m is liquid supplied by tank o

omip*
and prepared to produce item i in subperiod p, 0
otherwise,

Zjip: 1if a setup changeover in filler m from items j
to i in subperiod p occurs, 0 otherwise,

L

I+

it

: Backlog number of items 7 at the end of period t,

:inventory of item i at the end of period ¢.

Objective Function: BSAM-II

Minimize Z Zh:'I; + Z Zhi_li;

iEN teT iEN teT

v ) )

meM jji€u,, ped NteT,

@

subject to the following.
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0% Zypip < 1

i,jeN; 0eO;lely meM; pel;teT
(14)

The objective function (1) minimizes the sum of the
backlogging cost, the inventory cost, and a term proportional
to the number of item changeovers in the filling lines during
the horizon planning. Constraints (2) represent the tank
liquid balance equality and integrate Stages I and II. The
liquid demand [ in each tank o and period ¢ comes from
the item production quantities defined by ¥, and in this
model ¥ = Y, Yieyou, 2per, TiXomip- Constraints (3)
ensure that, in order to prepare the liquid in t (Y, =
1), the fermentation/maturation process has to take place
during the previous A; periods. Constraints (4) ensure that,
during any period of the fermentation/maturation process,
the tank has no available liquid; that is, Y7, equals zero.
Constraints (4) impose boundaries on the amount of ready
liquid. Concerning Stage II, constraints (6) balance the
inventory, backlogs, production, and demand. Constraints
(7) and (8) ensure that the limited capacity of the filling lines
is respected for ranges T} and T, respectively. During T}, the
setup time contributes to the capacity consumption, contrary
to T,. Constraints (9) ensure that the production of i only
occurs in case the filling line is ready. Constraints (10) and
(11) ensure that the filler must be prepared for a single item
for each subperiod p € A, (t € T;) and the number of
preparations of the filler to Q) in every subperiod p € A,
(t € T,), respectively; in T, the length of each subperiod is
bigger than that of T}. Constraints (12) and (13) capture the
changeover of items in the filling lines in T, balancing the
flow in and flow out of setups. Finally, constraints (14) define
the domain of the variables.

4. Case A: Models

To model the problem at hand, consider the same sets and
parameters described in Section 3 and also the definitions
given below. The mathematical models proposed in this
section use the sets and the parameters explained before.

Parameter

KSZI:)];, = 0: no ready liquid / inside tank o at the start

of the planning horizon used in period ¢'.

4.1. Case A: Stage 1. 'There are two approaches for represent-
ing Stage I of Case A with mathematical models, as shown
in Figure 2. One of them was presented in Baldo et al. [19]
and it is called BSAM-I. The main variables that compose
this model are K, corresponding to the amount of ready
liquid [ available in tank o in period t, and Q,,, describing
the total amount of liquid / that gets ready in tank o in period
t, comprising a set of constraints (3)-(5).

To describe Stage I of the present problem, we use
reformulating and SPL strategies. This consists of replacing
the variables K, and Q;, resulting in variables K SPL

K-
The definition of these new variables is given below and
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constraints (15)-(20) representing Stage I are defined later.
Moreover, it is known in advance that an auxiliary symbol ¥
is used in constraints (15), which is defined later during the
presentation of the models for Stage II.

Variable: Stage I (SPL)

Kj}:tL, :amount of liquid / available in tank o, which was
prepared in period ¢ and is used in period t'.

SPL-I

Y K§E-W20 0cOi i eTslel

teTt<t'

(15)

1 SPL 1
CapfninYolt = Z Koltt’ £ Cap(r)naxYolt
t'eTt' >t (16)
0€0; teT; el

A
YL <1-Y!
ol t—t' = olt

I'eLl'+l t'=0,t-t'>0 (17)

0€0; leL; teT

A
Y Yy, py<1-Yy o0€O,leL teT (18)
t'=1,t-t'>0
t-1 t . .
o
Z Z Z Kol’t't" < Capmax (1 - Yolt)
VeLt'=1 t"=max{Lt-A )" >t' (19)

0€0; leL; teT

t-1 T
Z Z ZKSII:}’H’ < Capfnax (1 - Y;lt)

l'eLt'=1t"=t (20)
0€0; lel; teT

SPL
Koltt’ = 0;

Yh €{0,1} (21)

olt

0€0; leL; t,t' eT.

The set of constraints (15) engages Stages I and II, by
ensuring that there is production of items during period
t', only if there is ready liquid available. The symbol ¥
corresponds to the amount of liquid in tank o used in the
production of final items (Stage II); this is described in
Sections 4.2 and 5.2.

Stage I is exclusively represented by constraints (16)-(21).
The maximum and minimum capacity for each tank must be
respected and it is ensured by constraints (16). Constraints
(17) and (18) guarantee that the fermentation/maturation
periods are completed; that is, they prohibit during at least
A; periods that more than one liquid has been produced
within the same tank. Constraints (19) and (20) ensure that,
to have ready liquid in ¢, then Y}, = 1, and the process

of fermentation and maturation takes place during the A,
periods immediately preceding period t. The necessary time
to complete the fermentation and maturation processes for
liquid [ is satisfied by restrictions (19), as Kgﬁl:t, =0(t" €
{t — A,,...,t — 1}) during entire A; periods immediately
prior to t; that is, the tank is solely for liquid / processing.
Constraints (20) ensure that there is no production before the
liquid is ready. The domain of the variables is defined by the
set of constraints (21).

4.2. Case A: Stage II. As depicted in Figure 2, there are two
ways to define a mathematical model for Case A considering
Stage II. The first uses GLSP modeling strategies, described
in Section 3, consisting of a set of constraints (6)-(14) whose
main variables are as follows: I, refers to the backlog number
of items i at the end of period t; I; is the inventory of item
i at the end of period #; and X,,,;, denotes the amount of
item i produced in filling line m in subperiod p (p € A, and
t € T), made by the liquid fed by tank o. In this research,
the second way uses SPL strategies to reformulate Stage II,

replacing the variables I, I; ,and X by the variables

X omipe and Ii[:aCkIOg. Thus, the definition of these new variables

is given below.

omip>

Variables: Stage II (SPL)

X omipy': amount of item i produced in filling line m in
subperiod p (p € A, and t € T'), made of liquid fed by
tank o, to fulfill the demand of period ¢/,

backlog

I, : amount of item i required in period t which

has not met at the end of the horizon of planning.

The mathematical model SPL-II concerning Stage II of
Case A is given by the following.

Objective Function: SPL-I1T

Minimize z Z z Z Z (f - t,) h; Xomipt!

0€OmMEM i€p,, ' eTt>t' peA,

SDIDIDIND I W DL p e

o€OmeM icp,, 14 eTt<t' peA,

(22)

2 )

MEM j,i€p, per, teT|
+ 3 YT - 1) B I,

ieN teT

SPL-1T
backl
Z Z ZXomipt =d; - Iitac *
0O meM peP (23)

i€u,; teT
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TABLE 1: Mathematical models for Case A.
Obj Func Constraints

Stages I and IT Stage I Stage II
BSAM-I + BSAM-II 1 (2) (3)-(5) (6)-(14)
BSAM-I + SPL-II (22) (2) (3)-(5) (23)-(30)
SPL-T + BSAM-II 1) (15) (16)(20) (6)-(14)
SPL-I + SPL-II (22) @15) (16)-(20) (23)-(30)

Z Z mji m]zp Zasz

jENieN ieN

omipt’ <Gy
(24)
meM; pelsteTy; teT

Z zamixomipt’ <Gy

0€OieN (25)
meM; pelsteTyt €T

C
X «t/<
a

mt 11
omip —Y

omip
mi (26)
0eO; meM; ieN; t' eT
1I
Z Z Yomip =
0€O i€y, (27)
meM;pel;steT
11
2. D Yomip <
0€O i€, (28)
meM; peld; teT,
1I
ZYOV"]P 1= szﬂp
0€O i€y, (29)
meM; jep,; pers teT
1I
2 Yonip = X, Zunip
0€O JE€Um (30)
meM;ieu,; pelstel
Xamipt’ 2 0;

0 < Zpjip <

i,jeN; 0€O; t' €T; (31)

Y2 €01}

omzp
meM; pelys teT.

Objective function (22) aims to minimize the sum of the
backlogging cost of unmet demand and the inventory cost of
final products and a term proportional to the number of item
changeovers in the filling lines and the cost of undelivered
demand at the end of the horizon planning. For Stage II
(bottling), constraints (23) ensure that the demand is being
met and when there is a backlog or when the demand is not
completely included in the horizon planning (backorder), it

incurs penalties in the objective function. Constraints (24)
and (25) ensure that the filler capacity limit is respected. In
constraints (26), it is guaranteed that the production of i only
occurs in case the filling line is ready. The set of constraints
(27)-(31) is similar to (10)-(14), and, according to constraints
(27), every filling line must be prepared for a single item for
each subperiod p € A,;t € T,. Constraints (28) limit the
number of preparations of the filler to ) in every subperiod
p € Ast € T, Remember that, in the second part of
the horizon (T}), the size of each subperiod can be larger
than T), and scheduling decisions are not considered, but
several lots (up to ) may be produced in the same filling line
per subperiod. Constraints (29) and (30) capture the setup
changeovers in the filling lines during T;. Finally, constraints
(31) define the domain of the variables.

It is worth remembering that constraints (15) and
(2) introduce ¥, which can be replaced by ¥ =
ZmeM Zieymym Zt’eT Zpe/\, rliXomipt’ when it is used to
represent the problem using this model.

Table 1 shows all the possibilities to generate the mathe-
matical models by the combinations that comprise the parts
in Figures 2(a) and 2(b), concerning Case A, using the defined
constraints. Note on the left of Table 1 that Stage I can be
modeled using the BSAM-I or SPL-I approach and also that
Stage II (Case A) can be described using the BSAM-II or
SPL-II, resulting in four possible combinations (Figure 2(b)).
The possibilities of model compositions are described in the
first column of Table 1 and are interpreted analogously to
the BSAM-I + BSAM-II model, composed of the objective
function (1), the constraints coupling Stages I and II (2), the
Stage I constraints (3)-(5), and, finally, the set of constraints
that make up Stage II (6)-(14).

5. Case B: Models

For the definition of the mathematical models proposed for
Case B, consider the notation introduced in Section 4.

5.1. Case B: Stage I. 'The main difference between Cases A and
B is found in Stage II. Therefore, the mathematical modeling
of constraints describing BSAM-I and SPL-I for Stage I are
valid to Case B.

5.2. Case B: Stage II. The proposed mathematical models
to represent Stage II in Case A can be adapted to translate

Case B. The machine preparation variables (Y™ . ) lose the

index referring to tanks (o, with o € O) making Yfil - As

a consequence, fine adjustments in the model were made

omzp



Mathematical Problems in Engineering

since changes in the tank that supply each filling line are no
longer tracked. This representation of the problem reduces
the number of variables, but the problem is still difficult to
solve.

The adjustments of the BSAM-II model occur in con-
straints (9)-(13), which are replaced by (32) while constraints
(6) and (7) are kept. This new model is referred to as BSAM'-
II. In the SPL-II model, constraints (23)-(26) do not change,
but (27)-(30) are permuted by (33). These changes give rise
to model SPL'-II.

BSAM'-II. Equations (6) and (7) undergo no change:

mt
ZXomtp < _szp
0€0 i

meM;icu,; per;teT

Z lerftp =

i€thy,

meM; peld; teT

ZY,ILP_Q meM; pelys teT,
i€, (32)

2 Zsp

i€y,

m]pl_

meM; jepu,; per; teT
rmp sz]zp
j€tm

meM;ieu,; pelrstel.
SPL'-II. Equations (23)-(26) undergo no change:

Z YrIrfzp -

icp,,

meM; peld; teT

ZY,EIP_Q meM; pel; teT,

i€,
Z
-1~ jip
meM; jepu,; pery teT;
mzp Z Zmjip

€t
meM; ieu,; pelrsteT.

In addition to the adjustments to the previous models,
a new formulation proposal is made for Stage II based on
the ATSP (Asymmetric Traveling Salesman Problem); see
Figure 2. In this reformulation of the Stage IT model, the
concept of subperiods is dropped. In this model, each period
in the first part of the planning horizon corresponds to one
day, but the details regarding the scheduling remains in the
first T, periods. Consider the following settings for the model.

Variables: Stage II (ATSP)

Y}l . 1, if in filling line m a setup for item i in the

beginning of period t occurs, 0 otherwise,

Zmﬂt L, if in filling line m a setup changeover from j
to i in period t occurs, 0 otherwise,

V,.iv: number corresponding to the order production
sequence of item i of bottling line m during period t.

Objective Function: ATSP-1I

Minimize Z Zh, a T Z Zh, it

iEN teT iEN teT

(34)
Y Y A
meM jiep,, teT;
ATSP-1I
Z Z Xomit+Iztl+I _d +Irtl I+
0€0O meM,ieu,, (35)
ieN; teT
Z Z Qi * Xomit + Z Z brm] mz]t mt
0€O i€, i€, jE€U, (36)
Vme M; t €T,
11
Xomzt = Z Zm]lt + let
Gmi \ jep, (37)
YoeO, meM, i€cuy,;teT
YV, =1 VmeM;teT (38)
i€phy
11
mzt + Z Zm;zt Z Zmz]t + Ymt t+1
J€Hm J€Hm (39)
VmeM; i€p,; tel
Zzzmiﬁ<0 VmeM; teT, (40)
€4y € thm
II
Vm]t = szt +1-|NJ- (1 - Zmijt) —IN[- Ymit (41)

VmeM; i,jeu,, j+i; teT.

adding constraints (32) and the same domain to (14), with
Yrgn‘

The objective function (34) minimizes the sum of the
backlogging cost, the inventory cost, and a term proportional
to the number of item changeovers in the filling lines during
the horizon planning.

The set of constraints (35) and (36) is similar to (6) and
(7), respectively. Constraints (35) ensure the inventory and
production balance of the final items. The capacity limit
for each filler during the first |T;| periods is ensured by
constraints (36). Constraints (37) only allow the production
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of item i at period t if the filler is prepared for it, either by a
changeover setup operation (the bottling line is prepared for
the production of item j and is changed to item 7, and then
Z,ujir = 1) or by the inheritance of the previous period setup
state (when the machine in period ¢ — 1 is already prepared to
produce item i and this preparation was taken to £, Y1, = 1).
At the beginning of each period, the machine must always
be prepared for one item as imposed by constraints (38).
The flow of changes and preparations for each filling line are
captured by constraints (39). The left side is equal to 1 if there
is a preparation and the filler is prepared for item i in period
t (Yy%lt = 1) or if there is at least one changeover in the filling
line from items jtoi (};Z 1). Therefore, the machine

mjit
setupissenttot+1, Y,ﬁn ++1 = 1, or there is a setup changeover
from items i to any other j during period t (¥ s Z,,,;; = 1).
The same logic applies when both sides are equal to zero. The
maximum number of changeovers in each filler m for each
period t is limited to Q (40).

By using this model (ATSP-II), the coupling constraints
need to be changed by replacing ¥ = ¥, cvr Yiey e, T1i X omit-

Before going to the next section, note that BSAM-II
constraints (11)-(12) were replaced by (39) in the ATSP-II
model. This change was motivated by the computational
results of various tests conducted, considering both sets of
constraints (also adding subtour elimination constraints to
the model). The tests did not distinguish the computational
performances between the two alternatives and it was decided
to use constraints (39).

The solutions provided by the solution of this model
without constraints (41) enable the existence of subtours and,
therefore, it is invalid in practice. These constraints (41) were
proposed by Miller et al., therefore named MTZ constraints
[22]. To generate constraints (41), MTZ, in order to obtain
a feasible solution, it should be imposed that there is only
one component connected to the corresponding arc of the
V!l variable, whose constraints (41) achieve this by using
variables V, ;,, that is, by analyzing the filling line status
through any sequence. A similar mathematical modeling
strategy is known as the Traveling Salesman Problem [23].

The mathematical modeling alternatives for the inte-
grated lot-sizing and scheduling problem in the brewery
industry, specifically for Case B, are summarized in Table 2.
The reading and interpretation of this table are similar to
Table 1.

6. MIP-Based Heuristics:
Decomposition of Stages

Using both case models, several computational tests were
conducted using different MIP-heuristic methods to find
good solutions for the problem, which are not accomplished
by the exact methods found in standard commercial opti-
mization solvers.

In the design of the MIP-heuristics, a hierarchical decom-
position method is followed. By decoupling stages, the
method aims to disaggregate the most difficult decisions of
each stage, while providing relevant information from one
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stage to the other. The MIP-heuristics first solve Stage I and
then Stage II. In other words, first the tank filling plans are
defined, and this information is used to develop the bottling
plans. Basically, Stage I defines which liquids, periods, and
the corresponding amount of these fluids that will be ready
in each one of the tanks during the planning horizon. This
information is then used to develop the production plan for
Stage II. The order in which each stage is solved was defined
after several preliminary tests. As a matter of fact, when Stage
II was solved first followed by Stage I, there were many cases
in which the heuristics were unable to find feasible solutions.
This fact occurs mainly by establishing impracticable produc-
tion plans due to unforeseen tank capacity issues resulting in
ready liquid absence to manufacture the expected items. This
situation does not occur if Stage I is solved first and then Stage
I1, since Stage II can always adapt its schedule to the available
ready liquid, even if it implies backlogging some demand.

Thus, the proposed MIP-heuristic can be described in two
main steps: one describing the Stage I solution and the other
tailored to solve Stage II.

Step 1 (Stage I). When disengaging stages during Stage I
solution, some constraints of Stage II and other relevant
information have to be considered to prevent some solutions,
such as having all the liquids ready at the same time,
overwhelming the filling lines. Other constraints follow the
same definitions of their mathematical models previously
described.

MIP-Heuristic: Stage I

Minimize Z Zh, a T Z th it (42)

ieN teT ieEN teT
Zmzt— tET;mGM (43)
iEN
IT| .
omzt < min Zd’t, _m Mi
Ay (44)
0cO;meM;iecp,;teTl
ZZ X <C, meM;teT (45)
o€Oieu,,
I _
Z Z Xomit + I:t—l + Iit
0€0 meM,iey,, (46)
=dy+I, +I; teT;ieN
Kolt + Z Z Z rliXomip
meM iey,Ny,, per, (47)

i1 ¥ Quy 0€0;5leL; teT,

adding Stage I constraints (BSAM-I or SPL-I).

The Stage I solution is intended to provide the tank fill
planning, searching to supply liquid in the filling lines in
order to avoid the (expected) backlog and inventory costs
of the final items. Therefore, the objective function (42)
aims at minimizing the sum of possible costs incurred by
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1

TABLE 2: Mathematical model for Case B.

Obj Func Constraints
Stages I and II Stage I Stage II

BSAM-I + BSAM'-IT 1) (2) (3)-(5) (6)-(7) and (32)
BSAM-T + SPL'-TI (22) (2) (3)-(5) (23)-(26) and (33)
SPL-I + BSAM'-1I 1) (15) (16)-(20) (6)-(7) and (32)
SPL-I + SPL'-1I (22) (15) (16)-(20) (23)-(26) and (33)
BSAM-I + ATSP-II (34) (2) 3)-(5) (35)-(41) and (10)-(14)
SPL-I + ATSP-1I (34) (15) (16)-(20) (35)-(41) and (10)-(14)

inventory and/or backlog of final items. The set of constraints
(43)-(46) is responsible for including some information
about Stage I regarding Stage II, avoiding infeasible solutions.
Constraints (44) ensure that production occurs only if the
filler is prepared. Constraints (45) ensure that production
must respect the maximum capacity of the filler available
for the period. The balance of inventory and production
are ensured by (46). Other constraints need to be added
according to the model being solved. In BSAM-I, constraints
(3)-(4) are added to the set of previous constraints. How-
ever, if in SPL-I, the previous constraints are combined
with constraints (16)—(21); that is, constraints (43)-(47) are
not modified regardless of the model used. The planning
decisions concerning tanks obtained from this model are
saved on the amounts corresponding to Q,, and Y%, and are
kept in Qc,p, ~and Yclopyo,t’ respectively. This information is
sent to Stage II solution (MIP-heuristic, Stage IT) and strictly
followed in the next step.

Step 2 (Stage II). The information received from Step 1

1 . . . .
(Qcopy,, and Ycopyu,,) is maintained and respected during the

solution of Stage II. Furthermore, the objective function is the
same as that defined in Stage II models both for Cases A and
B.

MIP-Heuristic: Stage I1

Objective Function

Case A: BSAM-II or SPL-II or
Case B: BSAM'-1I or SPL'-1I or ATSP-1I:

Kolt = Ropp-1 — ¥+ Qolt

(48)

0€0; leL; teT

L A+l
Y Y Kyyp<B(1-Y0,, )

Pl COPY ¢ (49)

0€0; leL; teT

1 o 1

QcopYolt YCOPYolt s Qolt < CapmaxYCOPYolt (50)

0€0; leL; teT

using the correspondents ¥, according to Case A or B and
also the model that one wants to use to represent Stage II.

Stage 11

Case A: BSAM-II or SPL-II or
Case B: BSAM'-11 or SPL'-1I or ATSP-II.

In this step, the MIP-heuristic solves Stage II considering the

information received from Stage I (Qc,p, ~and Yclopyl ). This
ol olt

is achieved using the set of constraints (48)-(50), which is
responsible for the definition of the tanks plan in Stage II.
The production only occurs if there is ready liquid available
for the filling, as guaranteed by constraints (48). Constraints
(49) ensure the tank will be empty in order to receive the
liquid that will ferment and mature and also that it will be
exclusively for this liquid while fermenting and maturing.
Moreover, constraints (50) ensure that the maximum and
minimum tank limits are respected.

The MIP-heuristics used to solve Cases A and B follow the
modeling approach defined in Tables 1 and 2. To distinguish
them from the original model solution, these heuristics are
named using “H:” in front of the respective model name, for
example, H:BSAM-I + BSAM-II.

7. Computational Results

The solution approaches were implemented in C++ using
ILOG Concert libraries and were solved using the solver
Cplex (version 12.6). The test bed consisted of the same
testing instances introduced in Baldo et al. [19], composed
of 20 instances randomly generated based on real data. The
numbers of items (|N| = {35, 40}) and filling lines (|M| = 5)
have dimensions that correspond to industrial settings usu-
ally found in brewery companies. The tests were performed
using a PC with a 3.4 GHz Core i7 2600 processor (four cores,
2 threads each) and 16 GB of RAM memory. The running time
of each solution approach was limited to one hour, which is
an acceptable time in order to support planning decisions
in practical settings. For the MIP-heuristics, the maximum
execution time was divided by the two steps as follows: a
maximum of 45 minutes for the solution of Stage I model and
the remaining time for the Stage IT model.

For each instance, the values of GAP—defined in (51),
RATIO—calculated as (52), the amount of undelivered
demand at the end of the planning horizon, and the execution
time were analyzed. In the definitions of GAP and RATIO,
OF represents the current value of the analyzed objective
function, LB is the best lower bound found for the instance
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during the runtime limit, and OFg,, is the best objective
function value found for the problem.

GAP = (%) % (51)
F - OF
RATIO = (%) %, (52)

The results are presented in Subsections 71, 7.2, and 7.3.
Subsection 7.1 contains the results of Case A shown in this
sequence: the holistic model and the MIP-heuristic results,
the latter was compared with the best model performances,
and then a summary was compiled and is shown in Table 3.
Subsection 7.2 presents the results of Case B using the same
layout introduced for Case A. Then, Subsection 7.3 compares
both Cases A and B. In Subsections 7.1 and 7.2, the comparison
charts are based on the study presented in Dolan and Moré
[24]. In the charts in Figures 4 and 5, two or more methods
can be compared by analyzing the relation of a performance
parameter (e.g., OF, RATIO, and GAP) in a finite set of
instances. The deviations between the solution value of each
procedure and the best solution of all methods are calculated
for each instance. Then, a chart based on Dolan and Moré
is complied based on the quantity of solutions that presents
deviations smaller than 7. This is done for all methods and
it is analyzed in relation to the percentage of the entire set
of test instances solved. In this paper, the objective function
(OF) values are used as the performance parameter.

The chart based on Dolan and Moré depicts P(log,(r, ) <
T : 1 < s < ng) values, which represent the cumulative
distribution function for the performance profile associated
with a given value 7, that is, the fraction of problems solved
by the method within a factor 7 of the best performance
obtained. All charts use a logarithmic scale to present the
results.

The computational results for the first, second, and third
parts are presented in Sections 71, 7.2, and 7.3, respectively.
For the graph interpretation, summarizing, the y-axis is the
fraction of solved examples and the x-axis is given by 7.
Thus, the performance of each procedure is represented by
one curve in these graphs. The curve should be analyzed in
relation to the origin—the closer the origin is in the x-axis
and the further it is in the y-axis, the greater the number
of problems solved considering the best performance by this
procedure is. If the curve is in y-axis, finding level 1 means
that all instances have been resolved by the method.

7.1. Computational Results: Case A. As already mentioned, all
computational tests were solved using CPLEX 12.6. However,
we used the results published in Baldo et al. [19] for BSAM-
I + BSAM-II model MIP-heuristic Pro_Inc (the method
with the best performance in the literature and named here
as H:BALl4), that is, using the version of CPLEX 12.4.
It is worth remembering that, in the referred paper, the
comparison of the results was analyzed using only RATIO
values, while in this present research we are using RATIO
values (calculated in relation to the methods presented here)
and other comparison parameters.
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The mathematical models described in Table 1 obtained
feasible solutions for all the 20 test instances within the
specified time limit. Figure 4(a)-(i) presents the results of
the performance profiles expressed as suggested in Dolan
and Moré [24], using the OF as the comparison metric.
Figure 4(a)-(ii) depicts the RATIO values through a boxplot,
whose interpretation should be made in relation to the y-
axis. The closer the boxplot extremes are to zero, that is, its
quartiles, the closer the solutions are to the best solution
found for the instances.

Note also in Figure 4(a)-(ii) that, next to each boxplot,
the set of points representing each individual instance is also
depicted. The closer the points are to zero, the better the
quality of the evaluated solutions is. Analyzing Figure 4(a)-
(i), the models BSAM-I + SPL-II, BSAM-I + BSAM-II, SPL-I
+ GLSP-II, and SPL-I + SPL-II obtained the best OF values
for 60%, 30%, 15%, and 5%, respectively. Note that the sum
of these percentages is equal to 110%, which means that
there was a draw in 10% of the best solutions. The SPL-I +
GLSP-II and SPL-I + SPL-II models had poor performances
for 90% of the test instances when compared to BSAM-I +
BSAM-II and BSAM-I + SPL-II models, which alternated
(or tied) in yielding the best performances. These results
can be reaffirmed by observing Figure 4(a)-(ii). Therefore, in
general, it can be affirmed that model SPL-I + SPL-II had the
less satisfactory performance, while the most satisfying one
alternated between models BSAM-I + BSAM-II and BSAM-I
+ SPL-II, with the latter producing a higher percentage of the
best solutions. The amount of demand not delivered at the
end of the planning horizon was quite high for all models,
with an average of 73.3%, 71.8%, 78.8%, and 95.0% to models
BSAM-I + BSAM-II, BSAM-I + SPL-II, SPL-I + GLSP-II, and
SPL-I + SPL-II, respectively.

Concerning the GAPs, all the models obtained a value
higher than 98% and, to compare the performances of the
mathematical models with the MIP-heuristics, we used the
best value of OF obtained regardless of which model was
provided for each of the instances. Thus, in the second
column of Table 3 (models), the GAP of the best OF values
among all the analyzed models is shown.

The results obtained using the MIP-heuristics are pre-
sented in Figure 4(b) and Table 3, and the interpretation
is similar to Figure 4(a). All the MIP-heuristics obtained a
feasible solution for the 20 test instances using less than 3500
seconds in 100% of the tests. In Figure 4(b)-(i), the values
obtained by the models, even with the best results among
them, were clearly worse than any of the MIP-heuristics.
These results are reinforced by the representation shown in
Figure 4(b)-(ii), as the boxplot corresponding to the best
objective among all models is far from the origin on the
y-axis. Moreover, the points designating the RATIO are all
close to 100%. Regarding the MIP-heuristics, it can be seen
that H:BALI4, H:BSAM-I + BSAM-II, H:BSAM-I + SPL-
II, H:SPL-1 + BSAM-II, and H:SPL-I + SPL-II showed the
best OFs to 0%, 30%, 5%, 35%, and 35% of the instances,
respectively. H:BALI4 was the MIP-heuristic that provided
the best results reported in the literature; however it had a
poor performance for 75% of the instance resolutions when
compared to the newly introduced MIP-heuristics. Overall,
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TABLE 3: Case A: comparison in relation to GAP values of MIP-heuristics and between the models with the best performance.

fosance  Models maane MONGT Mern T bewn s
98.46% 27.33% 22.68% 27.33% 5.59% 8.26%
98.70% 18.50% 25.68% 93.62% 8.35% 93.62%
99.12% 18.11% 94.01% 11.38% 5.63% 12.58%
99.22% 15.15% 2.68% 4.83% 52.18% 54.87%

IN| =35 98.77% 15.15% 61.08% 7.81% 24.43% 9.32%
99.62% 20.98% 4.37% 13.70% 6.34% 23.96%
99.92% 13.71% 28.16% 28.16% 5.16% 5.10%
98.95% 17.42% 21.07% 7.22% 4.27% 8.51%
99.79% 14.50% 4.27% 11.05% 5.18% 5.33%
99.93% 15.21% 4.32% 15.90% 52.11% 15.60%
99.82% 40.57% 51.19% 18.67% 11.26% 6.63%
99.93% 35.73% 7.75% 7.21% 713% 5.53%
99.93% 34.18% 19.90% 37.59% 5.63% 15.82%
99.54% 20.21% 8.36% 83.15% 85.30% 22.03%

IN| = 40 99.93% 83.87% 13.87% 14.63% 14.63% 1.18%
99.93% 29.76% 91.47% 91.61% 4.66% 5.44%
99.93% 20.60% 11.50% 12.01% 20.60% 20.60%
99.92% 88.64% 8.59% 12.07% 7.68% 4.34%
99.93% 50.04% 46.49% 12.88% 82.32% 7.14%
99.76% 58.47% 7.04% 16.67% 71.23% 6.34%

Average 99.56% 31.91% 26.72% 26.37% 23.98% 16.61%

H:SPL-I + SPL-II showed the best performance in 95%
of the cases, as shown in Figure 4(b)-(i), for 90% of the
instances, as its RATIO was less than 25% (see Figure 4(b)-
(ii)). The amount of demand not delivered at the end of the
planning horizon was practically zero for all the heuristics,
with an average of 0.00%, 0.02%, 0.03%, 0.00%, and 0.00%
for H:BSAM-I + BSAM-II, H:BSAM-I + SPL-II, H:SPL-I +
BSAM-II, and H:SPL-I + SPL-II, respectively.

Concerning the GAPs, Table 3 shows that H:BALl4
obtained higher values than the other MIP-heuristics, with
an average GAP of 31.91%. For all 20 instances, H:BSAM-
I + BSAM-II, H:BSAM-I + SPL-II, H:SPL-I + BSAM-II,
and H:SPL-I + SPL-II presented the best GAP values with
30%, 5%, 30%, and 35%, respectively. Furthermore, the best
average GAP value was H:SPL-I + SPL-IT with 16.61%. To sum
up, when considering Case A, the MIP-heuristics from the
literature did not obtain as good results as the MIP-heuristics
proposed here.

7.2. Computational Results: Case B. The computational tests
for Case B were conducted with the same instances used in
Case A. The results of the mathematical models proposed for
Case B described in Table 2 are shown in Figure 5(a). The
models provided feasible solutions for all instances within
the computational time available. Models BSAM-I + BSAM'-
II, BSAM-I + SPL'-II, BSAM-I + ATSP-II, SPL-I + BSAM'-
11, SPL-I + SPL'-1I, and SPL-I + ATSP-II showed the best
OF values for 45%, 5%, 50%, 0%, 0%, and 0%, respectively.

The model that had the overall worst performance was SPL-
I + SPL'-II. Models SPL-I + ATSP-II and SPL-I + BSAM'-
I, despite having better performances than SPL-I + SPL'-II,
underperformed the others and had a performance close to
BSAM-I + SPL'-II. The amount of demand not delivered at
the end of the planning horizon averaged 16.69%, 61.92%,
15.02%, 70.80%, 99.32%, and 52.19% to BSAM-I + BSAM'-
II, BSAM-T + SPL'-II, BSAM-I + ATSP-II, SPL-I + BSAM'-
11, SPL-1 + SPL'-1I, and SPL-1 + ATSP-II, respectively. The
best performance was obtained from model BSAM-I + ATSP-
11, followed by BSAM-I + BSAM'-II. Regarding the GAPs,
in the vast majority of the instances, the models had GAP
values over 70%, a few cases differ from this result. Regarding
the comparison with the MIP-heuristic results, again the best
OF values obtained for each of the instances were selected,
regardless of which model provided this value. These GAPs
are given in Table 4 in the column named models.

The MIP-heuristic results are shown in Figure 5(b) and
Table 4. The performances of the models in obtaining good
solutions were lower than the MIP-heuristics, followed by
a not very satisfactory H:BSAM-I + SPL'-II performance.
For the remaining MIP-heuristics, the results showed very
similar performances; see Figure 5(b)-(i). In a more detailed
analysis of Figure 5(b)-(ii), it may be noted that the MIP-
heuristics with RATIOS less discrepant were H:SPL-I +
BSAM'-II, H:SPL-I + ATSP-II, H:SPL-I + SPL'-II, H:BSAM-
I + ATSP-II, H:BSAM-I + BSAM'-II, and H:BSAM-I +
SPL'-1I, respectively. The amount of undelivered demand at
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FIGURE 4: Case A: (i) performance profile and (ii) boxplot graphic summarizing the results of the RATIO.

the end of the planning horizon was close to zero for all
procedures. Regarding the GAP values shown in Table 4, the
MIP-heuristics H:BSAM-I + BSAM'-II, H:BSAM-I + SPL'-
I, H:BSAM-I + ATSP-II, H:SPL-I + BSAM'-II, H:SPL-I +
SPL'-1I, and H:SPL-I + ATSP-II presented the best values
for 5%, 0%, 40%, 5%, 5%, and 45%, respectively. The best
average GAP was H:SPL-1 + BSAM'-11, with a value of 2.19%.
Therefore, it can be stated that the best performances were
obtained using the MIP-heuristics H:BSAM-1 + BSAM'-II,
H:SPL-I + BSAM'-II, and H:BSAM-I + ATSP-II.

7.3. Results: Case A versus Case B. In order to analyze the
benefits of investing in the production process in order
to change the situation from Case A to Case B, that is,
automating the changeover process of the tanks that are

supplying the filling lines, the results for all instances in both
scenarios were compared. However, due to the large number
of results and the similar behavior between these instances,
only two of them were chosen to be reported here: one of the
class of 35 items (|N| = 35) and the other of 40 (|N| = 40),
both with 5 fillers.

Figure 6(a) depicts the comparison of the instance with
35 items, showing the best performance obtained by the
models that were presented in Tables 3 and 4, as well as
the new MIP-heuristics, highlighting the procedures with
the best and the worst GAP values, that is, models SPL-
I + BSAM-II and BSAM-I + BSAM'-II and MIP-heuristics
H:BSAM-I + SPL-II, H:BSAM-I + SPL'-II, H:BSAM-I +
BSAM-II, and H:BSAM-I + BSAM'-II. The RATIOS were
analyzed by comparing the results of all mentioned methods
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FIGURE 5: Case B: (i) performance profile and (ii) boxplot graphic summarizing the results of the RATIO.

in Figure 6(a). Note that the models’ solutions have shown
backlogs on the demand deliveries, while this does not
occur for the MIP-heuristics. Furthermore, the solution of
Case A had a much higher delay in comparison to Case
B. Analyzing the MIP-heuristics, even the results of that
underperformance for Case B (0.38%) exceeds the best of
Case A. Comparing only the best performances of both
scenarios, Case A implies a higher cost, almost better than
1.35%, when compared to Case B. This is because the solution
of Case B was able to keep a smaller amount of items in the
inventory throughout the planning horizon.

The results of the 40-item instance are shown in Fig-
ure 6(b) and were analyzed similarly to Figure 6(a). The

solution obtained by the model of Case A (BSAM-I + SPL-
II) had a high cost of delay, which does not occur in the
solution of BSAM-I + ATSP-II for Case B. Regarding the MIP-
heuristics, even the worst solution of Case B is better than the
best of Case A. Furthermore, using the best solution of Case
A implies a cost increase of over 4% in comparison to the best
solution obtained for Case B.

8. Conclusions and Perspectives

This study was motivated by the multistage production
planning and scheduling in the brewery industry. The beer
production process can be divided into two main stages:
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FIGURE 6: Results obtained from comparing Cases A and B to an instance with |N| = 35 and |N| = 40, respectively.

liquid preparation (Stage I) and bottling (Stage II). As
illustrated in Figures 2(a) and 2(b), there are two scenarios (A
and B) that represent the practical production environments
often found in companies. Case A considers both the setup
operations when changing over items in filling lines and
also swapping the tanks that supply liquid for fillers—this

scenario was modeled mathematically in Baldo et al. [19]
(called BSAM-I + BSAM-II). In the present research, it
is remodeled using SPL strategies, resulting in alternative
mathematical models: BSAM-I + SPL-II, SPL-I + BSAM-II,
and SPL-I + SPL-II. Case B disregards the setup operations
concerning tanks because of the process technology involved;
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TABLE 4: Case B: comparison in relation to GAP values of MIP-heuristics and among the models with the best performance.
Instance Models H:BSAl\i[-I + H:BSA]NI-I + H:BSAM-I + H:SPL-II + H:SPI,,-I + H:SPL-I +
BSAM -1I SPL'-II ATSP-1I BSAM'-1I SPL'-II ATSP-1I
40.89% 20.49% 4.21% 20.40% 1.48% 1.62% 1.33%
47.28% 4.13% 47.28% 3.75% 2.02% 2.12% 1.51%
95.14% 1.16% 3.31% 1.08% 1.28% 1.05% 1.07%
98.82% 1.17% 3.48% 0.94% 1.61% 1.31% 1.22%
44.94% 1.11% 2.46% 0.95% 1.07% 1.19% 1.23%
INI =35 35.22% 1.76% 3.75% 20.90% 1.59% 1.65% 1.58%
86.07% 22.76% 86.07% 1.67% 1.20% 1.73% 1.07%
10.78% 0.57% 3.45% 0.40% 0.64% 0.59% 0.38%
29.51% 1.15% 2.59% 0.99% 1.29% 1.35% 1.01%
17.40% 1.32% 2.92% 1.42% 2.01% 2.08% 1.75%
40.73% 2.39% 4.39% 2.50% 1.84% 1.86% 1.94%
71.44% 1.44% 3.53% 1.22% 1.52% 1.74% 1.30%
48.41% 2.48% 4.43% 1.88% 2.65% 2.70% 1.80%
18.39% 1.87% 18.79% 1.67% 1.96% 1.88% 1.77%
95.62% 2.01% 5.44% 1.30% 1.61% 1.61% 5.44%
IN| = 40 92.36% 1.66% 5.06% 1.44% 1.51% 1.55% 1.76%
91.04% 1.65% 14.53% 1.55% 14.53% 14.53% 14.53%
45.05% 1.30% 14.61% 1.19% 1.09% 14.61% 1.08%
50.76% 1.94% 14.09% 1.74% 1.65% 1.67% 1.41%
98.04% 2.23% 5.36% 1.39% 1.35% 1.51% 1.13%
Average 57.89% 3.73% 12.49% 3.42% 2.19% 2.92% 2.22%

therefore the previous models were adapted and modified to
represent this case (BSAM-I + BSAM'-II, BSAM-I + SPL'-
I, SPL-T + BSAM'-II, and SPL-I + SPL'-II). Moreover, a new
modeling approach is introduced to capture Stage II of this
case, which is based on the ATSP (Asymmetric Traveling
Salesman Problem) (BSAM-I + ATSP-II and SPL-I + ATSP-
II). Due to the difficulty of solving these models with exact
methods, a MIP-heuristic strategy is developed. The MIP-
heuristic sequentially solves Stages I and II submodels in
separate phases in order to find a complete solution to
the problem. However, to avoid nonfeasible solutions, some
information has been supplied from one stage to another. This
decomposition strategy was more efficient, yielding better
results than the pure solution of mathematical models with
standard commercial solvers, as well as other approaches
previously reported in the literature. For Case A, the best
performances were achieved by BSAM-I + BSAM-II and
BSAM-I + SPL-II models and by H:SPL-I + SPL-II MIP-
heuristic. With respect to Case B, BSAM-I + ATSP-II and
BSAM-I + BSAM'-II models and H:BSAM-I + BSAM'-
II and H:BSAM-I + ATSP-II MIP-heuristics obtained the
best performances. The benefits of using more automated
technology in the production process are also analyzed
establishing the potential cost reduction.

Regarding the perspectives for future research, the adap-
tation of an ATSP-based model to represent Case A is still
a challenge. Moreover, the two-stage modeling is a suit-
able candidate to apply Dantzig-Wolfe decomposition [25],

together with the generation of columns and a procedure to
create feasible solutions. Another proposal for future research
consists of adding to the mathematical formulations the
possibility of using buffer tanks and analyzing the advantages
and disadvantages of this approach.
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