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Calibration tests are of great importance to ensure rate-sensing accuracy of GyroWheel, an innovative attitude determination and
control device. In the process of calibration tests, turntable errors are inevitable, which hinder the calibration accuracy and rate-
sensing capability. Hence, error analysis for GyroWheel calibration tests is conducted, and the relationship between the
calibration accuracy and the orientation error is established based on analytical derivation and numerical simulations.
Subsequently, an error model of the turntable system is derived using rigid body kinematics, by which the relationship between
the orientation error and turntable errors is described. According to sensitivity analysis and manufacturing capability, an error
allocation method is proposed to determine the accuracy requirement of the test turntable, and the effectiveness of the proposed
method is verified by repeated simulation tests. Based on the presented analysis and proposed method in this paper, the effects
of various turntable errors on the calibration accuracy can be obtained quantitatively, and a theoretical basis for the
determination of the turntable accuracy is provided, which are of great significance to guide the calibration tests and improve
the calibration accuracy of GyroWheel.

1. Introduction

The development of small spacecrafts has received a lot
of attention in recent years [1, 2]. As GyroWheel is an
innovative attitude determination and control device, it
offers the potential to meet the performance, mass,
and cost requirements of small spacecrafts. It provides
control torques about three axes while also measuring
the spacecraft angular rates about the two axes perpen-
dicular to the spin direction, which improves the integra-
tion and efficiency of attitude control system in small
spacecrafts [3, 4].

The conception of GyroWheel is inspired by a
dynamically tuned gyroscope (DTG). However, it has a
larger rotor and tilt angles, as well as a time-varying
spinning rate due to its multifunction capability. When
the GyroWheel is used to measure angular rates, errone-
ous torques, which are often caused by design limitation

and constructional deficiencies, act on the rotor of the
GyroWheel. These imperfections give rise to precession
of the rotor, resulting in measurement errors of angular
rates [5–7].

To maintain high-accuracy measurement, calibration
tests are of great importance in the application of the
GyroWheel. The goal of calibration tests is to fully charac-
terize the outputs of the inertial instruments so that a
nonideal behavior can be modelled and compensated
[5, 7–10]. Generally, calibration tests are carried out using
a turntable to provide the intended orientation of the
GyroWheel. Turntable errors, including position error,
wobble error, orthogonality error, and intersection error,
will inevitably affect the GyroWheel system in calibration
tests [11]. Although the effects of turntable errors can be
reduced by using a high-accuracy turntable, the costs of
calibration tests will increase significantly. To reconcile
the requirement of calibration accuracy and test costs,
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the effects of turntable errors on calibration accuracy
should be analyzed, and error allocation methods for turn-
table system should be investigated in consideration of the
sensitivities of these errors and the manufacturing capabil-
ity in practical engineering before calibration tests are
carried out.

Generally, error models of multi-DOF motion systems,
such as machine tools and turntables, can be derived using
rigid body kinematics [11–14]. Additionally, a few studies
about error effect analysis for calibration tests have been
conducted. An error analysis of precision centrifuge, an
equipment used in calibration tests, was conducted, and its
effect on the calibration accuracy of gyro accelerometers
was discussed in [15, 16]. The effect of position error on cal-
ibration accuracy of inertial instruments has been analyzed
in [17, 18]. As mentioned in [19], the models of a turntable’s
orthogonality error and horizontality error were established,
and quantitative analyses of their effects on calibration accu-
racy were presented. However, the existing studies have
mainly analyzed a single error component’s effect on cali-
bration accuracy, in which other error factors are not con-
sidered; obviously, this is not consistent with the actual
situation. To the authors’ knowledge, little attention has
been focused on the error allocation problem for the
multi-DOF motion systems. By assuming that each of the
errors contributes equally to the overall error, the error
allocation problem for a 6-DOF parallel manipulator was
discussed in [20, 21]. However, the assumption of equivalent
effects of the errors is inappropriate for the turntable system.
Although orthogonal experimental design has been used to
determine the significant level of each error factor for a 3-
DOF robotic mechanism [22], it is difficult to obtain a
quantitative error allocation result. There were no relevant
studies on the error allocation method for the turntable
system used in calibration tests.

Motivated by these facts, the error analysis and error
allocation problems of the turntable used in GyroWheel’s
calibration tests are investigated in this paper. According
to the multiposition calibration theory and rate-sensing
model of the GyroWheel, error analysis for GyroWheel
calibration tests is conducted quantitatively. With numer-
ical simulations, the relationships between the rate-
sensing errors of the GyroWheel and the orientation
errors are obtained. The orientation error due to manu-
facture imperfections and design limitations of the turnta-
ble system is modelled based on rigid body kinematics,
with consideration of the interaction of these turntable
errors. Then an error allocation method for the turntable
system based on sensitivity analysis is proposed, and the
effectiveness of the proposed method is verified by repeated
simulation tests.

The remainder of this paper is as follows. In Section 2,
the GyroWheel calibration theory is described, and the
effect of orientation error on the calibration accuracy is
analyzed. In Section 3, the error model of a two-axis turn-
table system is established based on rigid body kinematics,
which develops a relationship between the turntable error
components and the orientation error of the GyroWheel.
In Section 4, sensitivities of the orientation error to the

individual error components and the manufacturing capa-
bility are discussed. On this basis, an error allocation
method is given to determine the accuracy requirement
of the test turntable. And several concluding remarks are
given in Section 5.

2. GyroWheel Calibration Theory and Error
Analysis for Calibration Tests

2.1. Overview of GyroWheel Calibration Theory. The
GyroWheel is an innovative attitude determination and
control instrument. A cutaway isometric view of the Gyro-
Wheel is shown in Figure 1. When the GyroWheel is used
to measure angular rates, erroneous torques give rise to
precession of the rotor resulting in drift errors. In the null
tilt condition, the rate-sensing equations of the GyroWheel
are given in the following equation, with consideration of
the drift errors [5]:

ωx = kyiy −D x F −D x xax −D x yay −D x zaz

−D x xxa
2
x −D x zza

2
z −D x xyaxay ,

ωy = kxix −D y F −D y xax −D y yay −D y zaz

−D y yya
2
y −D y zza

2
z −D y yxaxay,

1

where D x ,D y represent the drift errors of x, y axes, D
x F ,D y F are g insensitive terms, D x i,D y i, i = x, y, z,
are g sensitive error coefficients, and D x ij, ij = xx, zz, xy,
D y ij, ij = yy, zz, yx, are g2 sensitive error coefficients. ax,
ay, az represent acceleration components of the gravity vec-
tor, ωx, ωy are external angular velocities, kx, ky are torque
scale factors of the GyroWheel, and ix, iy are the currents in
the torque coils.

In an effort to improve the rate-sensing accuracy of
the GyroWheel, multiposition tests are performed to cali-
brate the GyroWheel. Multiposition tests make use of a
two-axis turntable to provide the intended orientation for
the GyroWheel. A schematic representation of a turntable
is shown in Figure 2. The earth’s rotation rate and gravi-
tational acceleration are regarded as the nominal inputs
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Figure 1: Cutaway view of a GyroWheel.
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of the GyroWheel. At each position, an equation expressed
as (1) can be obtained using the inputs and outputs of
the GyroWheel. Therefore, the error coefficients can be
calculated when enough tests of different positions are
conducted.

Take the x-axis model of the GyroWheel as an example.
According to the rate-sensing model of the GyroWheel and
multiposition calibration theory [10], we have

kyiy1

kyiy2

⋮

kyiyn

−

ωx1

ωx2

⋮

ωxn

=

1 ax1 ay1 az1 a2x1 a2z1 ax1ay1

1 ax2 ay2 az2 a2x2 a2z2 ax2ay2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 axn ayn azn a2xn a2zn axnayn

D x F

D x x

D x y

D x z

D x xx

D x zz

D x xy

,

2

where n is the number of test positions, iyj, j = 1, 2,… , n,
represent the currents in the torque coils, ωxi, i = 1, 2,… , n,
represent the earth rate components of each test position,
and axi, ayi, azi, i = 1, 2,… , n, represent the gravitational
acceleration components of each test position.

The initial orientation of the GyroWheel axes is north-
west-up. Define that ωe is the earth’s rotation rate, λ is the
latitude, ϕ1i, ϕ2i are the rotation angles of the turntable, and
the subscript i means the ith test position. The gravitational

acceleration components and the earth rate components
can be expressed as follows:

axi = −sin ϕ1i cos ϕ2i,
ayi = sin ϕ1i sin ϕ2i,
azi = cos ϕ1i,
ωxi = ωecos ϕ2i cos ϕ1i cos λ − sin ϕ1i sin λ ,
ωyi = ωesin ϕ2i −cos ϕ1i cos λ + sin ϕ1i sin λ ,
ωzi = ωe sin ϕ1i cos λ + cos ϕ1i sin λ

3

Denote

b1 =

kyiy1

kyiy2

⋮

kyiyn

,

b2 =

ωx1

ωx2

⋮

ωxn

,

A =

1 ax1 ay1 az1 a2x1 a2z1 ax1ay1

1 ax2 ay2 az2 a2x2 a2z2 ax2ay2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 axn ayn azn a2xn a2zn axnayn

,

β =

D x F

D x x

D x y

D x z

D x xx

D x zz

D x xy

4
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Figure 2: Schematic representation of a two-axis turntable.
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Then (2) can be rewritten as

b1 − b2 =Aβ 5

The calibration coefficient vector β can be solved utilizing
the method of least squares:

β1 = ATA −1AT b1 − b2 6

2.2. Error Analysis for GyroWheel Calibration Tests. Due
to manufacture imperfections and design limitations of
the turntable system, the orientation of the GyroWheel
axes will be deviated from the intended one. As a result,
there are deviations between the actual earth rate com-
ponents and the ideal earth rate components, as well
as the gravitational acceleration components. Use Δψ, Δθ,
Δγ to denote rotational errors about y-, z-, and x-axes,
respectively (Figure 3).

With the assumption of small angular errors, the
transformation matrix describing the orientation error of
the GyroWheel with respect to its ideal orientation is
given below:

ΔR =
1 −Δθ Δψ
Δθ 1 −Δγ
−Δψ Δγ 1

7

The actual earth rate components and gravitational
acceleration components can be calculated as follows:

ωxi′ ωyi′ ωzi′ = ωxi ωyi ωzi ΔR,

axi′ ayi′ azi′ = axi ayi azi ΔR
8

In the presence of the orientation error, the regression
model of multiposition calibration is given by

b1 − b2′ =A′β, 9

where

b2′ =

ωx1′
ωx2′
⋮

ωxn′

,

A′ =

1 ax1′ ay1′ az1′ a′2x1 a′2z1 ax1′ay1′

1 ax2′ ay2′ az2′ a′2x2 a′2z2 ax2′ay2′
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 axn′ ayn′ azn′ a′2xn a′2zn axn′ayn′

10

Then the true value of the calibration coefficient vector
can be calculated as follows:

β2 = A′TA′
−1
A′T b1 − b2′ 11

The actual calibration results are given by (6), and the
deviation of the calibration results caused by the orientation
error can be expressed as

Δβ = β1 − β2 12

The deviation Δβ results in GyroWheel’s rate-sensing
error Δωx; the rate-sensing error vector at the test positions
can be calculated:

Δωx = b1 −Aβ2 − b2′ 13

Define

Δωx = Δωx
∞

14

Δωx represents the rate-sensing error of x-axis. The
rate-sensing error of y-axis, denoted by Δωy, can be cal-
culated in the same way. Obviously, the rate-sensing
errors Δωx and Δωy are affected by the orientation error
described byΔψ, Δθ, Δγ. If the values of Δψ, Δθ, Δγ are
given, the corresponding values of the rate-sensing errors
Δωx and Δωy can be calculated by several matrix opera-
tions. To facilitate an error analysis, a numerical method
is utilized. A series of rate-sensing errors are obtained
with numerical simulations when a series of Δψ, Δθ, Δγ
are given. The relationships between the rate-sensing
errors Δωx, Δωy and the orientation error described by
Δψ, Δθ, Δγ are expressed in a visualized way, as shown
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Figure 3: Orientation error of GyroWheel axes. Oxg0yg0zg0: the
intended orientation of the GyroWheel axes. Oxgygzg: the actual

orientation of the GyroWheel axes.
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in Figure 4. The two surfaces describing the relation-
ships in Figures 4(a) and 4(b) are denoted by Γ1, Γ2.
From the simulation results, the following conclusions
can be made:

(1) As seen in Figures 4(a)–4(f), the rate-sensing error of
x-axisΔωx is caused by Δψ, Δθ, and it is not affected
by Δγ. The rate-sensing error of y-axisΔωy is caused
by Δθ, Δγ, and it is not affected by Δψ.

(2) As seen in Figure 4(a), the surface Γ1 is symmetric
about the planes Δψ = 0 and Δθ = 0. As seen in

Figure 4(b), the surface Γ2 is symmetric about the
planes Δθ = 0 and Δγ = 0. Therefore, Δωx is an even
function of Δψ, Δθ, and Δωy is an even function of
Δθ, Δγ.

(3) As seen in Figures 4(a)–4(f), Δωx rises with the
increasing of Δψ , Δθ , and Δωy rises with the
increasing of Δθ , Δγ .

Use ωm to denote the required calibration accuracy of
the GyroWheel; that is, Δωx ≤ ωm, Δωy ≤ ωm. By drawing
two planes defined by the implicit equations Γ3 Δωx = ωm
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Figure 4: Relationships between rate-sensing errors and orientation error.
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and Γ4 Δωy = ωm in Figures 4(a) and 4(b), respectively,
two lines of intersection are obtained, and the require-
ment of the orientation error can be determined easily
and is denoted by

Δψ ≤ Iψ,

Δθ ≤ Iθ,
Δγ ≤ Iγ

15

2.3. Example. A GyroWheel with the required calibration
accuracy of 0 01°/h is taken as an example. The nominal
values of the calibration coefficients are listed in Table 1.
According to the above analysis, the line of intersection
between Γ1 and Γ3, and the line of intersection between Γ2
and Γ4 are given in Figure 5.

As seen in Figure 5, the rectangular areas in black rep-
resent the ranges of Δψ, Δθ, Δγ, in which the requirement
of the calibration accuracy can be met. To maximize the
areas of the two rectangles in Figure 5, the requirement
of the orientation error is determined as follows:

Δψ ≤ 0 027°,
Δθ ≤ 0 027°,
Δγ ≤ 0 027°

16

3. Error Analysis of Turntable System

3.1. Overview of Turntable Errors. There are four main
sources of errors in a turntable system; they are position error,
wobble error, orthogonality error, and intersection error.

Position error is defined as the difference between the
actual and the intended rotation angles of the turntable’s
rotating shaft, which is influenced by servo precision and
measurement accuracy of the turntable system.

Wobble error can be divided into axial wobble error,
radial wobble error, and angular wobble error, as illustrated
in Figure 6, where Δsa is the axial wobble error, Δsr is the
radial wobble error, and Δα is the angular wobble error. In
practical engineering, Δsa and Δsr are small enough to be
ignored; thus, wobble error refers specifically to angular
wobble error Δα in this paper [11, 23, 24].

Orthogonality error and intersection error are induced
by mechanical imperfections of the turntable structure and
misalignment of turntable elements.

For the two-axis turntable given in Figure 2, a summary
of the error components involved is shown in Table 2.

3.2. Error Modeling for Turntable System. The error model
of the turntable system can be developed based on rigid-
body kinematics. The two-axis turntable system, as shown
in Figure 2, consists of three bodies: the base, the outer
frame, and the inner frame. In addition, the GyroWheel
being attached to the inner frame should be considered.
In an effort to derive the error model of the turntable, five
coordinate systems are introduced. They are the base coor-
dinate system F 0: O0X0Y0Z0, the outer axis coordinate
system F 1: O1X1Y1Z1, the reference coordinate system

of the inner axis F 2: O2X2Y2Z2, the inner axis coordinate
system F 3: O3X3Y3Z3 and the GyroWheel coordinate
system F 4: OgXgYgZg. F 0, F 1, F 3, and F 4 are four
body-fixed coordinate systems, which are attached to the
base, the outer frame, the inner frame, and the Gyro-
Wheel, respectively. F 2 is an interim coordinate system;
the relation between F 2 and F 1 is determined by the
orthogonality error and intersection error of the turntable
system. An illustration of these coordinate systems is
shown in Figure 7.

Actually, the base coordinate system F 0 is fixed with
respect to the earth. The outer axis of the turntable is
aligned along the y-axis of the outer axis coordinate system
F 1. The inner axis of the turntable is aligned along the z-
axis of the inner axis coordinate system F 3. Since the Gyro-
Wheel is attached to the inner frame of the turntable, the
GyroWheel coordinate system F 4 is coincident with F 3.
The relations between these coordinate systems and the
error components of the turntable system are expressed in
Table 3. ϕ1, ϕ2 are the rotation angles about the outer axis
and inner axis, respectively.

The relative position and orientation of one coordinate
systemwith respect to another coordinate system can bemod-
eled using a homogeneous transformation matrix (HTM),
denoted as iT j, i, j = 0, 1, 2, 3, 4. The presuperscript represents
the coordinate system we are transferring from, and the post-
subscript represents the coordinate systemwewant the results
to be represented in.

Hence, the transform relation between F 1 and F 0 can be
calculated with the assumption of small angular errors:

0T1 =

cos ϕ1 0 sin ϕ1 0
0 1 0 0

−sin ϕ1 0 cos ϕ1 0
0 0 0 1

⋅

1 −Δαz1 Δϕy1 0
Δαz1 1 −Δαx1 0
−Δϕy1 Δαx1 1 0

0 0 0 1
17

The transform relation between F 2 and F 1 can be calcu-
lated as follows:

1T2 =

1 0 Δεy 0
0 1 −Δεx 0

−Δεy Δεx 1 0
0 0 0 1

⋅

1 0 0 Δη
0 1 0 0
0 0 1 0
0 0 0 1

18

Table 1: Nominal values of calibration coefficients.

D(x)F (deg/h) −93.3 D(y)F (deg/h) 105.3

D(x)x (deg/h/g) −43.2 D(y)x (deg/h/g) 2.2

D(x)y (deg/h/g) 3.5 D(y)y (deg/h/g) −33.2
D(x)z (deg/h/g) −1.2 D(y)z (deg/h/g) −0.1
D(x)xx (deg/h/g

2) 2.1 D(y)yy (deg/h/g
2) −10.6

D(x)zz (deg/h/g
2) −0.089 D(y)zz (deg/h/g

2) −10.38
D(x)xy (deg/h/g

2) 17.4 D(y)xy (deg/h/g
2) 47.8

6 International Journal of Aerospace Engineering



Table 2: Error components of a two-axis turntable system.

Location of error components Symbols Definitions

Outer axis

Δϕy1 Position error of outer axis

Δαx1 Wobble error component of outer axis about x-axis

Δαz1 Wobble error component of outer axis about z-axis

Inner axis

Δϕz2 Position error of inner axis

Δαx2 Wobble error component of inner axis about x-axis

Δαy2 Wobble error component of inner axis about y-axis

Between outer and inner axes

Δεx Orthogonality error component about x-axis

Δεy Orthogonality error component about y-axis

Δη Intersection error

ΔSa

Ideal rotating axis

Boundary position of actual rotating axis

ΔSr

Δ𝛼

Figure 6: Schematic of a wobble error.
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Figure 5: Lines of intersection.

7International Journal of Aerospace Engineering



And the transform relation between F 3 and F 2 is
given below:

2T3 =

cos ϕ2 −sin ϕ2 0 0
sin ϕ2 cos ϕ2 0 0
01 0 1 0
0 0 0 1

⋅

1 −Δϕz2 Δαy2 0
Δϕz2 1 −Δαx2 0
−Δαy2 Δαx2 1 0
0 0 0 1

19

As stated above, the transform relation between F 4 and
F 3 is written in the following form:

3T4 = I4×4 20

We introduce homogeneous transformation matrixes
Td , Tt to denote the ideal and actual transform relations
between the GyroWheel and the base coordinate system. Td
is obtained through a series of perfect rotations ϕ1, ϕ2 and
is given by the following:

Td =

cos ϕ1 0 sin ϕ1 0
0 1 0 0

−sin ϕ1 0 cos ϕ1 0
0 0 0 1

⋅

cos ϕ2 −sin ϕ2 0 0
sin ϕ2 cos ϕ2 0 0
01 0 1 0
0 0 0 1

21

In presence of the turntable errors, Tt can be calculated
by matrix multiplication:

Tt = ∏
3

i=0
iTi+1 22

The top left corner 3 × 3 matrixes of Td , Tt denoted by
Rd ,Rt represent the ideal and actual direction cosine
matrixes. Since Rd , Rt are orthogonal matrixes, the orienta-
tion error of the GyroWheel caused by the turntable errors
can be expressed as follows:

ΔR = RT
dRt 23

According to (23) and (7), we have the following:

Δψ = ΔR13,
Δθ = ΔR21,
Δγ = ΔR32,

24

where ΔRij represents the element in the ith row and jth col-
umn of matrix ΔR. Substituting (15)–(21) into (22) yields the
following expression:

Δψ = f ψ ϕ, χ ,
Δθ = f θ ϕ, χ ,
Δγ = f γ ϕ, χ ,

25

Table 3: Rotational and translational motion relations between adjacent coordinate systems.

i F i→F i+1

0
A rotation ϕ1 about y-axis, followed by a rotation Δϕy1 about y-axis
A rotation Δαz1 about z-axis and then a rotation Δαx1 about x-axis

1 A translation Δη along x-axis, followed by a rotation Δεy about y-axis, and then a rotation Δεx about x-axis

2
A rotation ϕ2 about z-axis, followed by a rotation Δαy2 about y-axis; a rotation Δϕz2 about z-axis, and then a rotation

Δαx2 about x-axis
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Figure 7: An illustration of the coordinate systems.
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where f ψ, f θ, f γ are nonlinear functions of the rotation angles
and the turntable error components, ϕ = ϕ1ϕ2

T represents

the rotation angle vector, and χ = Δϕy1 Δϕz2 Δαx1 Δαz1
Δαx2 Δαy2 Δεx Δεy T represents the turntable error vector.
According to (25), the intersection error has no effect on the
orientation error of the GyroWheel.

To simplify the analysis, (25) is rewritten into the follow-
ing form with small angle approximation of the errors:

Δψ = f ψ ϕ2, χψ = Δϕy1cos ϕ2 − Δαx1sin ϕ2 + Δαy2
− Δεxsin ϕ2 + Δεycos ϕ2,

Δθ = f θ χθ = Δϕz2 + Δαz1,
Δγ = f γ ϕ2, χγ = Δϕy1sin ϕ2 + Δαx1cos ϕ2 + Δαx2

+ Δεxcos ϕ2 + Δεysin ϕ2,

26

where

χγ = Δϕy1 Δαx1 Δαx2 Δεx Δεy T ,

χθ = Δϕz2 Δαz1 T , 27

χψ = Δϕy1 Δαx1 Δαy2 Δεx Δεy T

4. Error Allocation of the Turntable System

4.1. Sensitivity Analysis and Constraints Analysis. To ensure
the orientation accuracy and perform error allocation of the
turntable system, sensitivities of the orientation error to the
individual errors and the manufacturing capability should
be considered.

According to (23), sensitivities of the orientation error
can be analyzed:

Cψi =
∂f ψ
∂χi

,

Cθi =
∂f θ
∂χi

,

Cγi =
∂f γ
∂χi

,

 i = 1, 2,… , 8

28

χi represents the ith element of the turntable error vector χ,
and Cψi, Cθi, Cγi represent the sensitivities of the orientation
error to the individual error components. Given that Cψi,
Cθi, Cγi vary with the rotation angles, we here consider the
average values, which are given in Figure 8. The values repre-
sent how sensitive the orientation error is to the individual
error components. For example, if the orientation error is
more sensitive to error component χi than to error compo-
nent χj, χi is required to be smaller than χj to achieve a
reasonable error allocation.

Additionally, with the limitation of technological level
and manufacturing costs in practical engineering, the
manufacturing capability determines the maximum accuracy
that the turntable can reach. Therefore, it gives the lower
bounds of the error components of the turntable system,
namely, the error components should satisfy the constraints:

χi ≥ LBi, i = 1, 2,… , 8 29

LBi are the lower bounds of the error components.

4.2. Error Allocation Method for Turntable Systems. For the
error allocation problem of the turntable system, we expect
to find the upper bounds UBi, i = 1, 2,⋯, 8. The turntable
system should reach the required orientation accuracy at
any rotation angles when the error components satisfy the
constraints, namely,

f γ ϕ, χ ≤ Iγ,

f θ ϕ, χ ≤ Iθ,

f ψ ϕ, χ ≤ Iψ,

 ∀ϕ ∈Ωϕ, ∀χ ∈Ωχ,

30

where Ωϕ = ϕ∣0 ≤ ϕi ≤ 2π, i = 1, 2 and Ωχ = χ∣LBi ≤ χi

≤UBi, i = 1, 2,… , 8 .
With the simplification of the orientation error model

given by (26), the error allocation of the turntable system
can be described by the following optimization problems:

min
χγ

 Jγ = 〠
5

i=1
W2

γi
1
χ2
γi

,

s t  f γ ϕ2, χγ ≤ Iγ, ∀ϕ2 ∈ 0, π2 , 31

  χγi ≥ LBγi, i = 1, 2,… , 5,

min
χθ

 Jθ = 〠
2

i=1
W2

θi
1
χ2
θi

,

s t  f θ χθ ≤ Iθ, 32
  χθi ≥ LBθi, i = 1, 2,

min
χψ

 Jψ = 〠
5

i=1
W2

ψi
1
χ2
ψi

,

s t  f ψ ϕ2, χψ ≤ Iψ, ∀ϕ2 ∈
3π
2 , 2π , 33

  χψi ≥ LBψi, i = 1, 2,… , 5,

where χγi, χθi, χψi are the ith elements of the vectors χγ,
χθ, χψ, respectively. Wγ,Wθ,Wψ are weighted coefficients;
the values of which are the multiplicative inverse of the cor-
responding sensitivities given in Figure 8. By solving the
optimization problems shown in (31)–(35), the optimal
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solutions χ∗
γ , χ∗

θ , χ∗
ψ are obtained respectively. Then, the

upper bounds of the turntable errors can be given by

UB1 =min χ∗
γ1, χ∗

ψ1 ,

UB2 = χ∗
θ1,

UB3 = min χ∗
γ2, χ∗

ψ2 ,

UB4 = χ∗
θ2,

UB5 = χ∗
γ3,

UB6 = χ∗
ψ3,

UB7 = min χ∗
γ4, χ∗

ψ4 ,

UB8 = min χ∗
γ5, χ∗

ψ5

34

According to (31)–(36), the error allocation of the
turntable system can be accomplished. The error allocation
results UBi, i = 1, 2,… , 8, are proven below.

Lemma 1. Consider a turntable system with the orientation
error model shown in (26). The error allocation results UBi,
i = 1, 2,… , 8, are obtained from (31)–(36). ∀ϕ ∈Ωϕ, ∀χ ∈
Ωχ, where Ωϕ = ϕ∣0 ≤ ϕi ≤ 2πi = 12 and Ωχ = χ∣LBi ≤
χi ≤UBii = 12⋯8 , it is always true that f γ ϕ, χ ≤
Iγ, f θ ϕ, χ ≤ Iθ, f ψ ϕ, χ ≤ Iψ.

Proof
Case 1. ∀ϕ2 ∈ 0, π/2 , then

f γ ϕ, χ = Δϕy1sin ϕ2 + Δαx1cos ϕ2 + Δαx2 + Δεxcos ϕ2

+ Δεysin ϕ2 ≤ Δϕy1 sin ϕ2 + Δαx1 cos ϕ2
+ Δαx2 + Δεx cos ϕ2 + Δεy sin ϕ2 ≤ χ∗

γ1sin ϕ2

+ χ∗
γ2cos ϕ2 + χ∗

γ3 + χ∗
γ4cos ϕ2 + χ∗

γ5sin ϕ2

= f γ ϕ2, χ∗
γ ≤ Iγ

35

0.6476

0

0.5365

0.0053

1

0.6481

0
0.1

0.3
0.4
0.5

0.7
0.8
0.9

1
C𝜓1

C𝜓5

C𝜓4

C𝜓3

C𝜓2C𝜓8

C𝜓7

C𝜓6

0.5372

0.0023

0.2

0.6

(a) Δψ

C𝜃1

C𝜃5

C𝜃4C𝜃6

C𝜃2

C𝜃3C𝜃7

C𝜃8

0.0027

1

0.0035

1

00.0059

0.0021

0.0021 0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
0.1
0.2

(b) Δθ
C𝛾1

C𝛾5

C𝛾4C𝛾6

C𝛾2

C𝛾3C𝛾7

C𝛾8
0.5372

0.0059

0.6481

0

1

0

0.6481

0.5372

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

(c) Δγ

Figure 8: Sensitivities of orientation error to individual error components.
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Case 2. ∀ϕ2 ∈ π/2 , π , denote ϕ2 = π − ϕ2; then ∀ϕ2 ∈
0, π/2 ,

f γ ϕ, χ = Δϕy1sin ϕ2 + Δαx1cos ϕ2 + Δαx2 + Δεxcos ϕ2

+ Δεysin ϕ2 ≤ Δϕy1 sin ϕ2 + Δαx1 cos ϕ2

+ Δαx2 + Δεx cos ϕ2 + Δεy sin ϕ2 ≤ χ∗
γ1sin ϕ2

+ χ∗
γ2cos ϕ2 + χ∗

γ3 + χ∗
γ4cos ϕ2 + χ∗

γ5sin ϕ2

= f γ ϕ2, χ∗
γ ≤ Iγ

36

Case 3. ∀ϕ2 ∈ π, 3π /2 , denote ϕ2 = ϕ2 − π; then

∀ϕ2 ∈ 0, π/2 ,

f γ ϕ, χ = Δϕy1sin ϕ2 + Δαx1cos ϕ2 + Δαx2 + Δεxcos ϕ2

+ Δεysin ϕ2 ≤ Δϕy1 sin ϕ2 + Δαx1 cos ϕ2

+ Δαx2 + Δεx cos ϕ2 + Δεy sin ϕ2 ≤ χ∗
γ1sin ϕ2

+ χ∗
γ2cos ϕ2 + χ∗

γ3 + χ∗
γ4cos ϕ2 + χ∗

γ5sin ϕ2

= f γ ϕ2, χ∗
γ ≤ Iγ

37

Case 4. ∀ϕ2 ∈ 3π /2 , 2π , denote ϕ2 = 2π − ϕ2; then

∀ϕ2 ∈ 0, π/2 ,

f γ ϕ, χ = Δϕy1sin ϕ2 + Δαx1cos ϕ2 + Δαx2 + Δεxcos ϕ2

+ Δεysin ϕ2 ≤ Δϕy1 sin ϕ2 + Δαx1 cos ϕ2

+ Δαx2 + Δεx cos ϕ2 + Δεy sin ϕ2 ≤ χ∗
γ1sin ϕ2

+ χ∗
γ2cos ϕ2 + χ∗

γ3 + χ∗
γ4cos ϕ2 + χ∗

γ5sin ϕ2

= f γ ϕ2, χ∗
γ ≤ Iγ

38

In summary, ∀ϕ ∈Ωϕ, ∀χ ∈Ωχ, we have f γ ϕ, χ ≤ Iγ,
where Ωϕ = ϕ∣0 ≤ ϕi ≤ 2π, i = 1, 2 and Ωχ = χ∣LBi ≤ χi

≤UBi, i = 1, 2,… , 8 .
Similarly, f θ ϕ, χ ≤ Iθ, f ψ ϕ, χ ≤ Iψ can be demon-

strated as well.

4.3. Example. Take the GyroWheel with the required calibra-
tion accuracy of 0 01°/h as an example. According to the
analysis in Section 2, the requirement of the orientation
accuracy is given in (16). Using the error allocation method
proposed in this section, as shown in (31)–(36), the alloca-
tion results are given in Table 4.

As seen in Table 4, the x-axis wobble error component of
the inner axis Δαx2 and the y-axis wobble error component of
the inner axis Δαy2 have higher accuracy requirements than
the other error components. This is due to the fact that the
orientation error is more sensitive to Δαx2 and Δαy2, as
shown in Figure 8. According to Figure 8, only Δθ is sensitive
to the position error of the inner axis Δϕz2 and the z-axis
wobble error component of the outer axis Δαz1, and Δψ
and Δγ are insensitive to Δϕz2 and Δαz1. Meanwhile, Δθ
is affected only by Δϕz2 and Δαz1; thus, Δϕz2 and Δαz1
have lower accuracy requirements. The error allocation
results provide a basis for the selection of the suitable
turntable and are of great significance to guide the calibra-
tion tests and improve the calibration accuracy of the
GyroWheel.

Given that the error allocation of the turntable sys-
tem is accomplished based on certain simplifications,
Monte Carlo simulations are performed to verify the
effectiveness of the error allocation results for the origi-
nal orientation error model as shown in (25). According
to the allocation results given in Table 4, values of the
error components satisfying the accuracy requirements
LBi ≤ χi ≤UBi, i = 1, 2,… , 8 are generated randomly by
utilizing MATLAB. 10,000 times of numerical simulations
are performed, and the orientation error is calculated for
each simulation test. The distribution of Δψ, Δθ, Δγ describ-
ing the orientation error for the 10,000 times of simulations is
shown in Figure 9.

It is seen in Figure 9 that the angular errors Δψ, Δθ,
Δγ always satisfy the corresponding accuracy requirements
in the repeated random simulation tests, which verifies
the validity of the proposed error allocation method in
this section.

5. Conclusions

Error analysis and error allocation problems in calibration
tests are studied for GyroWheel in this paper. The relation-
ships between the rate-sensing errors of GyroWheel and the
orientation error are obtained, and the orientation error
induced by the turntable errors is modelled based on rigid

Table 4: Error allocation results of the turntable system.

Error sources Symbols
Accuracy requirements

(arc minute)

Position error
Δϕy1 0.4235

Δϕz2 0.7800

Wobble error

Δαx1 0.4234

Δαz1 0.7800

Δαx2 0.2825

Δαy2 0.2824

Orthogonality error
Δεx 0.4234

Δεy 0.4233
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body kinematics. A practical error allocation method is
developed to determine the accuracy requirement of the test
turntable. The salient features and contributions of this work
are as follows:

(1) The error analysis for the GyroWheel calibration
tests and the turntable system provides a way to
express the effects of various turntable errors on the
calibration accuracy quantitatively. Of all the error
components, the wobble error of the inner axis
contributes most to the calibration error.

(2) The proposed error allocation method provides a
theoretical basis for the selection of the suitable turn-
table used in the calibration tests. With the consider-
ations of the sensitivities of the orientation error to
the individual error components, the requirements
of these error components are determined according
to the different sensitivities. Compared with the tra-
ditional allocation method assuming the equivalent
effects of the errors, the proposed method is more
reasonable and is beneficial to reducing the costs of
calibration tests.

Although the study is focused on a two-axis turntable
for GyroWheel calibration, it can be easily applied to other
inertial instruments and other types of turntables, and it
holds true for the cases of other calibration equipment
such as centrifuges as well.

To further enhance the calibration accuracy of the
GyroWheel, future research will focus on the compensation
of the turntable errors.
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