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In patients with advanced cirrhosis, not only hepatocellular carcinoma but also bacterial infections, such as spontaneous bacterial
peritonitis (SBP) or pneumonia, are frequent clinical complications in such immune-compromised patients. These pathologies
often progress to renal dysfunction, especially hepatorenal syndrome (HRS). The central pathology of HRS is splanchnic arterial
vasodilation and hyperpermeability followed by bacterial translocation (BT). BT induces a severe inflammatory response in the
peritoneal lymphoid tissue, with the activation of the immune systems and the long-lasting production of vasoactive mediators
that can impair the circulatory function and cause renal failure. Recent studies report that the plasma amino acid imbalance
appeared to be related to an abnormality of the immune system in patients with decompensated cirrhosis. This paper can provide
a new approach for future studies of the pathology in cirrhotic patients with renal dysfunction.

1. Introduction

Various complications occur in patients with decompensated
cirrhosis. Renal dysfunction, a parameter included in the
MELD score [1, 2], is the most important prognostic factor.
Some kinds of renal dysfunction appear in patients with
decompensated cirrhosis (Table 1), and it is necessary to
treat the pathogenesis adequately. Gastrointestinal bleeding,
overload of diuretic drugs, and repeated drainage of ascites
induce hypovolemia and, frequently, hepatorenal syndrome
(HRS). P. Ginés and V. Arroyo proposed diagnostic criteria
for HRS [3, 4], which is now used worldwide (Table 2).
HRS, which is the main cause of the renal dysfunction in
decompensated cirrhosis, has not been completely elucidated
[4–6]. There are two types of HRS. Type-2 HRS is char-
acterised by moderate renal failure (serum creatinine from
1.5 to 2.5 mg/dl), with a steady or slowly progressive course,
and Type-1 HRS is characterised by a rapid progressive
renal failure defined by the doubling of the initial serum
creatinine concentrations to a level greater than 2.5 mg/dl in
less than 2 weeks. The natural prognosis of type-1 HRS is

very poor [7]. The central pathology of HRS is splanchnic
arterial vasodilation and hyperpermeability followed by BT,
which easily occurs in decompensated cirrhosis. On the other
hand, in patients with advanced cirrhosis, various metabolic
disorders involving glucose, amino acids (AAs), lipids,
vitamins, and minerals appear. It was recently reported that
the plasma amino acid imbalance appeared to be related
to an abnormality of the immune system in patients with
decompensated cirrhosis [8–10]. In this paper we will discuss
the causes of HRS based on previous reports.

2. Hepatorenal Syndrome (HRS) and
Renal Autoregulation System

Portal hypertension occurs, followed by intrahepatic vascular
resistance, which is the progression of hepatic fibrosis in
patients with cirrhosis. Furthermore, the effective circulating
blood volume decreases and the extracellular fluid volume
increases because of the splanchnic arterial vasodilation
and hyperpermeability, followed by portal hypertension.
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Table 1: The pathology of renal dysfunction in patients with decompensated cirrhosis.

Pathology

HRS
HRS is classified into two types: type 1 is characterized by a doubling of the serum creatinine level to more
than 2.5 mg/dL in less than 2 weeks; type 2 is characterized by a stable or less rapidly progressive course
than in type 1.

Hypovolemia-induced
renal failure

Renal flow losses because of excessive diuretic therapy or gastrointestinal losses as a result of diarrhea from
excessive lactulose administration or gastrointestinal infection. Renal failure occurs soon after the onset of
hypovolemia.

Parenchymal renal disease
Acute or chronic parenchymal renal disease should be suspected as a cause of renal failure when
proteinuria, hematuria, or both are present and ideally should be confirmed by renal biopsy

Drug-induced renal failure Nonsteroidal anti-inflammatory drugs or antibiotics suggest drug-induced renal failure.

Table 2: Diagnostic criteria of hepatorenal syndrome (HRS).

Major criteria

(i) Low glomerular filtration rate, as indicated by serum creatinine level greater than 1.5 mg/dL or 24-hour creatinine clearance lower
than 40 mL/minute

(ii) Absence of shock, ongoing bacterial infection, fluid loss, and current treatment with nephrotoxic drugs

(iii) No sustained improvement in renal function (decrease in serum creatinine to 1.5 mg/dL or less or increase in creatinine clearance
to 40 mL/minute or more) following the diuretic withdrawal and expansion of plasma volume with 1.5 L of a plasma expander

(iv) Proteinuria lower than 500 mg/day and no ultrasonographic evidence of obstructive uropathy or parenchymal renal disease

Additional criteria

Urine volume lower than 500 mL/day

Urine sodium lower than 10 mEq/L

Urine osmolality greater than plasma osmolality

Urine red blood cells less than 50 per high-power field

Serum sodium concentration lower than 130 mEq/L

All major criteria must be present for the diagnosis of hepatorenal syndrome. Additional criteria are not necessary for the diagnosis, but provide supportive
evidence.

On the other hand, the renal blood flow is compensated
in patients with early cirrhosis, because the autoregulation
system maintains the renal blood flow, even if the renal artery
pressure fluctuates between 80 and 180 mmHg.

2.1. Rennin-Angiotensin-Aldosterone System (RAAS). RAAS
is the central hormonal regulation that controls the kidney
bloodstream. Increasing angiotensin II promotes the reab-
sorption of sodium by distal renal tubules and collecting
kidney tubules and maintains the glomerular filtration rate
(GFR) by the contraction of the efferent arterioles. In
patients with cirrhosis, sodium retention occurs in response
to lower body negative pressure, which was associated with
increased RAAS activity [9]. A previous study reports that the
RAAS is activated in 50–80% of patients with decompensated
cirrhosis and HRS accelerates the RAAS [10]. Another study
reported that RAAS is activated by diuretic drugs [11].

2.2. Vasopressin. Vasopressin, which is the main antidiuretic
hormone, is synthesized by the hypothalamus and stored
in nerve endings of the posterior pituitary gland. The
secretion is usually promoted by an increase of the plasma
osmolarity or the decrease of the blood volume, but even
when the plasma osmolality falls, the production continues
to be promoted in patients with HRS [12, 13]. There

are three vasopressin receptors [14]: V1a, V1b, and V2.
The V2 receptor in collecting kidney tubules promotes the
reabsorption of water and decreases the urine output.

2.3. Sympathetic Nervous System. An efferent pathway of
the sympathetic nervous system to the kidney reaches the
juxtaglomerular apparatus, renal tubular, and blood vessel
floor, and when a renal sympathetic nerve centrifugal
is stimulated, renin secretion is promoted [15], but the
renal artery shrinks through α 1A receptor and the renal
blood volume decreases. Sympathetic nervous activity is
enhanced in patients with cirrhosis. In patients with HRS, the
sympathetic nerve is activated [16–18] and GFR is decreased
by the contraction of an afferent arteriole in the glomerulus,
and the reabsorption of sodium by renal tubules is promoted.
Furthermore, the renal blood volume is also maintained by
the intricate dynamics of the glomerulotubular balance [19],
tubuloglomerular feedback [20], and myogenic response
[21]. But when such a state continues for an extended
period, the dynamics of renal compensation fail to recover
the renal blood volume leading to HRS (Figure 1). Although
increasing angiotensin II and the contraction of an efferent
arterioles maintain GFR, the effective circulation blood
volume cannot recover from hypovolemia because of the
increased extracellular fluid caused by the reabsorption
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Figure 1: Pathology of hepatorenal syndrome.

of water and Na+. Finally, through such a vicious circle
the patients with decompensated cirrhosis develop edema,
ascites, low cardiac output, and HRS. A synthetic decline of
the albumin, which plays a central role in the maintenance
of the plasma osmolality, is also one of the important
causes. Indeed, it was demonstrated by a randomized
controlled trial that the administration of albumin prevents
renal dysfunction in patients with spontaneous bacterial
peritonitis (SBP) [22], and it is a basic treatment in patients
with decompensated cirrhosis. Furthermore, it was reported
that, terlipressin, a drug that causes blood vessel shrinkage,
is effective for HRS and more effective in combination with
albumin, although its effect is only about 30–50% [23–
26]. Other vasoconstrictor drugs have been found to be
inadequate [27–29].

3. Bacterial Translocation
(BT) and Immune Abnormality in
Patient with Cirrhosis

Bacteria can normally be detected in underlying intestinal
tissue without associated injury because organisms are
usually efficiently removed by phagocytes. However, bacterial
translocation (BT) is the migration of bacteria or bacterial
products from the intestinal lumen to mesenteric lymph
nodes [30, 31]. BT is deeply related to the splanchnic
arterial vasodilation and hyperpermeability (Figure 2). In the
normal gut mucosa, monocytes and particularly DCs are in
charge of providing innate protection against microorgan-
isms. A bacterial stimulus from the intestinal tract activates
antigen presentation cells (monocytes, macrophages, and

dendritic cells (DCs)), and these cells produce proinflam-
matory cytokines (TNF-alpha and IL-6 et al) and substances
that cause vasodilation (NO, bories et al.) [32]. It is well
known that the levels of many proinflammatory cytokines
(TNF-alpha, IL-6, IL-1β, etc.) are higher in the plasma
of patients with cirrhosis than in that of healthy subjects
[33, 34]. Previous studies using a cirrhotic mouse model
proved the existence of BT by detecting bacterial DNA in
a mesentery lymph node, the plasma, and ascites, and the
BT continued to promote the active status of immune cells
[35–38]. Furthermore, the prevalence of BT significantly
increased according to the Child-Pugh classification: 3.4% in
Child A, 8.1% in Child B, and 30.8% in Child C patients [39].
Although it is unclear why BT easily occurs in decompen-
sated cirrhosis, three primary mechanisms promote BT from
the gastrointestinal tract: intestinal bacterial over growth
[40–42], increased intestinal permeability [43, 44], and
immune abnormality. These mechanisms can act in concert
to promote synergistically translocation.

4. Amino Acid Imbalance and
Immune Abnormalities in Patients
with Cirrhosis

For immune abnormalities in patients with advanced cir-
rhosis, previous studies have described the dysfunction
of immune cells, especially DCs [45–48], and our study
demonstrated that, in advanced cirrhosis, the extracellular
amino acid environment also tends to impair the maturation
of DCs [49] (Figure 3). Concerning the mechanism that
underlies this phenomena, the amino acid imbalance in the
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Figure 2: Mechanism of the splanchnic arterial vasodilation and hyperpermeability.

Healty 
environment

Healthy
mDC

Healthy
imDC

Healty 
environment

Patient
mDC

Patient
imDC

Cirrhotic
environment

Patient
mDC

Patient
imDC

Healthy in vivo Patient with cirrhosis
in vivo

Cirrhotic
environment

Healthy
mDC

Healthy
iDC

Maturation level

LPS

Figure 3: Dysfunction of dendritic cells in patient with cirrhosis.

plasma of patients with advanced cirrhosis influenced the
mTOR/S6K signaling pathway of the DCs [49].

Furthermore, branched-chain amino acids (BCAAs)
enhance the maturation and function of myeloid DCs ex vivo
in patients with advanced cirrhosis [49]. On the other hand,
we revealed that the free amino acid concentration L-Cystine
(L-Cys) correlated inversely with the glomerulus filtration
rate (eGFR) in patients with cirrhosis (Figure 4), and high

levels of L-Cys increase the production of TNF-alpha from
monocytes [50]. Concerning the mechanism that underlies
this phenomena, high extracellular levels of L-Cys enhanced
the exchange L-Cys/L-Glu antiport of monocytes via xCT
and decreased the intracellular GSH/GSSG ratio under
the amino acid condition of advanced cirrhosis (Figure 5).
Furthermore, we reported that the mRNA expression of
TNF-alpha and xCT were significantly higher in monocytes
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Figure 4: Free amino acids related to renal function in patients with advanced cirrhosis eGFR are calculated by [8].

of patients with decompensated cirrhosis than in those
of healthy volunteer [50]. Recently, it has become clear
that AAs are not only important as substrates for various
metabolic pathways, but also activate a nutrient-sensitive
signaling pathway in synergy with insulin [51–53], and that
extracellular AAs influence the function of immune cells
[54–57]. The amino acid imbalance is considered one of
the reasons that the immune cells cannot normally exclude
bacteria and so the inflammation continuous may relate to
the development of HRS in patient with advanced cirrhosis.

5. Evaluation of Renal Dysfunction in
Decompensated Cirrhosis

Although serum creatinine is commonly used to evaluate
renal function, it does not exactly reflect GFR in patients with
cirrhosis [58]. Because the value of serum creatinine varies
depending on the amount of skeletal muscle, the GFR is
overestimated in patients with cirrhosis who have decreased
amounts of skeletal muscle [59, 60]. Of course, the creatinine
clearance is the same. On the other hand, the inulin clearance
[61], which is the global standard measurement for GFR,

can reflect GFR correctly, but repeat measurement is difficult
clinically because the method is very complicated. Recently,
it, using cystatin C, one of the serum proteins, was effective
for evaluating the renal function of patients with cirrhosis
[62, 63]. It is a potent inhibitor of lysosomal proteinases
and one of the most important extracellular inhibitors of
cysteine proteases. It is produced by nucleated cells of the
whole body and acts as a cysteine protease inhibitor in the
living body. Cystatin C in the blood is filtered by renal
glomeruli and is reabsorbed by proximal renal tubules [64].
It is not influenced by the creatinine level or the amount of
skeletal muscle. Although serum cystatin C determination
could be a valuable tool in patients with cirrhosis for
early diagnosis of moderately impaired renal function [65],
further investigation is needed to clarify its effectiveness, for
evaluating patients with decompensated cirrhosis.

6. Summary

HRS is one of the most severe complications in patients with
decompensated cirrhosis. Although liver transplantation is
the only curative treatment for HRS, renal failure is a risk
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Figure 5: The amino acid imbalances influence the function of monocytes in cirrhotic patients with renal dysfunction.

factor for a poor outcome of liver transplantation. Further
investigation of the pathology and therapy of HRS is needed.
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Müller, “The creatinine approach to estimate skeletal muscle
mass in patients with cirrhosis,” Hepatology, vol. 24, no. 6, pp.
1422–1427, 1996.

[61] M. Walser, D. G. Davidson, and J. Orloff, “The renal clearance
of alkali-stable inulin,” The Journal of clinical investigation, vol.
34, no. 10, pp. 1520–1523, 1955.

[62] Y. S. Seo, E. S. Jung, H. An et al., “Serum cystatin C level is a
good prognostic marker in patients with cirrhotic ascites and
normal serum creatinine levels,” Liver International, vol. 29,
no. 10, pp. 1521–1527, 2009.

[63] H. S. Ahn, Y. S. Kim, S. G. Kim et al., “Cystatin C is a good
predictor of hepatorenal syndrome and survival in patients
with cirrhosis who have normal serum creatinine levels,”
Hepato-Gastroenterology, vol. 59, no. 115-116, pp. 1168–1173,
2011.

[64] O. Tenstad, A. B. Roald, A. Grubb, and K. Aukland, “Renal
handling of radiolabelled human cystatin C in the rat,”
Scandinavian Journal of Clinical and Laboratory Investigation,
vol. 56, no. 5, pp. 409–414, 1996.

[65] A. L. Gerbes, V. Gülberg, M. Bilzer, and M. Vogeser, “Evalu-
ation of serum cystatin C concentration as a marker of renal
function in patients with cirrhosis of the liver,” Gut, vol. 50,
no. 1, pp. 106–110, 2002.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


