
Research Article
Solving Nonstiff Higher Order Odes Using Variable
Order Step Size Backward Difference Directly

Ahmad Fadly Nurullah Rasedee,1 Mohamed bin Suleiman,1 and Zarina Bibi Ibrahim1,2

1 Institute for Mathematical Research, UPM, Selangor Darul Ehsan, 43400 Serdang, Malaysia
2 Department of Mathematics, Faculty of Science, UPM, Selangor Darul Ehsan, 43400 Serdang, Malaysia

Correspondence should be addressed to Ahmad Fadly Nurullah Rasedee; ahmadfadlynurullah@yahoo.com

Received 11 March 2014; Revised 3 July 2014; Accepted 22 July 2014; Published 19 August 2014

Academic Editor: Alessandro Palmeri

Copyright © 2014 Ahmad Fadly Nurullah Rasedee et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The current numerical techniques for solving a system of higher order ordinary differential equations (ODEs) directly calculate the
integration coefficients at every step. Here, we propose a method to solve higher order ODEs directly by calculating the integration
coefficients only once at the beginning of the integration and if required oncemore at the end.The formulae will be derived in terms
of backward difference in a constant step size formulation. The method developed will be validated by solving some higher order
ODEs directly using variable order step size. To simplify the evaluations of the integration coefficients, we find the relationship
between various orders. The results presented confirmed our hypothesis.

1. Introduction

In this paper, we will focus only on nonstiff ODEs of the form

𝑦
(𝑑)

= 𝑓 (𝑥, 𝑌̃) (1)

given

𝑌̃ = (𝑦, 𝑦
󸀠
, 𝑦
󸀠󸀠
, . . . , 𝑦

(𝑑−1)
) ,

𝜂 = (𝜂, 𝜂
󸀠
, 𝜂
󸀠󸀠
, . . . , 𝜂

(𝑑−1)
) ,

(2)

where 𝑌̃(𝑎) = 𝜂 in the interval 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑑 is the order of
the ODE.We impose the condition that 𝑌̃ is continuous.This
implies that solution for 𝑌̃ exists.

Many science and engineering problems are in the form
of higher order initial value problems (IVPs) ODEs. Authors
such as Gear [1], Suleiman [2, 3], Hall and Suleiman [4],
and Omar [5] suggested a new approach for solving higher
order ODEs directly. An algorithmwas designed by Suleiman
[2] to solve stiff and nonstiff higher order ODEs directly
without reducing the order of the problems to first order.

He called it the direct integration method. The drawbacks
to methods described by Omar [5], Suleiman [3], Gear
[1], and Lambert [6] are the tedious calculations of the
divided differences and recurrence relations in computing the
integration coefficients.

Here, a new and efficient algorithm for solving IVPs
of higher order ODEs directly using variable order step
size method in its backward difference formulation (MSBD
method) is developed. In contrast to the integration coeffi-
cients used in Suleiman’s [3] direct integration (DI) method,
the code MSBD calculates the integration coefficients once at
the start and oncewhen calculating the last point.The simpler
nature of the backward difference compared to the divided
difference gives an added advantage to the MSBD over the
DI method when formulating and coding the method. This
produces more elegant error formulae. The DI method in
Suleiman [2] has been proven to converge. We note that
the DI method is formulated based on divided difference
while the proposed MSBD technique is based on backward
difference. Therefore, in a similar way, we can prove the
convergence of theMSBD. A brief explanation of the DI code
is given below.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 565137, 10 pages
http://dx.doi.org/10.1155/2014/565137

2 Mathematical Problems in Engineering

Let𝑃𝑘,𝑛(𝑥) be the integrating polynomialwith degree 𝑘−1;
interpolating 𝑘 points is denoted by

𝑃𝑘,𝑛 (𝑥) = 𝑓𝑛 + (𝑥 − 𝑥𝑛) 𝑓[𝑛,𝑛−1]

+ ⋅ ⋅ ⋅ + (𝑥 − 𝑥𝑛) ⋅ ⋅ ⋅ (𝑥 − 𝑥𝑛−𝑘+2) 𝑓[𝑛,𝑛−1,...,𝑛−𝑘+1],

(3)

and obtained through divided difference.
We define 𝑔𝑖,𝑡, 𝑡 > 0 to be the 𝑡-fold integral and the

integration coefficients obtained are denoted as follows:

𝑔𝑖,𝑡 = (𝑥𝑛+1 − 𝑥𝑛−𝑖+1) 𝑔𝑖−1,𝑡 − 𝑡𝑔𝑖−1,𝑡+1. (4)

For the case 𝑖 = 0,

𝑔0,𝑡 =
ℎ
𝑡
𝑛+1

𝑡!
, (5)

where ℎ𝑟 = 𝑥𝑟 − 𝑥𝑟−1, 𝑟 = 1, 2, 3,
Let 𝑒 be given explicitly by

𝑒 = 𝑓 (𝑥𝑛+1, 𝑃𝑛+1) − 𝑃
(𝑑)

𝑛+1, 𝑃
(𝑑−𝑡)

𝑛+1 , 𝑡 = 1, 2, . . . , 𝑑, (6)

which are the predicted derivatives.
Using the 𝑔𝑖,𝑡 coefficients, the predictor and corrector are

given by

𝑃
(𝑟)

𝑛+1 =

𝑑−1−𝑟

∑

𝑖=0

ℎ
𝑖

𝑖!
𝑦
(𝑟+𝑖)

𝑛 +

𝑘−1

∑

𝑖=0

𝑔𝑖,𝑑−𝑟𝑓[𝑛,𝑛−1,...,𝑛−𝑖]

𝑦
(𝑑−𝑡)

𝑛+1 = 𝑃
(𝑑−𝑡)

𝑛+1 +
𝑔𝑘,𝑡

𝑔𝑘,0

𝑒, 𝑡 = 1, 2, . . . , 𝑑.

(7)

2. Derivation of 𝑑th Order Explicit and
Implicit Backward Differences Method

In this section, the integration coefficients of the backward
difference formulae are derived in order to obtain a rela-
tionship between the explicit and implicit formulae. This will
make the computation easier.

Integrating (1) once yields

𝑦 (𝑥𝑛+1) = 𝑦 (𝑥𝑛) + ∫

𝑥
𝑛+1

𝑥
𝑛

𝑓 (𝑥, 𝑦, 𝑦
󸀠
, 𝑦
󸀠󸀠
) 𝑑𝑥. (8)

Let 𝑃𝑛(𝑥) be the interpolating polynomial which interpolates
the 𝑘 values (𝑥𝑛, 𝑓𝑛), (𝑥𝑛−1, 𝑓𝑛−1), . . . , (𝑥𝑛−𝑘+1, 𝑓𝑛−𝑘+1); then

𝑃𝑛 (𝑥) =

𝑘−1

∑

𝑖=0

(−1)
𝑖
(
−𝑠

𝑖
)∇
𝑖
𝑓𝑛. (9)

Next, approximating 𝑓 in (8) with 𝑃𝑛(𝑥) and letting

𝑥 = 𝑥𝑛 + 𝑠ℎ (10)

give us

𝑦 (𝑥𝑛+1) = 𝑦 (𝑥𝑛) + ∫

1

0

𝑘−1

∑

𝑖=0

(−1)
𝑖
(
−𝑠

𝑖
)∇
𝑖
𝑓𝑛 𝑑𝑠, (11)

where

𝑦1,𝑖 = (−1)
𝑖
∫

1

0

(
−𝑠

𝑖
) 𝑑𝑠. (12)

Let the generating function 𝐺1(𝑡) for the coefficients 𝛾1,𝑖 be
defined as follows:

𝐺1 (𝑡) =

∞

∑

𝑖=0

𝛾1,𝑖𝑡
𝑖
. (13)

Substituting (12) in 𝐺1(𝑡) gives

𝐺1 (𝑡) = ∫

1

0

𝑒
−𝑠 log(1−𝑡)

𝑑𝑠 (14)

which leads to

𝐺1 (𝑡) = − [
(1 − 𝑡)

−1

log (1 − 𝑡)
−

1

log (1 − 𝑡)
] . (15)

Hence, the coefficients of the backward difference formula-
tion, 𝛾1,𝑘, are given by

𝑘

∑

𝑖=0

(
𝛾1,𝑖

𝑘 − 𝑖 + 1
) = 1.

𝛾1,𝑘 = 1 −

𝑘−1

∑

𝑖=0

(
𝛾1,𝑖

𝑘 − 𝑖 + 1
) , 𝑘 = 1, 2, . . . , 𝛾1,0 = 1.

(16)

To derive the 𝑑th order generating function, we integrate (1)
𝑑 number of times and mathematical induction gives

𝐺(𝑑) (𝑡) =
1

(𝑑 − 1)!
[

1
(𝑑−1)

log (1 − 𝑡)
−
(𝑑 − 1)!𝐺(𝑑−1) (𝑡)

log (1 − 𝑡)
] . (17)

This gives the generalized explicit coefficients which are
denoted by

𝛾(𝑑),0 = 𝛾(𝑑−1),1

𝛾(𝑑),𝑘 = 𝛾(𝑑−1),𝑘+1 −

𝑘−1

∑

𝑖=0

𝛾(𝑑),𝑖

𝑘 − 𝑖 + 1
𝑘 = 0, 1, 2

(18)

Similarly, deriving the generalized implicit formulae gives the
following relationship for the generating functions:

𝐺
∗

(𝑑) (𝑡) =
1

(𝑑 − 1)!
[

(1 − 𝑡)

log (1 − 𝑡)
−
(𝑑 − 1)!𝐺

∗
(𝑑−1) (𝑡)

log (1 − 𝑡)
] , (19)

where the coefficients are given by

𝛾
∗

(𝑑),0 =

1

∑

𝑖=0

𝛾
∗

(𝑑−1),𝑖

𝛾
∗

(𝑑),𝑘 =

𝑘+1

∑

𝑖=0

𝛾
∗

(𝑑−1),𝑖 −

𝑘−1

∑

𝑖=0

𝛾
∗

(𝑑),𝑖𝐼1,𝑘+1−𝑖, 𝑘 = 1, 2, 3 . . . ,

(20)

and 𝐼1,𝑘+1−𝑖 is the Lagrange coefficient.

Mathematical Problems in Engineering 3

3. The Relationship between the Explicit and
Implicit Integration Coefficients

Calculating the integration coefficients directly is time con-
suming if large numbers of integrations are involved. By
obtaining a recursive relationship between the coefficients,
we are able to obtain the implicit integration coefficient more
efficiently. The relationship between the explicit and implicit
coefficients is discussed below.

For first order coefficients,

𝐺
∗

1 (𝑡) = − [
1

log (1 − 𝑡)
−

1 − 𝑡

log (1 − 𝑡)
] . (21)

It can be written as

𝐺
∗

1 (𝑡) = − (1 − 𝑡) [
1

(1 − 𝑡) log (1 − 𝑡)
−

1

log (1 − 𝑡)
] . (22)

By substituting

𝐺1 (𝑡) =
1

(1 − 𝑡) log (1 − 𝑡)
−

1

log (1 − 𝑡)
(23)

into (22), we have

𝐺
∗

1 (𝑡) = (1 − 𝑡) 𝐺1 (𝑡) (24)

(

∞

∑

𝑖=0

𝛾
∗

1,𝑖𝑡
𝑖
) = (1 − 𝑡)(

∞

∑

𝑖=0

𝛾1,𝑖𝑡
𝑖
) . (25)

Solving the equation above gives the recursive relationship

𝑘

∑

𝑖=0

𝛾
∗

1,𝑖 = 𝛾1,𝑘. (26)

For second order coefficient,

𝐺
∗

2 (𝑡) = −
1

1!
[

1

log (1 − 𝑡)
−

1!𝐺
∗
1 (𝑡)

log (1 − 𝑡)
] . (27)

It can be written as

𝐺
∗

2 (𝑡) =
(1 − 𝑡)

1!
[

1

log (1 − 𝑡)
−

1!𝐺
∗
1 (𝑡)

(1 − 𝑡) log (1 − 𝑡)
] . (28)

Substituting (24) into the equation above gives

𝐺
∗

2 (𝑡) =
(1 − 𝑡)

1!
[

1

log (1 − 𝑡)
−

1! (1 − 𝑡) 𝐺1 (𝑡)

(1 − 𝑡) log (1 − 𝑡)
] (29)

or

𝐺
∗

2 (𝑡) =
(1 − 𝑡)

1!
[

1

log (1 − 𝑡)
−

1!𝐺1 (𝑡)

log (1 − 𝑡)
] (30)

which can be simplified as

𝐺
∗

2 (𝑡) = (1 − 𝑡) 𝐺2 (𝑡) ,

(

∞

∑

𝑖=0

𝛾
∗

2,𝑖𝑡
𝑖
) = (1 − 𝑡)(

∞

∑

𝑖=0

𝛾2,𝑖𝑡
𝑖
) .

(31)

Solving the equation above gives the recursive relationship
𝑘

∑

𝑖=0

𝛾
∗

2,𝑖 = 𝛾2,𝑘. (32)

For 𝑑th order coefficient, using mathematical induction, we
have

𝐺
∗

(𝑑) (𝑡) = (1 − 𝑡) 𝐺(𝑑) (𝑡)

(

∞

∑

𝑖=0

𝛾
∗

(𝑑),𝑖𝑡
𝑖
) = (1 − 𝑡)(

∞

∑

𝑖=0

𝛾(𝑑),𝑖𝑡
𝑖
) .

(33)

In similar manner to the case of the second order coefficients,
we obtain the general 𝑑th order coefficients as follows:

𝑘

∑

𝑖=0

𝛾
∗

(𝑑),𝑖 = 𝛾(𝑑),𝑘. (34)

4. Order and Step Size Selection

An important decision to be made is whether to accept the
result of an integration step. Although the efficiency of an
algorithm is affected by the strategy for selecting the order
and step size, its reliability is affected by the acceptance
criteria used.

The literature on variable order step size codes show
numerous strategies of order and step size selection. Varying
the order in a multistep method is very easy. The order
depends directly on the back values stored. After the com-
pletion of any step, the order can be increased by one if none
of the back values used in the previous step are discarded.The
order can also be decreased to any value desired by discarding
the appropriate number of back values. Through experience,
it is suggested that the order strategies which are not biased to
selecting a lower order when implemented in an Adams code
are efficient for nonstiff problems. After considering certain
criteria, we adopted the order strategies similar to those used
by Shampine and Gordon [7].

Let ℎ be the calculated step size and ℎnew the final step
size. See Suleiman [3]. In practice, we multiply ℎ by a safety
factor 𝑅 such that ℎnew = 𝑅ℎ, in order to give a more
conservative estimate for ℎnew and hence reduce the numbers
of steps rejected. For our code, we take the safety factor as
0.8. Shampine and Gordon [7] discuss a practical approach
to the result of the convergence and stability when using a
variable step size. Their experience suggests that their ratio
of successive step sizes will need to be restricted in order
to ensure stability. For this reason and reasons of economy
discussed in the section of generating the algorithm, it would
appear that the use of a constant step size is desirable.
Opposing this view, however, is the fact that the use of the
maximum possible step size minimizes the number of steps
to be taken and hence the number of derivative evaluations.

5. Error Estimation

Adopting the same strategies from Hall and Watt [8] for
higher order ODEs, the estimations for the local errors on
each step of the integration are shown below.

4 Mathematical Problems in Engineering

The predictor takes the form of

pr𝑦(𝑑)
𝑛+1

=

𝑘−1

∑

𝑖=0

𝛾𝑑,𝑖∇
𝑖
𝑓𝑛

pr𝑦(𝑑−1)
𝑛+1

= 𝑦
(𝑑−1)

𝑛 + ℎ

𝑘−1

∑

𝑖=0

𝛾𝑑,𝑖∇
𝑖
𝑓𝑛

...

pr𝑦
𝑛+1

=

𝑑−1

∑

𝑖=0

ℎ
𝑖

𝑖!
𝑦
𝑖

𝑛 + ℎ
𝑑
𝑘−1

∑

𝑖=0

𝛾𝑑,𝑖∇
𝑖
𝑓𝑛,

(35)

where the constant 𝛾𝑑,𝑖 is independent of 𝑘. In 𝑃𝑘𝐸𝐶𝑘+1𝐸

algorithm, the corrector can be written as follows:

𝑦(𝑑)
𝑛+1 =

𝑘−1

∑

𝑖=0

𝛾
∗

𝑑,𝑖∇
𝑖

pr𝑓𝑛+1

𝑦(𝑑−1)
𝑛+1 = 𝑦

(𝑑−1)

𝑛 + ℎ

𝑘−1

∑

𝑖=0

𝛾
∗

𝑑,𝑖∇
𝑖

pr𝑓𝑛+1

...

𝑦
𝑛+1 =

𝑑−1

∑

𝑖=0

ℎ
𝑖

𝑖!
𝑦
𝑖

𝑛 + ℎ
𝑑
𝑘−1

∑

𝑖=0

𝛾
∗

𝑑,𝑖∇
𝑖

pr𝑓𝑛+1,

(36)

where ∇
𝑖
pr denotes the 𝑖th backward difference using

𝑓(𝑥𝑛+1, 𝑌̃
pr
𝑛+1) for 𝑓𝑛+1. It can be shown that

𝛾
∗

1,0 = 𝛾1,0 = 1, 𝛾
∗

𝑑,0 = 𝛾𝑑,0,

𝑘

∑

𝑖=0

𝛾
∗

𝑑,𝑖 = 𝛾𝑑,𝑘, (37)

where (36), can be simplified for computation to

𝑦(𝑑)
𝑛+1 =

pr𝑦(𝑑)
𝑛+1

+ 𝛾0,𝑘∇
𝑘

pr𝑓𝑛+1

𝑦(𝑑−1)
𝑛+1 =

pr𝑦(𝑑−1)
𝑛+1

+ ℎ𝛾1,𝑘∇
𝑘

pr𝑓𝑛+1

...

𝑦
𝑛+1 =

pr𝑦
𝑛+1

+ ℎ
𝑑
𝛾𝑑,𝑘∇
𝑘

pr𝑓𝑛+1.

(38)

The Milne error estimate mentions that the local trun-
cation error (LTE) is simply the difference between the two
possibilities of 𝑘 and 𝑘 − 1 giving

𝐸𝑘 = 𝛾
∗

0,𝑘∇
𝑘

pr𝑓𝑛+1

𝐸
(1)

𝑘
= ℎ𝛾
∗

1,𝑘∇
𝑘

pr𝑓𝑛+1

...

𝐸
(𝑑)

𝑘
= ℎ
𝑑
𝛾
∗

𝑑,𝑘∇
𝑘

pr𝑓𝑛+1.

(39)

The selection of an appropriate 𝑝, for 𝐸(𝑑−𝑝)
𝑘

, to control the
order and step size is as mentioned in Suleiman [3].

When reducing the order, the estimated error would be

𝐸
(𝑑−𝑝)

𝑘−1

= ℎ
(𝑑−𝑝)

𝛾
∗

(𝑑−𝑝),𝑘−1

× [∇
𝑘−1

pr 𝑓𝑛+1 + 𝑓 (𝑥𝑛+1, 𝑌̃
pr
𝑛+1 − ℎ

(𝑑−𝑝)
𝛾(𝑑−𝑝),𝑘−1∇

𝑘−1
𝑓𝑛)

−𝑓 (𝑥𝑛+1, 𝑌̃
pr
𝑛+1)] .

(40)

Since a different predictor, of order one less, would have been
used, from the mean value theorem, we are able to write

𝐸
(𝑑−𝑝)

𝑘−1
= ℎ
(𝑑−𝑝)

𝛾
∗

(𝑑−𝑝),𝑘−1

× [∇
𝑘−1

𝑝𝑟 𝑓𝑛+1 − ℎ
(𝑑−𝑝)

𝛾(𝑑−𝑝),𝑘−1∇
𝑘−1

𝑓𝑛 ⋅
𝜕𝑓

𝜕𝑦
] .

(41)

In practice, to avoid the extra derivative evaluation required
for (40), the decision to reduce the order is based on the
estimate

𝐸
(𝑑−𝑝)

𝑘−1
= ℎ
(𝑑−𝑝)

𝛾
∗

(𝑑−𝑝),𝑘−1∇
𝑘−1

pr 𝑓𝑛+1, (42)

which is immediately available.
To consider the increase in order, the estimated error is

𝐸
(𝑑−𝑝)

𝑘+1

= ℎ
(𝑑−𝑝)

𝛾
∗

(𝑑−𝑝),𝑘+1
∇
𝑘+1

pr 𝑓 (𝑥𝑛+1 , 𝑌̃
pr
𝑛+1 + ℎ

(𝑑−𝑝)
𝛾(𝑑−𝑝),𝑘∇

𝑘
𝑓𝑛) ,

(43)

where the predicted difference is based on a predictor with an
extra term included. In estimating 𝐸(𝑑−𝑝)

𝑘+1
, we obtain

𝐸
(𝑑−𝑝)

𝑘+1
= ℎ
(𝑑−𝑝)

𝛾
∗

(𝑑−𝑝),𝑘+1

× [∇
𝑘+1

pr 𝑓𝑛+1 + 𝑓 (𝑥𝑛+1, 𝑌̃
pr
𝑛+1 + ℎ

(𝑑−𝑝)
𝛾(𝑑−𝑝),𝑘∇

𝑘
𝑓𝑛)

−𝑓 (𝑥𝑛+1, 𝑌̃
pr
𝑛+1 + ℎ

(𝑑−𝑝)
𝛾(𝑑−𝑝),𝑘∇

𝑘
𝑓𝑛+1)]

(44)

leading to

𝐸
(𝑑−𝑝)

𝑘+1
= ℎ
(𝑑−𝑝)

𝛾
∗

(𝑑−𝑝),𝑘+1

× [∇
𝑘+1

pr 𝑓𝑛+1 − ℎ
(𝑑−𝑝)

𝛾(𝑑−𝑝),𝑘∇
𝑘+1

𝑓𝑛+1 ⋅
𝜕𝑓

𝜕𝑦
] ,

(45)

which establishes the asymptotic validity of using

𝐸
(𝑑−𝑝)

𝑘+1
= ℎ
(𝑑−𝑝)

𝛾
∗

(𝑑−𝑝),𝑘+1∇
𝑘+1

𝑓𝑛+1. (46)

Mathematical Problems in Engineering 5

Table 1: 𝑟 = 0.8 explicit integration coefficients.

𝑘 0 1 2 3 4 5 6

𝛾1,𝑘

4

5

8

25

92

375

392

1875

26234

140625

13344

78125

11736472

73828125

𝛾2,𝑘

8

25

32

375

112

1875

6784

140625

9712

234375

906544

24609375

12355736

369140625

𝛾3,𝑘

32

375

32

1875

176

15625

6176

703125

181064

24609375

112736

17578125

31750448

5537109375

𝛾4,𝑘

32

1875

128

46875

1216

703125

32384

24609375

399776

369140625

5155328

5537109375

113924096

138427734375

𝛾5,𝑘

128

46875

256

703125

5504

24609375

61696

369140625

751808

5537109375

2284928

19775390625

2313234752

22840576171875

Table 2: 𝑟 = 0.8 implicit integration coefficients.

𝑘 0 1 2 3 4 5 6

𝛾
∗
1,𝑘

4

5

−8

25

−28

375

24

625

−3466

140625

−12416

703125

−997928

73828125

𝛾
∗
2,𝑘

8

25

−64

375

−64

1875

−2336

140625

−1448

140625

−176944

24609375

−1990648

369140625

𝛾
∗
3,𝑘

32

375

−32

625

−144

15625

−608

140625

−1432

546875

−221152

123046875

−7362256

5537109375

𝛾
∗
4,𝑘

32

1875

−512

46875

−256

140625

−4096

4921875

−36608

73828125

−265984

791015625

−34103936

138427734375

𝛾
∗
5,𝑘

128

46875

−256

140625

−1408

4921875

−9472

73828125

−83648

1107421875

−7028096

138427734375

−168729536

4568115234375

6. Changing the Step Size

We implement the step size changing technique asmentioned
in Lambert [6]. Implementing theAdams-Bashforthmethods
as predictors and Adams-Moulton methods as correctors or
which is commonly known as ABMmethods in PECE mode
in backwards difference form, we then adopt the algorithm
for doubling or halving the step size from Krogh [9] which
was derived for the ABMmethod.

7. Last Step for Solving Higher Order ODEs

As we mentioned previously, the method we proposed calcu-
lates the integrating coefficients only once. In the case of the
last step, generally, the final step size will not always fit into
our current step size strategy of ℎ, 2ℎ, and (1/2)ℎ. Here, we
need to calculate the coefficients once more for the last step
when the step size is in the form of 𝑟ℎ, 𝑟 > 0. The following
are the generating functions for the explicit coefficients:

𝐺(𝑑) (𝑡) =
1

(𝑑 − 1)!
[

(𝑟)
(𝑑−1)

log (1 − 𝑡)
−
(𝑑 − 1)!𝐺(𝑑−1) (𝑡)

log (1 − 𝑡)
] (47)

and implicit coefficients:

𝐺
∗

(𝑑) =
1

(𝑑 − 1)!
[
(1 − 𝑡)

𝑟
(𝑟)
(𝑑−1)

log (1 − 𝑡)
−
(𝑑 − 1)!𝐺

∗
(𝑑−1) (𝑡)

log (1 − 𝑡)
] .

(48)

The following yields the relationship between the explicit and
implicit coefficients:

𝐺
∗

(𝑑) (𝑡) = (1 − 𝑡)
𝑟
𝐺(𝑑) (𝑡) (49)

𝛾
∗

(𝑑),𝑘 = 𝛾(𝑑),𝑘 +

𝑘−1

∑

𝑖=0

(
𝛾(𝑑),𝑘−(1+𝑖)(−1)

𝑖+1

(𝑖 + 1)!

𝑖

∏

𝑗=0

(−𝑗 + 𝑟)) . (50)

Tables 1 and 2 contain values for the coefficients when 𝑟 =

8/10.

8. The MSBD Algorithm

The previous write-up was devoted to the calculation of the
integration coefficients for the explicit formulae which can
form the basis of the predicted values and also the implicit
coefficients which are obtained from the explicit formulae.

For the sake of clarity, we present the algorithm for the
MSBD.

Step 1. The integration coefficients are calculated from the
algorithm in (16), (18), and (34).

Step 2. Use the 𝑘 back values to obtain the predictor in (30).

Step 3. Calculate the corrected values in terms of the predicted
values given in (35).

6 Mathematical Problems in Engineering

Table 3: Comparison between the 1PBDVSO, DI, B1, and D1 methods for solving Problem 1.

TOL MTD STEPS FS MAXE AVER TIME
(total)

10−2
D1
B1
DI

1PBDVSO

113
89
76
71

5
3
1
0

8.80309 (−2)
2.07488 (−1)
8.78700 (−2)
1.17774 (−1)

1.19400 (−1)
6.87734 (−2)
2.56159 (−2)
1.70700 (−2)

2078
1628
969
969

10−3
D1
B1
DI

1PBDVSO

146
111
85
79

7
0
2
1

2.68984 (−2)
3.05138 (−2)
2.12907 (−2)
1.81903 (−2)

5.25240 (−2)
6.28779 (−3)
9.00022 (−3)
6.05764 (−3)

2560
2071
1135
1063

10−4
D1
B1
DI

1PBDVSO

151
170
94
149

2
1
1
0

4.30130 (−3)
5.37539 (−4)
4.25614 (−3)
1.97342 (−5)

5.45887 (−3)
1.06165 (−4)
1.53472 (−3)
5.05592 (−6)

3024
3169
1284
1951

10−5
D1
B1
DI

1PBDVSO

218
200
161
160

1
7
0
0

1.84329 (−5)
4.40121 (−4)
6.68588 (−4)
1.83864 (−5)

1.33438 (−5)
1.37204 (−4)
2.70629 (−4)
6.47215 (−6)

3860
3652
2094
2080

10−6
D1
B1
DI

1PBDVSO

275
121
179
176

3
0
1
0

1.80685 (−6)
1.38184 (−5)
3.15166 (−4)
5.88468 (−6)

1.81711 (−6)
2.65555 (−6)
1.29162 (−4)
2.26518 (−6)

5227
4077
2294
2272

10−7
D1
B1
DI

1PBDVSO

219
330
193
197

9
0
1
0

4.47927 (−6)
1.06409 (−7)
1.44784 (−4)
2.58941 (−7)

7.17250 (−6)
6.01321 (−8)
5.87351 (−5)
9.00261 (−8)

5413
6257
2502
2513

10−8
D1
B1
DI

1PBDVSO

348
287
205
209

2
2
0
0

3.49871 (−8)
4.59227 (−7)
6.69118 (−5)
6.96499 (−8)

2.75009 (−8)
1.19307 (−7)
2.76364 (−5)
2.35911 (−8)

6310
5367
8665
2664

10−9
D1
B1
DI

1PBDVSO

260
424
226
225

7
0
0
0

2.68246 (−8)
4.48526 (−10)
3.11980 (−5)
1.87994 (−9)

1.79939 (−8)
1.44218 (−10)
1.25997 (−5)
4.25589 (−10)

8633
8271
2944
2851

10−10
D1
B1
DI

1PBDVSO

526
475
370
248

9
10
0
0

3.45300 (−9)
7.88269 (−9)
1.44822 (−7)
4.13390 (−9)

2.61398 (−9)
1.39352 (−9)
5.81042 (−8)
8.63144 (−10)

9866
8822
4639
3109

Step 4. The errors 𝐸(𝑑−𝑝)
𝑘−1

, 𝐸
(𝑑−𝑝)

𝑘
, and 𝐸

(𝑑−𝑝)

𝑘+1
are obtained in

(39), (42), and (46).

Step 5. Determine whether 𝐸𝑘 satisfies the local accuracy
requirements which we take to be 𝜃pr𝑛+1|𝐸

(𝑑−𝑝)

𝑘
| < TOL, where

𝜃
pr
𝑛+1 = 1/(𝐴 + 𝐵 + 𝑃𝑛) with 𝐴 = 1, 𝐵 = 0 give the absolute
error test;𝐴 = 0, 𝐵 = 1which gives a relative error test, while
𝐴 = 𝐵 = 1 give a mixed error test.

Step 6. The order is lowered by one if, for 𝑘 > 2,
max(|𝐸(𝑑−𝑝)

𝑘−1
|, |𝐸
(𝑑−𝑝)

𝑘−2
|) ≤ |𝐸

(𝑑−𝑝)

𝑘
| and 𝑘 = 2, |𝐸

(𝑑−𝑝)

𝑘−1
| ≤

0.5 |𝐸
(𝑑−𝑝)

𝑘
|. If we have 𝐸(𝑑−𝑝)

𝑘+1
available, we lower the order if

𝑘 > 1 and |𝐸(𝑑−𝑝)
𝑘−1

| ≤min(|𝐸(𝑑−𝑝)
𝑘

|, |𝐸
(𝑑−𝑝)

𝑘+1
|).The order is raised

by one only after 𝑘+1 successful step at constant step size such
that, for 𝑘 > 1, |𝐸

(𝑑−𝑝)

𝑘+1
| < |𝐸

(𝑑−𝑝)

𝑘
| < max(|𝐸(𝑑−𝑝)

𝑘−1
|, |𝐸
(𝑑−𝑝)

𝑘−2
|)

and, for 𝑘 = 1, |𝐸
(𝑑−𝑝)

𝑘+1
| < 0.5 |𝐸

(𝑑−𝑝)

𝑘
|. We restrict 𝑘 in the

range 1 ≤ 𝑘 ≤ 12.

Step 7. Step size selection is also determined based on the
local accuracy requirements. The step size algorithm for
doubling ∇

𝑖
(𝐷)𝐼(𝑥) := ∇

𝑖−1
(𝐷)𝐼(𝑥) − ∇

𝑖−1
(𝐷)𝐼(𝑥 − 2ℎ) and halving

∇
𝑖
(𝐻)𝐼(𝑥) := ∇

𝑖−1
(𝐻)𝐼(𝑥) − ∇

𝑖−1
(𝐻)𝐼(𝑥 − ℎ/2), 𝑖 = 2, 3, . . . , 𝑘 − 1 is

derived by Krogh [9].

Step 8. If ℎ < |𝑥end − 𝑥|, where ℎ is the current step size
and 𝑥end denotes the end of the interval, repeat Steps 2–7.
If not, determine 𝑟where 𝑟 = |𝑥end−𝑥|/ℎ. We then calculate
the new integration coefficients as given in (47), (48), and
(50). Using the new coefficients, repeat Steps 2–7 and exit the
program.

9. Test Problems and Numerical Results

9.1. Numerical Results. Tables 3, 4, 5, and 6 show the numer-
ical results for Problems 1–4, when solved with direct inte-
gration, backwards difference, and also reducing to first order

Mathematical Problems in Engineering 7

Table 4: Comparison between the 1PBDVSO, DI, B1, and D1 methods for solving Problem 2.

TOL MTD STEPS FS MAXE AVER TIME
(total)

10−2
D1
B1
DI

1PBDVSO

135
134
96
173

0
0
0
0

4.83764 (−2)
2.63945 (−2)
4.99681 (−3)
1.01436 (−4)

3.21705 (−2)
2.14665 (−2)
2.47698 (−3)
8.58874 (−5)

6621
4358
1961
3218

10−3
D1
B1
DI

1PBDVSO

175
121
157
162

1
0
0
0

8.81849 (−3)
3.90401 (−2)
6.91170 (−5)
2.40484 (−3)

5.48179 (−3)
1.65274 (−2)
4.87625 (−5)
1.71894 (−3)

8294
3896
2890
3005

10−4
D1
B1
DI

1PBDVSO

233
173
141
142

2
0
0
0

2.85719 (−3)
1.44401 (−3)
1.79264 (−4)
2.60404 (−4)

1.39202 (−3)
9.91992 (−4)
1.19952 (−4)
1.89056 (−4)

11684
5520
2622
2635

10−5
D1
B1
DI

1PBDVSO

226
263
238
237

1
2
0
0

3.05429 (−4)
1.97450 (−4)
5.14212 (−6)
1.03862 (−5)

1.22401 (−4)
5.02997 (−5)
3.89969 (−6)
8.18350 (−6)

11095
8492
4137
4268

10−6
D1
B1
DI

1PBDVSO

337
262
214
218

1
0
0
0

1.12897 (−5)
6.52399 (−5)
1.18826 (−5)
1.56415 (−6)

5.53620 (−6)
2.34931 (−5)
9.01852 (−6)
1.09680 (−6)

16060
8429
3766
3941

10−7
D1
B1
DI

1PBDVSO

421
337
368
370

2
0
0
0

4.00671 (−7)
1.70966 (−6)
1.79221 (−7)
2.75078 (−7)

4.00671 (−7)
1.05119 (−6)
1.35202 (−7)
1.91969 (−7)

19735
10899
6213
6584

10−8
D1
B1
DI

1PBDVSO

610
523
335
336

4
3
1
0

3.05239 (−7)
4.90321 (−8)
3.11508 (−8)
3.64286 (−8)

2.22380 (−7)
3.52515 (−8)
2.58590 (−8)
1.21667 (−8)

29060
16840
5641
5996

10−9
D1
B1
DI

1PBDVSO

534
555
578
575

2
5
1
0

4.96195 (−8)
9.16995 (−8)
1.20539 (−8)
3.80099 (−9)

1.71145 (−8)
5.35093 (−8)
9.25523 (−9)
2.95718 (−9)

25234
17610
9347
10114

10−10
D1
B1
DI

1PBDVSO

800
671
516
517

2
4
0
0

2.12904 (−10)
8.63683 (−10)
8.37294 (−10)
3.30834 (−9)

1.21736 (−10)
3.89440 (−10)
6.51148 (−10)
2.52921 (−9)

38235
21617
8541
9011

systems. Problems 1 and 2 arewell-behaved problemswhereas
Problems 3 and 4 are without exact solutions. For the first two
problems, we evaluate the maximum and average values of
the error in the computed solution 𝑦. The definition of the
error is as defined above.The following notation will indicate

TIME: the execution time taken in microseconds,
FS: the number of failed steps,
STEPS: total steps,
MTD: the name of the method,
SUCSTEP: the number of successful step,
MAXE: the maximum error,
AVER: the average error,
TOL: the tolerance used,

DI: direct integration,

D1: direct integration with the reduction to first order
system,

1PBDVSO: backward difference,

B1: backward difference with the reduction to first
order system.

The errors calculated are defined as

(𝑒𝑖)𝑡 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑦𝑖)𝑡 − (𝑦 (𝑥𝑖))𝑡

𝐴 + 𝐵(𝑦 (𝑥𝑖))𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(51)

with (𝑦)𝑡 as the 𝑡th component of𝑦.𝐴 = 1, 𝐵 = 0 correspond
to the absolute error test, 𝐴 = 1, 𝐵 = 1 correspond to the
mixed error test, and 𝐴 = 0, 𝐵 = 1 correspond to the relative

8 Mathematical Problems in Engineering

Table 5: Comparison between the 1PBDVSO, DI, B1, and D1
methods for solving Problem 3.

TOL MTD 𝑦(1)

10−2
1PBDVSO

DI
B1
D1

1.9788520539𝑒 + 000
1.9163232164𝑒 + 000
1.8780198255𝑒 + 000

−1.#IND000000𝑒 + 000

10−4
1PBDVSO

DI
B1
D1

1.8706114418𝑒 + 000
1.8694497531𝑒 + 000
1.8694030590𝑒 + 000

−1.#IND000000𝑒 + 000

10−6
1PBDVSO

DI
B1
D1

1.8694735377𝑒 + 000
1.8694497531𝑒 + 000
1.8694368915𝑒 + 000

−1.#IND000000𝑒 + 000

10−8
1PBDVSO

DI
B1
D1

1.8694389431𝑒 + 000
1.8694388843𝑒 + 000
1.8694402726𝑒 + 000

−1.#IND000000𝑒 + 000

10−10
1PBDVSO

DI
B1
D1

1.8694388662𝑒 + 000
1.8694388834𝑒 + 000

Fail to compute
−1.#IND000000𝑒 + 000

error test. The mixed error test is used for all test problems.
The maximum and average errors are given by

MAXE = max
1<𝑖<SUCSTEP

(max
1<𝑖<𝑁

(𝑒𝑖)𝑡) ,

AVER =
∑

SUCSTEP
𝑖=1 ∑

𝑁

𝑡=1 (𝑒𝑖)𝑡

(𝑁) (SUCSTEP)
,

(52)

where𝑁 is the number of equations in the systems.
The result of the backwards difference method

(1PBDVSO) is measured against D1, B1, and DI method
for solving the same problems. The variable step size order
codes are implemented for solving the problems.We begin to
compute the solution using a higher tolerance (TOL ∗ 10

−2).

Problem 1. Consider

𝑦
󸀠󸀠

1 = −
𝑦1

𝑟3
, 𝑦1 (0) = 1, 𝑦

󸀠

1 (0) = 0

𝑦
󸀠󸀠

2 = −
𝑦2

𝑟3
, 𝑦2 (0) = 0, 𝑦

󸀠

2 (0) = 1

𝑟 = (𝑦
2

1 + 𝑦
2

2)
1/2

0 ≤ 𝑥 ≤ 16𝜋.

(53)

Solution is as follows:

𝑦1 (𝑥) = cos𝑥, 𝑦2 (𝑥) = sin𝑥. (54)

First order system is as follows:

𝑦
󸀠

1 = 𝑦3, 𝑦
󸀠

2 = 𝑦4, 𝑦
󸀠

3 = −
𝑦1

𝑟3
, 𝑦

󸀠

4 = −
𝑦2

𝑟3

𝑦1 (0) = 1, 𝑦2 (0) = 0, 𝑦3 (0) = 0, 𝑦4 (0) = 1

(55)

Solution is as follows:

𝑦1 (𝑥) = cos𝑥, 𝑦2 (𝑥) = sin𝑥,

𝑦3 (𝑥) = − sin𝑥, 𝑦4 (𝑥) = cos𝑥.
(56)

For source, see Shampine and Gordon [7].

Problem 2. Consider

𝑦
(8)

= 𝑦, 𝑦
󸀠
(0) = 𝑦

󸀠󸀠
(0) = ⋅ ⋅ ⋅ = 𝑦

(7)
(0) = 1,

0 ≤ 𝑥 ≤ 100.

(57)

Solution is as follows:

𝑦 = 𝑒
𝑥
. (58)

First order system is as follows:

𝑦
󸀠

1 = 𝑦2, 𝑦
󸀠

2 = 𝑦3, 𝑦
󸀠

3 = 𝑦4, 𝑦
󸀠

4 = 𝑦5,

𝑦
󸀠

5 = 𝑦6, 𝑦
󸀠

6 = 𝑦7, 𝑦
󸀠

7 = 𝑦8, 𝑦
󸀠

8 = 𝑦1

𝑦1 (0) = 𝑦2 (0) = ⋅ ⋅ ⋅ = 𝑦8 (0) = 1.

(59)

Solution is as follows:

y1 (x) = y2 (x) = y3 (x) = ⋅ ⋅ ⋅ = y8 (x) = ex. (60)

For source, see Suleiman [2].

Problem 3. Van der Pol’s equation is as follows:

𝑦
󸀠󸀠
= 5 (1 − 𝑦

2
) 𝑦
󸀠
− 𝑦

𝑦 (0) = 2, 𝑦
󸀠
(0) = 0,

0 ≤ 𝑥 ≤ 1.

(61)

First order system is as follows:

𝑦
󸀠

1 = 𝑦2, 𝑦
󸀠

2 = 5 (1 − 𝑦
2

1) 𝑦2 − 𝑦1,

𝑦1 (0) = 2, 𝑦2 (0) = 0.

(62)

For source, see Suleiman [2].

Mathematical Problems in Engineering 9

Table 6: Comparison between the 1PBDVSO, DI, B1, and D1
methods for solving Problem 4.

TOL MTD 𝑦(1)

10−4
1PBDVSO

DI
B1
D1

−1.5171246226𝑒 − 009
−2.5152953310𝑒 − 008
9.9810188187𝑒 − 009
Fail to compute

10−6
1PBDVSO

DI
B1
D1

1.0035458019𝑒 − 008
1.0609214996𝑒 − 008
9.9998786959𝑒 − 009

Fail to compute

10−8
1PBDVSO

DI
B1
D1

1.0004172282𝑒 − 008
1.0004031492𝑒 − 008
1.0000000079𝑒 − 008

Fail to compute

10−10
1PBDVSO

DI
B1
D1

9.9999571459𝑒 − 009
9.9999855296𝑒 − 009
9.9999999555𝑒 − 009

Fail to compute

Problem 4. Control theory is as follows:

𝑦
(𝑖V)

= (𝑦
2
− sin𝑦 − 100

4
) 𝑦

+ (𝑦
󸀠
𝑦
󸀠󸀠 1

(𝑦2 + 1)
− 4 × 100

3
)𝑦
󸀠

+ (1 − 6 × 100
2
) 𝑦
󸀠󸀠

+ (10𝑒
𝑦
󸀠󸀠󸀠
2

− 4 × 100) 𝑦
󸀠󸀠󸀠
+ 1

𝑦 (0) = 𝑦
󸀠
(0) = 𝑦

󸀠󸀠
(0) = 𝑦

󸀠󸀠󸀠
(0) = 0,

0 ≤ 𝑥 ≤ 1.

(63)

First order system is as follows:

𝑦
󸀠

1 = 𝑦2, 𝑦
󸀠

2 = 𝑦3, 𝑦
󸀠

3 = 𝑦4,

𝑦
󸀠

4 = (𝑦
2

1 − sin𝑦 − 100
4
) 𝑦1

+ (𝑦2𝑦3

1

(𝑦21 + 1)
− 4 × 100

3
)𝑦2 + (1 − 6 × 100

2
) 𝑦3

+ (10𝑒
𝑦
2

4 − 4 × 100) 𝑦4 + 1

𝑦1 (0) = 𝑦2 (0) = 𝑦3 (0) = 𝑦4 (0) = 0.

(64)

For source, see Enright et al. [10].

10. Comments on Numerical
Results and Conclusion

Results for the first problem in Table 3 whose solution has
the trigonometric form show that the 1PBDVSO is quicker
in terms of execution times compared to the other three

2000 4000 6000 8000 10000 12000

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
0

D1

B1
DI
1PBDVSO

Ac
cu

ra
cy

 (l
og

 (M
A

XE
)) Execution time (microseconds)

Figure 1: Comparison of efficiency between the 1PBDVSO, DI, B1,
and D1 methods for Problem 1.

methods.This is not surprising because the divided difference
has an element of division whereas backward difference is
without one. And since the solution involves trigonometric
functions, the divided difference can be small and can
magnify round-off errors. This can clearly be seen as we
decrease the tolerance. The solution to Problem 2 has the
solution in the positive exponential form and, therefore,
the effect in terms of accumulated errors between divided
difference and backward difference is small. This is reflected
in the graph of accuracy versus execution times in Figure 2,
where 1PBDVSO and DI methods almost overlapped each
other.

In Problem 3, the reduction to first order system using
divided difference cannot solve the Van der Pol equation
while the backward difference could. However, the DI direct
method and 1PBDVSOare successful in solving this equation.
This conclusion is judged by the closeness of the solution
at 𝑥 = 1. This also indicates the instability of the problem
when reduced to first order and solved using divided differ-
ence. For Problem 4, which has no given solution, similar
behavior pattern occurs in solving the problem.This indicates
the preferability of the high order problems being solved
directly rather than reduction to first order. Overall, from
the tables, we see that the accuracy of 1PBDVSO is better
compared to the other methods. In order to see this more
clearly, we present the graphs of execution times against
accuracy. To determine the more accurate relationship, we
take any particular values of the abscissae (the execution
times) and the ordinates (accuracy)which are lowest in values
representing more accurate points. For graph in Figure 1,
the 1PBDVSO is the most accurate method since, for all the
abscissae chosen from the graphs, they are below the values
of the corresponding ordinates.

The numerical results show that the 1PBDVSO is better
than DI in terms of accuracy, competitive in terms of
execution times, and more stable when tested with more
demanding problems. We are inclined to choose 1PBDVSO
because, for some problems, they are more accurate. It can
be seen from the figures above, where the undermost curve
is more efficient. Using this simple performance index, the
point which is lowest at a particular time is more accurate.
These results show that the variable order step size method

10 Mathematical Problems in Engineering

0
0

D1

B1
DI
1PBDVSO

5000 10000 15000 20000 25000 30000 35000 40000 45000

−12

−10

−8

−6

−4

−2

Ac
cu

ra
cy

 (l
og

 (M
A

XE
))

Execution time (microseconds)

Figure 2: Comparison of efficiency between the 1PBDVSO, DI, B1,
and D1 methods for Problem 2.

gives acceptable solutions and is suitable for solving higher
order ODEs directly.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The researchers would like to thank the Ministry of Higher
Education (MOHE) for its My Brain 15 (My PhD) scholar-
ship.

References

[1] C. W. Gear, “The numerical integration of ordinary differential
equations,” Mathematics of Computation, vol. 21, pp. 146–156,
1967.

[2] M. B. Suleiman,Generalisedmultistep Adams and Backward dif-
ferentiationmethods for the solution of stiff and non-stiff ordinary
differential equations [Ph.D. thesis], University of Manchester,
Manchester, UK, 1979.

[3] M. B. Suleiman, “Solving nonstiff higher order ODEs directly
by the direct integration method,” Applied Mathematics and
Computation, vol. 33, no. 3, pp. 197–219, 1989.

[4] G. Hall and M. B. Suleiman, “Stability of Adams-type formulae
for second-order ordinary differential equations,” IMA: Journal
of Numerical Analysis, vol. 1, no. 4, pp. 427–428, 1981.

[5] Z. B. Omar, Parallel block methods for solving higher order
ordinary differential equations directly [Ph.D. thesis], Universiti
Putra Malaysia, 1999.

[6] J. D. Lambert, Computational Methods in Ordinary Differential
Equations, John Wiley & Sons, New York, NY, USA, 1973.

[7] L. F. Shampine and M. K. Gordon, Computed Solutions of
Ordinary Differential Equations, W. H. Freeman, San Francisco,
Calif, USA, 1975.

[8] G. Hall and J.M.Watt,Modern NumericalMethods for Ordinary
Differential Equations, Clarendon Press, Oxford, UK, 1976.

[9] F. T. Krogh, “Algorithms for changing the step size,” SIAM
Journal on Numerical Analysis, vol. 10, no. 5, pp. 949–965, 1973.

[10] W. H. Enright, T. E. Hull, and B. Lindberg, “Comparing numer-
ical methods for systems of ordinary differential equations,”
Tech. Rep. 69, Department of Computer Science, University of
Toronto, 1974.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

