
Hindawi Publishing Corporation
Journal of Probability and Statistics
Volume 2013, Article ID 807135, 6 pages
http://dx.doi.org/10.1155/2013/807135

Research Article
Block Empirical Likelihood for Semiparametric
Varying-Coefficient Partially Linear Errors-in-Variables
Models with Longitudinal Data

Yafeng Xia and Hu Da

School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

Correspondence should be addressed to Yafeng Xia; gsxyf@aliyun.com

Received 8 April 2013; Revised 29 September 2013; Accepted 29 September 2013

Academic Editor: Shein-chung Chow

Copyright © 2013 Y. Xia and H. Da. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Block empirical likelihood inference for semiparametric varying-coeffcient partially linear errors-in-variables models with
longitudinal data is investigated. We apply the block empirical likelihood procedure to accommodate the within-group correlation
of the longitudinal data. The block empirical log-likelihood ratio statistic for the parametric component is suggested. And the
nonparametric version of Wilk’s theorem is derived under mild conditions. Simulations are carried out to access the performance
of the proposed procedure.

1. Introduction

For longitudinal data, we consider semiparametric varying-
coefficient partially linear model which has the following
form:

𝑌 (𝑡) = 𝑋(𝑡)
𝜏

𝛽 + 𝑍(𝑡)
𝜏

𝜃 (𝑡) + 𝜖 (𝑡) , (1)

where𝑌(𝑡) is the response variable,𝑋,𝑍, and 𝑡 are regressors,
𝛽 = (𝛽

1
, . . . , 𝛽

𝑝
)
𝜏 is a 𝑝-dimensional vector of unknown

parameters, 𝜃(𝑡) = (𝜃
1
(𝑡), . . . , 𝜃

𝑞
(𝑡))
𝜏 is a 𝑞-dimensional

vector of smooth functions of time 𝑡, and 𝜖(𝑡) is a zero-mean
stochastic process. Due to the curse of dimensionality, for
simplicity, we assume that 𝑡 is univariate.

Obviously, model (1) contains many usual parametric,
nonparametric, and semiparametric models. Model (1) has
been studied by many authors. Zhang et al. [1] suggested a
two-step method for estimating it. Li et al. [2] suggested a
local least-squares procedure with a kernel weight function.
Fan and Huang [3] developed a profile least-squares tech-
nique for estimating parametric model . You and Zhou [4]
and Huang and Zhang [5] suggested the estimator of the
parametric and nonparametric models, respectively. Fan et
al. [6] proposed a semiparametric estimation of the working

correlation matrix and applied a profile weighted least-
squares approach.

However, in many practical situations, these variables are
oftenmeasuredwith error. In this paper, we consider this case
where the variable 𝑋(𝑡) is measured with additive error and
both 𝑍(𝑡) and 𝑡 are measured exactly. That is,𝑋(𝑡) cannot be
observed, but an unbiasedmeasure of𝑋(𝑡), denoted by𝑊(𝑡),
can be obtained as follows:

𝑊(𝑡) = 𝑋 (𝑡) + 𝑈 (𝑡) , (2)

where𝑈(𝑡) is themeasurement error, which is independent of
(𝑋𝜏(𝑡), 𝑍𝜏(𝑡), 𝜖(𝑡), 𝑡), with mean zero and covariance matrix
Σ
𝑢𝑢
. We can assume that Σ

𝑢𝑢
is known. If Σ

𝑢𝑢
is unknown,

we estimate it by repeatedly measuring𝑊(𝑡) by Liang et al.
[7]. For errors-in-variables models (1) and (2), Liang et al. [8]
developed a profile least-squares procedure to estimate the
parametric component and derived the asymptotic normality
of the resulting estimator.

The empirical likelihood, which is a nonparametric
approach for constructing confidence regions, was intro-
duced by Owen [9] and has many nice statistical properties
(see Owen [10]). Owen [11] applied empirical likelihood to
linear regression models and Kolaczyk [12] made further
extensions to generalized linear models. Recently, Xue and
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Zhu [13] considered the varying coefficient models. You
and Zhou [4], Huang and Zhang [5], and Zhao and Xue
[14] investigated the empirical likelihood confidence regions
for varying-coefficient partially linear models. Other related
papers contain Yang and Li [15], Hu et al. [16],Wang et al. [17],
and Fan et al. [18, 19].

In this paper, we considermodels (1) and (2) with longitu-
dinal data; one aimof this paper is to construct the confidence
region for the parameter components. To achieve it, we apply
the block empirical likelihood approach [20] to construct
block empirical log-likelihood ratio statistic for parameter 𝛽
and then prove nonparametric Wilk’s phenomenon. Simula-
tion studies assess the proposed method. The other aims are
to prove that the maximum empirical likelihood estimator
(MELE) for the parameter is asymptotically normal under
some suitable conditions.

The rest of this paper is organized as follows. In Section 2,
we construct the block empirical likelihood based confidence
region for the parametric components. Assumption condi-
tions and main results are given in Section 3. Simulation
results are reported in Section 4. The proofs of the main
results are stated in Section 5. Finally, some concluding
remarks are given.

2. Methodology

In this section, we are to extend the result of Hu [21] to the
semivarying coefficient errors-in-variables model with longi-
tudinal data.

We apply longitudinal data (𝑌
𝑖
(𝑡
𝑖𝑗
), 𝑋
𝑖
(𝑡
𝑖𝑗
), 𝑍
𝑖
(𝑡
𝑖𝑗
), 𝑡
𝑖𝑗
).

𝑖 = 1, . . . , 𝑛, and 𝑗 = 1, . . . , 𝑛
𝑖
which are generated from

semivarying coefficient errors-in-variables model through
the following equation:

𝑌
𝑖𝑗
= 𝑋
𝜏

𝑖𝑗
𝛽 + 𝑍

𝜏

𝑖𝑗
𝜃 (𝑡
𝑖𝑗
) + 𝜖
𝑖𝑗
,

𝑊
𝑖𝑗
= 𝑋
𝑖𝑗
+ 𝑈
𝑖𝑗
,

(3)

where 𝑌
𝑖𝑗
= 𝑌
𝑖
(𝑡
𝑖𝑗
),𝑋
𝑖𝑗
= 𝑋
𝑖
(𝑡
𝑖𝑗
), 𝑍
𝑖𝑗
= 𝑍
𝑖
(𝑡
𝑖𝑗
) and 𝜖

𝑖𝑗
= 𝜖
𝑖
(𝑡
𝑖𝑗
),

and 𝑈
𝑖𝑗
= 𝑈
𝑖
(𝑡
𝑖𝑗
), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛

𝑖
. We use counting

process 𝑁
𝑖
(𝑡) ≡ ∑

𝑛𝑖

𝑗=1
𝐼(𝑡
𝑖𝑗
≤ 𝑡) to describe the number of

observations of the 𝑖th subject.We assume that 𝑛
𝑖
is bounded,

but the number of subjects 𝑛 goes to infinity.
Suppose that 𝛽 is known; then, model (3) can be reduced

to a varying-coefficient regression model:

𝑌
𝑖𝑗
− 𝑋
𝜏

𝑖𝑗
𝛽 =

𝑞

∑

𝑘=1

𝑍
𝑖𝑗𝑘
𝜃
𝑘
(𝑡
𝑖𝑗
) + 𝜖
𝑖𝑗
,

𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛
𝑖
.

(4)

Here, the local linear regressionmethod is applied to estimate
the coefficient function {𝜃

𝑗
(⋅), 𝑗 = 1, . . . , 𝑞} inmodel (4).That

is, for 𝑡 in a small neighborhood of 𝑡
0
, one can approximate

𝜃
𝑗
(⋅) locally by a linear function

𝜃
𝑗
(𝑡) ≈ 𝜃

𝑗
(𝑡
0
) + 𝜃
󸀠

𝑗
(𝑡
0
) (𝑡 − 𝑡

0
)

≡ 𝑎
𝑗
+ 𝑏
𝑗
(𝑡 − 𝑡
0
) , 𝑗 = 1, . . . , 𝑞,

(5)

where 𝜃󸀠
𝑗
(𝑡) = 𝜕𝜃

𝑗
(𝑡)/𝜕𝑡. This leads to the following weighted

least-squares problem: find {(𝑎
𝑗
, 𝑏
𝑗
), 𝑗 = 1, . . . , 𝑞} to mini-

mize

𝑛

∑

𝑖=1

∫

1

0

{𝑌
𝑖
(𝑠) − 𝑋

𝜏

𝑖
(𝑠)𝛽 −

𝑞

∑

𝑘=1

{𝑎
𝑘
+ 𝑏
𝑘
(𝑠 − 𝑡)}𝑍

𝑖𝑘
(𝑠)}

2

× 𝐾
ℎ
(𝑠 − 𝑡) 𝑑𝑁

𝑖
(𝑠) ,

(6)

where 𝐾 is a kernel function, 𝐾
ℎ
(⋅) = 𝐾(⋅/ℎ)/ℎ, and ℎ is a

bandwidth. Let

Ω
𝑡

= diag (𝐾
ℎ
(𝑡
11
− 𝑡) , . . . , 𝐾

ℎ
(𝑡
1𝑛1
− 𝑡) , . . . , 𝐾

ℎ
(𝑡
𝑛𝑛𝑛
− 𝑡))

𝑌 = (𝑌
1
(𝑡
11
) , . . . , 𝑌

1
(𝑡
𝑛1
) , . . . , 𝑌

𝑛
(𝑡
𝑛𝑛
))
𝜏

,

𝑋 = (𝑋
𝜏

1
, . . . , 𝑋

𝜏

𝑛
)
𝜏

,

𝑍 =(

(

𝑍
𝜏

11

...
𝑍
𝜏

1𝑛1

...
𝑍
𝜏

𝑛𝑛𝑛

)

)

=
(
(

(

𝑍
1
(𝑡
11
) ⋅ ⋅ ⋅ 𝑍

1
(𝑡
1𝑞
)

... d
...

𝑍
1
(𝑡
𝑛11
) ⋅ ⋅ ⋅ 𝑍

1
(𝑡
𝑛1𝑞
)

... d
...

𝑍
𝑛
(𝑡
𝑛𝑛1
) ⋅ ⋅ ⋅ 𝑍

𝑛
(𝑡
𝑛𝑛𝑞
)

)
)

)

,

𝜖 = (𝜖
11
, . . . , 𝜖

1𝑛1
, . . . , 𝜖

𝑛𝑛𝑛
)
𝜏

,

(7)

𝐷
𝑡

= (

𝑍
11

⋅ ⋅ ⋅ 𝑍
1𝑛1

⋅ ⋅ ⋅ 𝑍
𝑛𝑛𝑛

(𝑡
11
− 𝑡)

ℎ
𝑍
11

⋅ ⋅ ⋅

(𝑡
1𝑛1
− 𝑡)

ℎ
𝑍
1𝑛1

⋅ ⋅ ⋅

(𝑡
𝑛𝑛𝑛
− 𝑡)

ℎ
𝑍
𝑛𝑛𝑛

)

𝜏

.

(8)

Then, the solution to problem (6) is given by

(𝑎
1
(𝑡) , . . . , 𝑎

𝑞
(𝑡) , ℎ𝑏̂

1
(𝑡) , . . . , ℎ𝑏̂

𝑞
(𝑡))
𝜏

= (𝐷
𝜏

𝑡
Ω
𝑡
𝐷
𝜏

𝑇
)
−1

𝐷
𝜏

𝑡
Ω
𝑡
(𝑌 − 𝑋

𝜏

𝛽) .

(9)

Then, 𝜃(𝑡) can be given by

𝜃 (𝑡) = (𝐼
𝑞
, 0
𝑞
) (𝐷
𝜏

𝑡
Ω
𝑡
𝐷
𝜏

𝑇
)
−1

𝐷
𝜏

𝑡
Ω
𝑡
(𝑌 − 𝑋

𝜏

𝛽) , (10)

where 𝐼
𝑞
is 𝑞 × 𝑞 identity matrix and 0

𝑞
is 𝑞 × 𝑞 zero matrix.

Denote

(𝐼
𝑞
, 0
𝑞
) (𝐷
𝜏

𝑡
Ω
𝑡
𝐷
𝜏

𝑇
)
−1

𝐷
𝜏

𝑡
Ω
𝑡
≡ (𝑆
11
(𝑡) , . . . , 𝑆

𝑛𝑛𝑛
(𝑡)) ; (11)
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then,

𝜃 (𝑡
𝑖𝑗
) =

𝑛

∑

𝑙=1

𝑛𝑙

∑

𝑚=1

𝑆
𝑙𝑚
(𝑡
𝑖𝑗
) (𝑌
𝑙𝑚
− 𝑋
𝜏

𝑙𝑚
𝛽) . (12)

Substituting (12) into (4), we can obtain the approximate
residuals as the following:

𝑟
𝑖𝑗
(𝛽) = 𝑌

𝑖𝑗
− 𝑋
𝜏

𝑖𝑗
𝛽 − 𝑍

𝜏

𝑖𝑗

𝑛

∑

𝑙=1

𝑛𝑙

∑

𝑚=1

𝑆
𝑙𝑚
(𝑡
𝑖𝑗
) (𝑌
𝑙𝑚
− 𝑋
𝜏

𝑙𝑚
𝛽)

= 𝑌̃
𝑖𝑗
− 𝑋
𝜏

𝑖𝑗
𝛽,

(13)

where

𝑌̃
𝑖𝑗
= 𝑌
𝑖𝑗
− 𝑍
𝜏

𝑖𝑗

𝑛

∑

𝑙=1

𝑛𝑙

∑

𝑚=1

𝑆
𝑙𝑚
(𝑡
𝑖𝑗
) 𝑌
𝑙𝑚
,

𝑋
𝑖𝑗
= 𝑋
𝑖𝑗
− (

𝑛

∑

𝑙=1

𝑛𝑙

∑

𝑚=1

𝑆
𝑙𝑚
(𝑡
𝑖𝑗
)𝑋
𝑙𝑚
)

𝜏

𝑍
𝑖𝑗
.

(14)

Similar to Owen [10], {𝑟
𝑖𝑗
(𝛽), 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑛

𝑖
}

can be treated as a random sieve approximation of the
random error sequence {𝜖

𝑖𝑗
, 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑛

𝑖
}.

In order to deal with the correlation within group, we use
the block empirical likelihood method. The block empirical
likelihood procedure takes the “data” 𝑟

𝑖𝑗
(𝛽), 𝑗 = 1, . . . , 𝑛

𝑖
into

account as a whole. Hence, similar to Xue and Zhu [13], we
introduce the auxiliary random vector

𝜂
𝑖
(𝛽) = ∫

1

0

𝑋
𝑖
(𝑡) [𝑌̃
𝑖
(𝑡) − 𝑋

𝜏

𝑖
(𝑡) 𝛽] 𝑑𝑁

𝑖
(𝑡) . (15)

Following (13), if 𝛽 is true, then 𝐸{𝜂
𝑖
(𝛽)} = 𝑜(1). If

one ignores the measurement error and replaces 𝑋
𝑖𝑗

by
𝑊
𝑖𝑗
in 𝜂
𝑖
(𝛽), one can show that the resulting estimator is

inconsistent. As we all know, inconsistency caused by the
measurement error can be overcome by applying the so-
called correction for attenuation proposed by Fuller [22] in
linear regression.With a similar way as in Zhao and Xue [14],
the corrected-attenuation auxiliary vector is introduced and
defined as

̌𝜂
𝑖
(𝛽) = ∫

1

0

{𝑊̃
𝑖
(𝑡) (𝑌̃
𝑖
(𝑡) − 𝑊̃

𝜏

𝑖
(𝑡) 𝛽) + Σ

𝑢𝑢
𝛽} 𝑑𝑁

𝑖
(𝑡) ,

(16)

where 𝑊̃
𝑖𝑗
= 𝑊
𝑖𝑗
−(∑
𝑛

𝑙=1
∑
𝑛𝑙

𝑚=1
𝑆
𝑙𝑚
(𝑡
𝑖𝑗
)𝑊
𝑙𝑚
)
𝜏

𝑍
𝑖𝑗
.The termΣ

𝑢𝑢
𝛽

aims to avoid the underestimating for the parameter caused
by themeasurement error.Therefore, the empirical likelihood
ratio function for 𝛽 is defined as

R (𝛽) = max{
𝑛

∏

𝑖=1

(𝑛𝑝
𝑖
) | 𝑝
𝑖
≥ 0,

𝑛

∑

𝑖=1

𝑝
𝑖
= 1,

𝑛

∑

𝑖=1

𝑝
𝑖
̌𝜂
𝑖
(𝛽) = 0} .

(17)

A unique value for R(𝛽) exists, provided that 0 is inside
the convex hull of the point ( ̌𝜂

1
(𝛽), . . . , ̌𝜂

𝑛
(𝛽)). Using the

Lagrange multiplier technique, the optimal value for 𝑝
𝑖
is

𝑝
𝑖
=
1

𝑛
{1 + 𝜆

𝜏

̌𝜂
𝑖
(𝛽)}
−1

, 𝑖 = 1, . . . , 𝑛, (18)

where 𝜆 = (𝜆
1
, . . . , 𝜆

𝑛
)
𝜏 is the solution of the equation

1

𝑛

𝑛

∑

𝑖=1

̌𝜂
𝑖
(𝛽)

1 + 𝜆𝜏 ̌𝜂
𝑖
(𝛽)

= 0. (19)

Then, the block empirical log-likelihood ratio function is

LR (𝛽) = −2 logR (𝛽) = 2

𝑛

∑

𝑖=1

log (1 + 𝜆𝜏 ̌𝜂
𝑖
(𝛽)) . (20)

In addition, by maximizing LR(𝛽), we can obtain the
maximum empirical likelihood estimator (MELE) ̌𝛽. Let

Γ̌ =
1

𝑛

𝑛

∑

𝑖=1

∫

1

0

(𝑊̃
𝑖
(𝑡) 𝑊̃
𝜏

𝑖
(𝑡) − Σ

𝑢𝑢
) 𝑑𝑁
𝑖
(𝑡) . (21)

If the matrix Γ̌ is invertible, then the MELE of 𝛽 can be given
by

̌𝛽 = Γ̌
−1
1

𝑛

𝑛

∑

𝑖=1

∫

1

0

𝑊̃
𝑖
(𝑡) 𝑌̃
𝑖
(𝑡) + 𝑜

𝑝
(𝑛
−1/2

) . (22)

According to ̌𝛽, we can define the estimator {𝜃
𝑗
(⋅), 𝑗 =

1, . . . , 𝑞} as

̌𝜃 (𝑡) = ( ̌𝜃
1
(𝑡) , . . . , ̌𝜃

𝑞
(𝑡))
𝜏

= (𝐼
𝑞
, 0
𝑞
) (𝐷
𝜏

𝑡
Ω
𝑡
𝐷
𝜏

𝑇
)
−1

𝐷
𝜏

𝑡
Ω
𝑡
(𝑌 − 𝑋

𝜏 ̌𝛽) .

(23)

3. Main Results

To establish asymptotic properties of the block empirical log-
likelihood ratio, we make the following assumptions. These
assumptions are made by You and Zhou [4]. We use ‖ ⋅ ‖ to
denote the Euclidean norm with ‖𝑎‖ = (𝑎2

1
+ ⋅ ⋅ ⋅ + 𝑎

2

𝑛
)
1/2 and

𝑎 = (𝑎
1
, . . . , 𝑎

𝑛
)
𝜏.

Assumption 1. The random variable 𝑡 has a compact support
Ξ. The density function 𝑓(⋅) of 𝑡 has a continuous second
derivative and is uniformly bounded away from zero.

Assumption 2. The 𝑝 × 𝑝 matrix 𝐸(𝑋𝑋𝜏 | 𝑡) is nonsingular
for each 𝑡 ∈ Ξ. 𝐸(𝑋𝑋𝜏 | 𝑡), 𝐸(𝑋𝑋𝜏 | 𝑡)−1, and 𝐸(𝑋𝑍𝜏 | 𝑡) are
all Lipschitz continuous.

Assumption 3. There is a 𝑠 > 2 such that 𝐸‖𝑋‖2𝑠 < ∞,
𝐸‖𝑍‖
2𝑠

< ∞, 𝐸‖𝜖‖2𝑠 < ∞, and 𝐸‖𝑡‖2𝑠 < ∞ and for some
𝜖 < 2 − 𝑠

−1 such that 𝑛2𝜖−1ℎ → ∞ as 𝑛 → ∞.

Assumption 4. 𝛼
𝑗
(⋅), 𝑗 = 1, . . . , 𝑞 have the continuous second

derivative in 𝑡 ∈ Ξ.

Assumption 5. The kernel 𝐾(⋅) is a symmetric probability
density function and is a bounded variation function on its
support.

Assumption 6. The bandwidth ℎ satisfies 𝑛ℎ8 → 0 and
𝑛ℎ
2

/(log 𝑛)2 → ∞ as 𝑛 → ∞.
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The following theorem gives the asymptotic distribution
ofLR(𝛽).

Theorem 1. Assume that the Assumptions 1–6 hold; if 𝛽 is the
true value of the parameter, then

LR (𝛽)
D
󳨀→ 𝜒

2

𝑝
𝑎𝑠 𝑛 󳨀→ ∞, (24)

where D
󳨀→ denotes the convergence in distribution and 𝜒2

𝑝
is a

chi-square distribution with 𝑝 degrees of freedom.

Then, we can construct the confidence regions for the
parameter 𝛽. More precisely, for any 0 < 𝛼 < 1, let 𝐶

𝛼
be

such that 𝑝(𝜒2
𝑝
> 𝐶
𝛼
) ≤ 1 − 𝛼. Then,

H (𝛼) = {𝛽 ∈ 𝑅
𝑝

:LR (𝛽) ≤ 𝐶
𝛼
} (25)

constitute a confidence region for 𝛽with asymptotic coverage
1 − 𝛼.

Theorem 2. Assume that the Assumptions 1–6 hold.Then, one
has

√𝑛 ( ̌𝛽 − 𝛽)
D
󳨀→ 𝑁(0, Γ

−1

ΣΓ
−1

) , (26)

where

Γ = 𝐸{∫

1

0

[𝑊 (𝑡) − 𝜇
𝜏

𝑡
𝑍 (𝑡)]

⊗2

𝑑𝑁 (𝑡)} ,

𝐵 = 𝐸{∫

1

0

[𝑊(𝑡) − 𝜇
𝜏

𝑡
𝑍(𝑡)]𝜀(𝑡)}

⊗2

,

𝐴
⊗2

= 𝐴𝐴
𝜏

,

𝜇 (𝑡) = 𝐸{𝑍
𝜏

(𝑡)𝑊(𝑡) | 𝑡}
−1

𝐸 {𝑍 (𝑡) 𝑍
𝜏

(𝑡) | 𝑡} .

(27)

4. Simulation Results

In this section, we will conduct some simulations to the
empirical likelihood (EL) method. The data are generated
from

𝑦
𝑖
(𝑡
𝑖𝑗
) = 𝑥
𝑖
(𝑡
𝑖𝑗
) 𝛽 + 𝑧

1𝑖
(𝑡
𝑖𝑗
) 𝜃
1
(𝑡
𝑖𝑗
)

+ 𝑧
1𝑖
(𝑡
𝑖𝑗
) 𝜃
2
(𝑡
𝑖𝑗
) + 𝜖
𝑖
(𝑡
𝑖𝑗
) ,

𝑤
𝑖
(𝑡
𝑖𝑗
) = 𝑥
𝑖
(𝑡
𝑖𝑗
) + 𝑢
𝑖
(𝑡
𝑖𝑗
) ,

(28)

where 𝑤
𝑖
(𝑡) ∼ 𝑁(0, 1), 𝛽 = 1.5, 𝑧

1𝑖
(𝑡) ∼ 𝑁(0, 1), 𝑧

2𝑖
(𝑡) ∼

𝑁(0, 1), 𝑡 ∼ 𝑈(0, 1), 𝜃
1
(𝑡) = sin(2𝜋𝑡), 𝜃

2
(𝑡) = cos(2𝜋𝑡), 𝜖

𝑖
(𝑡) ∼

𝑁(0, 1), 𝑢
𝑖
(𝑡) = 𝑏𝑒

𝑖
(𝑡
𝑗
) + 𝑒
𝑖
(𝑡
𝑗−1
), and 𝑒

𝑖
(𝑡) ∼ 𝑁(0, 1).

In the simulation studies, for each combination of 𝑛
𝑖
, and

𝑏, we draw 1,000 random samples of sizes 100 or 200 from the
abovemodel, respectively. For each sample, a 95% confidence
interval for 𝛽 = 1.5 is computed using our block empirical
likelihood method. The kernel function is taken as the Gauss

kernel 𝐾
ℎ
(𝑡) = (1/√2𝜋ℎ) exp(−(𝑡)2/2ℎ2). The “leave-one-

sample-out” method is used to select the bandwidth ℎ. We
define the score of ℎ as follows:

CV (ℎ) = 1
𝑛

𝑛

∑

𝑖=1

∫

1

0

{𝑌
𝑖𝑗
−𝑊
𝜏

𝑖𝑗

̌𝛽
−𝑖
− 𝑍
𝜏

𝑖𝑗

̌𝜃
−𝑖
(𝑡
𝑖𝑗
)}
2

− ̌𝛽
𝜏

−𝑖
ΣVV

̌𝛽
−𝑖
𝑑𝑁
𝑖
(𝑡) .

(29)

Then cross-validation smoothing parameter ℎCV is the min-
imizer of CV(ℎ). Some representative coverage probabilities
are reported in Table 1.

5. Proof of the Main Results

In order to prove the main results, we first introduce several
lemmas. Let 𝑢

𝑘
= ∫ 𝑡
𝑘

𝐾(𝑡)𝑑𝑡, V
𝑘
= ∫ 𝑡
𝑘

𝐾
2

(𝑡)𝑑𝑡, 𝑘 = 0, 1, 2, 4,
𝑐
𝑛
= ℎ
2

+((log 𝑛/𝑛)ℎ)1/2,𝐺(𝑇) = 𝐸(𝑍𝑍𝜏 | 𝑇),Ψ(𝑇) = 𝐸(𝑋𝑍𝜏 |
𝑇), and𝑀 = (𝑍

𝜏

1
𝜃(𝑡
1
), . . . , 𝑍

𝜏

𝑛
𝜃(𝑡
𝑛
))
𝜏.

Lemma 3. Let (𝑋
1
, 𝑌
1
), . . . , (𝑋

𝑛
, 𝑌
𝑛
) be i.i.d random vector,

where 𝑌
𝑖
is scalar random variable. Further, assume that

𝐸|𝑌
1
|
𝑠

< ∞, sup
𝑥
∫ |𝑦|
𝑠

𝑓(𝑥, 𝑦)𝑑𝑦 < ∞, where 𝑓(⋅, ⋅)
denotes the joint density of (𝑋, 𝑌). Let 𝐾(⋅) be a bounded
positive function with a bounded support, satisfying a Lipschitz
condition. Given that 𝑛2𝜖−1ℎ → ∞ for some 𝜖 < 1 − 𝑠−1, then
size

sup
𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑛

𝑛

∑

𝑖=1

{𝐾
ℎ
(𝑋
𝑖
− 𝑥)𝑌

𝑖
− 𝐸 [𝐾

ℎ
(𝑋
𝑖
− 𝑥)Y

𝑖
]}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑂
𝑝
({

log(1/ℎ)
𝑛ℎ

}

1/2

) .

(30)

Proof. This lemma can be found inMack and Silverman [23].

Lemma 4. Let 𝜖
𝑖
, 𝑖 = 1, . . . , 𝑛, be a sequence of multi-

independent random variate with 𝐸(𝜖
𝑖
) = 0 and 𝐸(𝜖2

𝑖
) < 𝑐 <

∞. Then,

max
1≤𝑘≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑖=1

𝜖
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑂
𝑝
(√𝑛 log 𝑛) . (31)

Further, let (𝑗
1
, . . . , 𝑗

𝑛
) be a permutation of (1, . . . , 𝑛). Then,

one has

max
1≤𝑘≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑖=1

𝜖
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑂
𝑝
(√𝑛 log 𝑛) . (32)

Proof. We can prove this lemma immediately by Kolmogorov
inequality.

Lemma 5. Let 𝐷
1
, . . . , 𝐷

𝑛
be i.i.d random variables. If 𝐸|𝐷

𝑖
|
𝑠

are uniformly bounded for 𝑠 > 1, then one has

max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝐷𝑖
󵄨󵄨󵄨󵄨 = 𝑜 (𝑛

1/𝑠

) . (33)

Proof. This lemma can be found in Shi and Lau [24].
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Table 1: Coverage probabilities (CP) and average lengths (AL) of the confidence intervals for 𝛽 = 1.5 and 𝜎2 = 0.2.

𝑘 Number of replicates CP (%) AL
NA EL NA EL

𝑏 = 0.3

100 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

50
= 3 93.27 93.34 0.2877 0.2789

𝑛
51
= ⋅ ⋅ ⋅ = 𝑛

100
= 3

100 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

50
= 3 91.94 92.16 0.3079 0.3005

𝑛
51
= ⋅ ⋅ ⋅ = 𝑛

100
= 2

200 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

100
= 3 93.98 94.26 0.2439 0.2432

𝑛
101
= ⋅ ⋅ ⋅ = 𝑛

200
= 3

200 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

100
= 3 93.61 94.74 0.2651 0.2176

𝑛
101
= ⋅ ⋅ ⋅ = 𝑛

200
= 2

𝑏 = 0.6

100 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

50
= 3 93.05 93.21 0.2967 0.2936

𝑛
51
= ⋅ ⋅ ⋅ = 𝑛

100
= 3

100 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

50
= 3 91.74 91.86 0.3175 0.3114

𝑛
51
= ⋅ ⋅ ⋅ = 𝑛

100
= 2

200 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

100
= 3 93.47 94.02 0.2711 0.2437

𝑛
101
= ⋅ ⋅ ⋅ = 𝑛

200
= 3

200 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

100
= 3 92.82 93.69 0.2981 0.2646

𝑛
101
= ⋅ ⋅ ⋅ = 𝑛

200
= 2

Lemma 6. Suppose that Assumptions 1–6 hold; one has

𝐷
𝜏

𝑡
Ω
𝑡
𝐷
𝑡
= 𝑁𝑓 (𝑡) Γ ⊗ 𝐺 (𝑡) (1 + 𝑂

𝑝
(𝑐
𝑛
)) ,

𝐷
𝜏

𝑡
Ω
𝑡
𝑋t = 𝑁𝑓 (𝑡) (1, 0)

𝜏

⊗ Ψ (𝑡) (1 + 𝑂
𝑝
(𝑐
𝑛
)) ,

𝐷
𝜏

𝑡
Ω
𝑡
𝑍
𝑡
= 𝑁𝑓 (𝑡) (1, 0)

𝜏

⊗ 𝐺 (𝑡) (1 + 𝑂
𝑝
(𝑐
𝑛
)) ,

(34)

which hold for all 𝑡 ∈ [𝑎, 𝑏] ⊂ [0, 1], where Γ = diag(1, 𝑢
2
).

Proof. This follows immediately from the result that was
obtained by Yang and Li [15].

Lemma 7. Suppose that Assumptions 1–6 hold; one has, when
𝑡
𝑖𝑗
∈ [𝑎, 𝑏],

𝑆
𝜏

𝑖
(𝑡
𝑖𝑗
)𝑋 = 𝑍

𝜏

𝑖
(𝑡
𝑖𝑗
)𝐺
−1

(𝑡
𝑖𝑗
)Ψ (𝑡

𝑖𝑗
) (1 + 𝑂

𝑝
(𝑐
𝑛
)) ,

𝑆
𝜏

𝑖
(𝑡
𝑖𝑗
)𝑀 = 𝑍

𝜏

𝑖
(𝑡
𝑖𝑗
) 𝜃 (𝑡
𝑖𝑗
) (1 + 𝑂

𝑝
(𝑐
𝑛
)) .

(35)

Proof. Let 𝑆𝜏
𝑖
(𝑡
𝑖𝑗
) = [𝑍

𝜏

𝑖
(𝑡
𝑖𝑗
), 0](𝐷

𝜏

𝑡𝑖𝑗

Ω
𝑡𝑖𝑗
𝐷
𝑡𝑖𝑗
)
−1

𝐷
𝜏

𝑡𝑖𝑗

Ω
𝑡𝑖𝑗
; then,

Lemma 7 can be directly attained by Lemma 6.

Lemma 8. Suppose that the Assumptions 1–6 hold, one has

1

√𝑛

𝑛

∑

𝑖=1

̌𝜂
𝑖
(𝛽)

D
󳨀→ 𝑁(0, Σ) ,

1

𝑛

𝑛

∑

𝑖=1

̌𝜂
𝑖
(𝛽) ̌𝜂
𝜏

𝑖
(𝛽)

P
󳨀→ Σ,

max
1≤𝑥≤𝑛

󵄩󵄩󵄩󵄩
̌𝜂
𝑖
(𝛽)

󵄩󵄩󵄩󵄩 = 𝑂𝑝 (𝑛
1/2

) ,

(36)

where Σ is defined by (26).

Proof of Theorem 1. From (36), using the same arguments as
were used in the proof of Owen [10], we have

‖𝜆‖ = 𝑂
𝑝
(𝑛
−1/2

) , (37)

where 𝜆 is defined in (19). Then, we have size

0 =
1

𝑛

𝑛

∑

𝑖=1

̌𝜂 (𝛽)

1 + 𝜆𝜏 ̌𝜂
𝑖
(𝛽)

=
1

𝑛

𝑛

∑

𝑖=1

̌𝜂
𝑖
(𝛽) −

1

𝑛

𝑛

∑

𝑖=1

̌𝜂
𝑖
(𝛽) ̌𝜂
𝜏

𝑖
(𝛽) 𝜆 +

1

𝑛

𝑛

∑

𝑖=1

̌𝜂
𝑖
(𝛽) (𝜆

𝜏

̌𝜂
𝑖
(𝛽))
2

1 + 𝜆𝜏 ̌𝜂
𝑖
(𝛽)

.

(38)

By using Lemma 8, we obtain

𝑛

∑

𝑖=1

(𝜆
𝜏

̌𝜂
𝑖
(𝛽))
2

=

𝑛

∑

𝑖=1

𝜆
𝜏

̌𝜂
𝑖
(𝛽) + 𝑂

𝑝
(1) ,

𝜆 = [

𝑛

∑

𝑖=1

̌𝜂
𝑖
(𝛽) ̌𝜂
𝜏

𝑖
(𝛽)]

−1
𝑛

∑

𝑖=1

̌𝜂
𝑖
(𝛽) + 𝑜

𝑝
(𝑛
−1/2

) .

(39)

Applying the Taylor expansion to (20), we get that

LR (𝛽) = 2

𝑛

∑

𝑖=1

[𝜆
𝜏

̌𝜂
𝑖
(𝛽) −

1

2
(𝜆
𝜏

̌𝜂
𝑖
(𝛽))
2

] + 𝑜
𝑝
(1) . (40)
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Hence, together with (39), we have size

LR (𝛽) = [
1

√𝑛

𝑛

∑

𝑖=1

̌𝜂
𝑖
(𝛽)]

𝜏

× [
1

√𝑛

𝑛

∑

𝑖=1

̌𝜂
𝑖
(𝛽) ̌𝜂
𝜏

𝑖
(𝛽)]

−1

[
1

√𝑛

𝑛

∑

𝑖=1

̌𝜂
𝑖
(𝛽)]

+ 𝑜
𝑝
(1) .

(41)

Together with Lemma 8, this proves Theorem 1.

Proof of Theorem 2. Following the similar arguments as were
used in the proof of Theorem 2 in Yang and Li [15], we have

̌𝛽 − 𝛽 = Γ̌
−1
1

𝑛

𝑛

∑

𝑖=1

̌𝜂
𝑖
(𝛽) + 𝑜

𝑝
(𝑛
−1/2

) . (42)

By (35), we can prove Γ̌ P
󳨀→ Γ by the law of large numbers.

Together with Lemma 8 and Slutsky’s theorem, this proves
Theorem 2.
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