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Many-objective optimization problems involving a large number (more than four) of objectives have attracted considerable
attention from the evolutionary multiobjective optimization field recently. With the increasing number of objectives, many-
objective optimization problems may lead to stagnation in search process, high computational cost, increased dimensionality of
Pareto-optimal front, and difficult visualization of the objective space. In this paper, a special kind of many-objective problems
which has redundant objectives and which can be degenerated to a lower dimensional Pareto-optimal front has been investigated.
Different from the works in the previous literatures, a novel metric, interdependence coeflicient, which represents the nonlinear
relationship between pairs of objectives, is introduced in this paper. In order to remove redundant objectives, PAM clustering
algorithm is employed to identify redundant objectives by merging the less conflict objectives into the same cluster, and one of the
least conflict objectives is removed. Furthermore, the potential of the proposed algorithm is demonstrated by a set of benchmark

test problems scaled up to 20 objectives and a practical engineering design problem.

1. Introduction

Real-world engineering application problems often need to
simultaneously optimize more than four objectives, called
many-objective optimization problems [1]. Existing mul-
tiobjective evolutionary algorithms (MOEAs) have been
successfully applied to solve problems with only two or
three objectives, but they are not appropriate for problems
with even more objectives. Since conventional multiobjective
evolutionary algorithms rely primarily on Pareto ranking to
guide the search, this enforces only little selection pressure
in a many-objective setting. The more the objectives are, the
larger is the proportion of nondominated solutions in a pop-
ulation, which results in the loss of selection pressure to drive
the population toward the Pareto front [2]. Furthermore, the
number of points required to approximate the Pareto front
increases exponentially with the number of objectives, which
makes it more difficult to capture the whole Pareto front for
many-objective optimization. In addition, it is not possible to
visualize the Pareto front with more than three objectives in
a figure.

The classical MOEAs such as NSGA-II and SPEA2 do not
perform well in many-objective optimization cases. Over the
last few years, a large proportion of hot issues in MOEAs
have been related to many-objective optimization problems,
and efforts have been made to deal with the aforementioned
difficulties. The approaches for solving many-objective prob-
lems can be classified as follows. (1) The approaches based
on the modifications of Pareto-dominance relations over
the nondominated solutions (e.g., average and maximum
ranking [3], favor preference relation [4], preference order
ranking [5], and L-optimality [6]) and assigning different
ranks to nondominated solutions: if the objectives are many,
all the individuals in population are often Pareto-optimal
solutions. There will be no difference of the selection pressure
for the individuals in these algorithms. Thus, these algorithms
cannot make a diverse search in the full Pareto front and can
usually obtain a part of the Pareto front. (2) The approaches
using some techniques to improve the scalability of MOEAs,
for example, methods like MSOPS [7] and MSOPSII (8] use
an aggregation method and perform many parallel search-
es using multiple conventional target vectors in different



directions. Recently, surface evolutionary algorithm (SEA)
[9] and a hybrid NSGA-II [10] were proposed, and they seem
to be more efficient than the existing algorithms of this kind
for many objectives. (3) The approaches based on finding the
redundant objectives and reducing the number of objectives
via removing some redundant objectives [11], in fact, there
exists a kind of many-objective optimization problems with
M objectives, where a subset of the original objectives
can represent the optimization problem adequately, and the
Pareto-optimal front is less than M-dimensions [12]. The
objectives included in this subset are referred to as the
essential objectives or nonredundant objectives, while the
rest of the original objectives, which are unnecessary for
the Pareto-optimal front and can be removed from the
original set of objectives, are named redundant objectives.
The process of removing the redundant objectives from
the original objective set is called objective reduction or
dimensionality reduction [13]. A lot of research works are
carried out around the objective reduction. Brockhoft and
Zitzler [14, 15] explored an objective reduction method for
many-objective optimization problems. In their study, the
effects on problems’ characteristics by adding or omitting
objectives are investigated and a general definition of conflicts
between objectives is proposed as a theoretical foundation
for objective reduction. Moreover, two greedy algorithms are
proposed to reduce the number of objectives, one of which
finds a minimum number of objectives and the other finds
a k-sized objective subset with the minimum possible error.
Another method for objective reduction is based on the
information of the correlation between pairs of objectives.
Deb and Saxena [16, 17] proposed a technique for reducing
redundant objectives based on principal component analysis
(PCA), which takes the correlation between objectives as an
indicator of the conflict. A large set of nondominated solu-
tions are generated by NSGA-II, and the correlation matrix is
computed for analyzing the relation of the objectives. Mean-
while, the conflict between a pair of objectives is judged by the
correlation coefficient calculated by the set of nondominated
solutions in this pair of objectives. If two objectives are
negatively correlated, they are in conflict with each other.
This method aims at computing a set of most important
conflicting objectives, which can be obtained by an analysis
of the eigenvectors and eigenvalues of the correlation matrix.
Furthermore, Saxena and Deb [18] developed two new non-
linear dimensionality reduction algorithms employing the
correntropy and maximum variance unfolding, namely, C-
PCA-NSGA-II and MVU-PCA-NSGA-II, respectively. They
are suitable for the data points that live on a nonlinear
manifold or the data structure that is non-Gaussian. At the
same time, Jaimes et al. [13] developed another dimension-
ality reduction scheme based on an unsupervised feature
selection technique. In their scheme, the original objective
set is divided into homogeneous neighborhoods based on
a correlation matrix generated from a set of nondominated
solutions. The conflict degree between redundant objectives
is proportional to their distance, that is, the more conflict
between two objectives, the farther the distance between
them in the objective space. Therefore, the most compact
neighborhood is chosen as the most relevant objective set,
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and all the objectives in it except the center one are removed
as redundant objectives.

The motivation of this paper is as follows. First, note that
there are some limitations to use correlation coefficient to
represent the relation between objectives [12, 13, 15, 16]. As
well known, correlation coefficient can indicate the linear
correlation between random variables. Similarly, it can make
an analogy to the relationship between objectives. Thus, many
scholars use correlation coefficient to represent the relation
between objectives. However, nonlinear relation between
objectives cannot be expressed by correlation coefficient. In
order to overcome this shortcoming, by using the union
of mutual information and correlation coefficient, a new
metric called interdependence coeflicient is proposed in this
paper. Secondly, clustering algorithm is adopted to divide
the original objective set into a few subsets with an aim at
taking less conflict objectives into one cluster and assigning
more conflict objectives into different clusters. Afterwards,
the cluster which has the least conflict is chosen, and some
of the objectives in it are removed based on some rules
for the purpose of objective reduction. Here, partitioning
around Medoid (PAM) clustering algorithm is borrowed to
accomplish clustering. In this way, the procedure of objective
reduction can be integrated with an MOEA to find a high
quality Pareto-optimal front.

This paper is organized as follows. The theoretical foun-
dations are introduced in Section 2. Section 3 describes
proposed objective reduction algorithm using objective clus-
tering (OC-ORA). The simulation results are given and
discussed in Section 4. Finally, conclusions are made in
Section 5.

2. Related Works

2.1. Many-Objective Problem and the Concept of
Objective Reduction

Definition 1 (many-objective problem). Without loss of gen-
erality, the multiobjective optimization problems are mathe-
matically defined as follows:

minf (x) = {fi (), (), » fon (9} o)

where x = (x;,...,x,) is a solution vector of decision vari-
ables in the solution space S and f;(x) is the ith objective
function in the objective space. If the number of objectives
is more than four, the problem is named many-objective
optimization problem.

Definition 2 (Pareto domination). A vector x is said to
dominate another vector y if and only if

Vi) (< ONAEN(f0<f(0). @

Definition 3 (Pareto-optimal solution). A solution x € S is
said to be Pareto optimal with respect to solution space S if
and only if there is no y € S for which y dominates x.

Definition 4 (Pareto-optimal set). Pareto-optimal set is the
set that consists of all Pareto-optimal solutions in solution
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space S, and the image of Pareto-optimal set in objective space
is Pareto front.

Definition 5 (conflicting objectives). Let S, be a subset of
decision space S, given any x', x* € S, if filx") < fi(x?)
implies fj(xl) > fj(xz), then one calls objective f; is in
conflict with objective f; on S,. If fi(x") < fi(x?) implies
f J-(xl) < fj (x?), then one calls objective f; is in nonconflict
with objective f; on S,.

Definition 6 (an essential objective set). Given a many-
objective optimization problem with M objectives, the orig-
inal objective set is F; = {f, f5 ..., fu). The essential
objective set is the smallest set of conflicting objectives which
are sufficient to generate the Pareto front of the many-
objective optimization problem, denoted by F, (|F,| = m <
M).

Definition 7 (a redundant objective set). A redundant objec-
tive set refers to the objectives, which are not necessary to
obtain the Pareto front, given by F,.q, = F, \ F,. Notably,
an objective could be redundant if it is nonconflicting or
correlated with some other objectives.

Accordingly, the analyst solving this type of problem
has to decide whether all objectives are essential or not
and employ an objective reduction algorithm to obtain an
essential objective set F,.

2.2. The Traditional Representation of the Correlation between
a Pair of Objectives. The correlation coeflicient matrix is
used to measure the conflict between each pair of objectives
(12, 13]. This matrix is computed by using an approximation
set of the Pareto-optimal solutions generated by MOEA, for
example, NSGA-II. A negative correlation between a pair
of objectives means that when one objective increases, the
other will decrease, while a positive correlation represents the
opposite. Thus, the more positive the correlation between two
objectives is, the less conflict between them will exist, and one
of the objectives can be regarded as the redundant one, which
can be eliminated from the original objective set.

However, correlation coefficient can only indicate linear
correlation between objectives, while the nonlinear relation
cannot be expressed. In order to overcome this limitation,
a new metric is proposed by using the union of mutual
information and correlation coefficient in this paper to
measure the correlation between objectives. The introduction
of mutual information [19, 20] is described as follows.

2.3. Mutual Information

Definition 8 (self-information of random event). Suppose x is
a discrete random event and X is a discrete random variable,
then the self-information of the random event x is defined by

I(x) = ~log,P{X = x}. (3)

The function I(x) can be interpreted as the amount of
information provided by the event {X = x} or our uncertainty
about the event {X = x} [19]. According to this interpretation,
the less probable an event is, the more information we
receive when it occurs. A certain event (one that occurs with
probability 1) provides no information, whereas an unlikely
event provides a very large amount of information.

Definition 9 (self-information or entropy of random variable).
Suppose that X is a discrete random variable; that is, its range
R = {x,, x,,.. .} isfinite or countable. Let p; = P{X = x;}. The
self-information or entropy of random variable X is defined

by
H(X) = E(1(x) = ¥ plog, @

It turns out that H(X) is the expectation of I(x;) over all
possible events, and it can be thought of as a measure of the
amount of information provided by an observation of X or
our uncertainty about X.

Definition 10 (conditional entropy). For a pair of random
variables X and Y, a quantity H(X | Y) is called the
conditional entropy of X with a given Y. More precisely, if
H(X | Y = y) is the entropy of the variable X on condition
of the variable Y taking a certain value, then H(X | Y) is the
result of averaging H(X | Y = y) over all possible values that
may take as follows:

HX1Y)= Y p(3)H(X 1)

= ZP (J’j) ZP (xi | )’j) log,

i p(xi 1))

) _2 ZP (x5 %)) logop (i 1 7;)

(5)

Given the value of the other random variable Y, the
conditional entropy quantifies the remaining amount of
information needed to describe the outcome of a random
variable X. Here, H(X | Y) = 0 if and only if the value of
Y is completely determined by the value of X. Conversely,
H(X | Y) = H(X) if and only if Y and X are independent
random variables.

Definition 11 (mutual information [19]). Consider two ran-
dom variables X and Y with a joint probability mass function
p(x, y) and marginal probability mass functions p(x) and
p(»). The mutual information I(X;Y) is the relative entropy
between the joint distribution and the product distribution
p(x)p(y), which can be defined by (6). Thus, the mutual



information I(X;Y) is the reduction in the uncertainty of X
due to the knowledge of Y:

p(x)
I1(X;Y) = ,y) log ————

p(x1y)
> 1 - .
;yp (x, y)log o

=Y p(x ) logp(x)+ Y p(x, y)logp (x| y)
Xy

XY
“HX)-H(X|Y)=H®Y)-H(Y | X)

=H(X)+H(Y)-H(XY).
(6)

One can see from the above expression that the mutual
information is symmetric in X and Y. This symmetry means
that this notion of uncertainty has the property that the
information we gain about X when knowing Y is the same
as the information we gain about Y when knowing X.

2.4. PAM Clustering Algorithm. Kaufman and Rousseeuw
[21, 22] proposed a clustering algorithm partitioning around
medoids (PAM), which partitions a set of objects into k
clusters, where the objects in one cluster show a high degree of
similarity, while objects belonging to different clusters are as
dissimilar as possible. PAM clustering algorithm only needs
a distance matrix between objects and does not need the
location of the objects or other information. Motivated by the
idea of PAM, we use this clustering algorithm to divide the set
of many objectives into different clusters.

In PAM, k partitions for n objects are formed. Initially, k
medoids (central points) are selected from the set of objects
randomly. A medoid representing a cluster is located in the
center of the cluster, and each remaining object is assigned
to a cluster whose medoid is the nearest to this object. Then
one of the medoids is replaced by a nonmedoid such that
the quality of resulting cluster can be improved. The quality
is estimated by a cost function that measures the average
dissimilarity between every object in this cluster and its
corresponding medoid. We replace the distance or similarity
measure in PAM by a new metric named interdependence
coeflicient to measure the degree of correlation between pairs
of objectives.

3. Objective Clustering-Based Objective
Reduction Algorithm (OC-ORA) for
Many-Objective Optimization Problems

An objective clustering-based objective reduction algorithm
is proposed in this section. It is a progressive procedure for
objective reduction and can calculate an interdependence
coefficient matrix (a measure of the degree of correlation)
between each pair of objectives. It is used to combine with
MOEA to obtain the nondominated solution set. Given an M-
objectives optimization problem, if the number of essential
objective set is less than M, the objectives with nonconflict
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5| Generate Pareto-optimal population on objective set F,|

Calculate interdependence coefficient matrix |

|

|Objectives clustering using PAM |

)

Identify redundant objectives in most relevant
cluster and remove them from the objective set F,

|

The update objective set F; |

)

| Fy = Fyy |

Condition satisfy?

Yes

Output the nonredundant objective set F;

F1GURE 1: Flow chart of the proposed OC-ORA.

may be the redundant ones. In OC-ORA, PAM is adopted
to divide the current objective set into a number of clusters
according to the correlation with objectives. Subsequently, we
identify the most correlated pair of objectives in the most
correlated cluster in order to remove the redundant objective
for many-objective problems. In the proposed algorithm, the
MOEA and the objective reduction are executed alternately;
this process will end when no further objective reduction can
be achieved. Figure 1 shows the procedure in the proposed
OC-ORA.

3.1. Interdependence Coefficient between Pairs of Objectives.
Note that correlation coefficients can only reflect the linear
relations between objectives [13], but they cannot represent
nonlinear relations. In order to overcome this limitation, a
new metric using the mutual information and correlation
coefficient, named interdependence coeflicient, is developed
to describe the correlation between objectives. This new mea-
sure between pairs of objectives is also calculated based on
a set of nondominated solutions generated by multiobjective
evolutionary procedure via NSGA-II.

3.1.1. The Definition of Interdependence Coefficient. For a pair
of objectives f; and f;, its mutual information is defined
as I(f;; f;) by Definition 11. Note that mutual information
is nonnegative, and thus it cannot distinguish the negative
correlation. To overcome the shortcoming, the union of
mutual information and correlation coefficient is used to
measure the correlation relation between objectives. The new
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measure named interdependence coefficient, denoted by
d fufy is defined as follows:

I 5 1
dg.g, =1-sign (pfi’f) g (1) -

(f)-H(f;)

where py. 5 and I(f;; f;) represent the correlation coefficient

and mutual information between a pair of objectives f; and
fj» respectively. sign(py, fj) is a symbolic function used to
distinguish the positive and negative correlations between
a pair of objectives. In addition, the mutual information is
normalized in (7), and its value is limited in the range of
[0, 1]. Thus, interdependence coefficient d fof; € [0,2] is used
to measure the degree of correlation. In this way, we could
guarantee that the greater the value of the interdependence
coeflicient between two objectives is, the more conflict or the
less interdependent between them will exist, and vice versa.
Value 2 indicates that objectives f; and f; are completely
negatively correlated or totally conflict with each other, and
Value 0 indicates that the objectives are completely positively
correlated or without any conflict with each other:

. _ 1 pfi)fj >0
(o) {—1 Prof; < O ®

3.1.2. The Approximate Calculation of Entropy and Mutual
Information between Two Objectives. In order to facilitate
understanding, we will analyze the process of calculating the
mutual information between any pair of objectives f; and f;.
A set of nondominated solutions generated by multiobjective
evolutionary procedure NSGA-II are taken as original data
for calculating the entropy. In (6), the entropy of f;, f;, and
fifj»thatis, H(f;), H(f;), and H(f; f;), must be known before
calculating the mutual information I(f;; f;). In (4), foragiven
objective f;, we take f; as a random variable, denoted by X
and the values of f; on the nondominated solutions as the val-
ues of random variable X. Meanwhile, we use the maximum
and minimum values of f; on these nondominated solutions
to construct an interval [minimum, maximum] which can
be seen as the region of random variable X and then divide
it into many smaller subintervals. Here, we assume that all
values of X corresponding to all nondominated solutions fall
on arbitrary position of the interval with the same possibility.
Then, we count the number of nondominated solutions in
each subinterval and calculate the probability of the random
variable X falling into each subinterval. This probability can
be calculated by P(X € subinterval,) = N;/N, where N;
denotes the number of nondominated solutions in the kth
subinterval (k = 1,2,...) and N denotes the number of
nondominated solutions. In order to simplify the problem
and calculate the entropy of objectives f; in (4), we assume
that if the number of subintervals is sufficiently large, each
subinterval can be approximately seen as a point and the
variable X can be seen as a discrete random variable. Thus,
the probability of the random variable X falling into a
subinterval can be approximately regarded as the probability
of X taking the middle point x; of this subinterval, where

x, = (upper bound, — lower bound,)/2. In this way, the
entropy H(f;) can be calculated based on (4).

Similar to the calculation of the entropy of one objec-
tive, we need to divide the region in which the nondomi-
nated solutions locate into many smaller subregions in two-
dimensional space and count the number of nondominated
solutions in each subregion and calculate the probability
of the two-dimensional random variable falling into each
subregion in order to calculate H(f; ).

3.2. The Process of Objective Clustering and
Objective Reduction

3.2.1. The Procedure of Objective Clustering. After calculat-
ing the interdependence coeflicient between every pair of
objectives, we get an interdependence coefficient matrix with
order M, named D = (d;j) a0 in which each element dj;
represents the interdependence coeflicient between the ith
and the jth objectives. This matrix is used to measure the
degree of correlation between each pair of objectives.

Then, we use PAM clustering algorithm to group all
objectives into some small clusters. The reason of using
PAM clustering algorithm is that it only needs a distance
matrix between objects as the input, and it does not need
the location of the objects or other information. Here, the
interdependence coefficient matrix is taken as the distance
matrix. The larger the interdependence coefficient is, the
farther (less similar) the corresponding pair of objectives will
be.

According to the procedure of PAM, k objectives are
chosen arbitrarily from the original objective set as the initial
centers of k clusters, and each of the other (M — k) objectives
is classified into a cluster whose center is nearest to this
objective. Next, a central objective is replaced by a noncentral
objective repeatedly until the quality of the resulting cluster
cannot be improved. In this way, the objectives in one cluster
show a high degree of correlation, while objectives belonging
to different clusters reflect more conflict.

3.2.2. The Process of Objective Reduction. In the process
of objective reduction, we calculate the interdependence
coefficients matrix in each cluster and take the cluster
containing the minimum interdependence coefficient as the
most highly correlated cluster, and the pair of objectives with
the minimum interdependence coeflicient can be regarded
as the most relevant objectives in the current objective set.
Note that the more the minimum interdependence coefficient
in the most highly correlated cluster close to zero, the less
is the conflict of the corresponding pair of objectives. Here,
we use a redundant threshold 0 to remove the redundant
objective. If the minimum interdependence coefficient in the
most highly correlated cluster is less than a predetermined
threshold 6, one of the objectives in this pair will be
removed from the current objective set; otherwise, all the
objectives will be retained. In the proposed algorithm, the
multiobjective evolutionary algorithm and the strategy of
objective reduction are executed alternately where at most,
one objective is removed in an iteration.
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FIGURE 2: The strategy of the objective reduction method employed.

The process of objective reduction consists of two steps.
Figure 2 shows the main skeleton.

(1) Recalculate the interdependence coefficient matrix
in each cluster obtained by objective clustering pro-
cess. Take the tth cluster containing the minimum
interdependence coeflicient, that is, the cluster with
d;q = Mminjeq  .qMmin; jec, (dgj), as the most highly
correlated cluster, where f, and f, are the objec-
tives with the minimum interdependence coefficient
dfoq and are the candidates of redundant objective.
Figure 2(a) shows two clusters determined by PAM
with total six objectives marked from number 1 to 6,
where red triangle represents the central point of the
cluster and green circle represents noncentral point.
As it can be seen from the figure, d,; is the minimum
interdependence coefficient in the left cluster and d 5
in the right cluster. Because of d,; < d,s, the cluster
on the left is the most highly correlated cluster, and f;
or f is the candidate redundant objective.

(2) Remove one of the candidate redundant objectives.
Firstly, identify the value of the minimum interde-
pendence coeflicient d;q. If d;q > 0, the correlation
between f, and f, is weak and all of objectives should
be retained; else, check either f, or f, is the central
objective in its cluster, if either of the two is central
point, the other one can be removed as the redundant
objective. If neither of them is the central objective,
we could calculate the sum of interdependence coef-
ficients between each of f, and f, and the other
objectives in the current objectives set and take the
one f, or f, with the smaller sum as the redundant
objective, denoted by f.q, = argmin{} ;, » d ;|
fi = fp» fg}- As can be seen in Figure 2(b), objective
1 and 3 are the most highly correlated objectives in
the cluster, since the 3th objective is the center in the
left cluster, it will be retained and the objective 1 is
regarded as the redundant objectiveto be removed.

Algorithm 12 (OC-ORA).

Step 1 (Initialization). Set an iteration counter ¢ = 0; original
objective set is F, = {f}, f5,-.., far}> and the number of
predefined clusters is k.

Step 2. Initialize a random population P,, run NSGA-II
corresponding to F, for N, generations, and obtain a non-
dominated set A,.

Step 3. Calculate the interdependence coeflicient matrix
based on the nondominated set A,, and use the PAM
clustering algorithm to divide the objective set F, into k
clusters.

Step 4. According to the clusters of objective set F, obtained
in Step 3, remove one of the redundant or the most interde-
pendent objective from F, according to the above objective
reduction rules, and the remaining objective set is denoted as
F, t+1*

Step 5.1t F, = F,,,, stop; else t := t + 1, F, := F, ; return to
Step 2.

4. Simulation Results

To verify the performance of the proposed algorithm for
objective reduction, we employ test functions DTLZ2 (M)
and DTLZ5 (I, M) [23-25] in the experiments. These test
functions are described below. Furthermore, a real practical
engineering design problem, storm drainage systems, is also
used in the experiments to test the performance of the
proposed algorithm.

4.1. Test Functions and Simulation Results

4.1.1. Test Functions

DTLZ2 (M). DTLZ2 is one of the test functions from a scal-
able test problems suite DTLZ formulated by K. Deb et al.
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[23], and none of the objectives is redundant in the problem.
The motivation of choosing this test problem is to test
whether the algorithm will remove any objective. If yes, it
will indicate the algorithm is ineffective. We will show in the
following experiment that the proposed algorithm does not
remove any objective. An M-objective formulation of DTLZ2
is shown as follows.

Minimize
f1 (x) =7 (x) cos <ﬁ> -+ cos ( nx;w,z ) cos ( ﬂng’l ) ,
£ (x) =1 (x) cos (%) -+ Cos ( ﬂxg/f_z ) sin < ﬂxIZVH ) ,

Farr () =1 (%) cos(%)sin<ﬂ>,

far (x) =1 (xp) sin (%) ,
)

where

rxu) =1+ g(a) =1+ Y (x-05),
X;€Xpp (10)

0<x;<1, fori=12,...,n

The total number of decision variablesisn = M + k — 1,
where k = 10 is used in the experiments. The Pareto-optimal
solutions correspond to x}, = 0.5.

DTLZ5 (I, M). In the DTLZ test suite, DTLZ5 is modified to
construct a set of test problems where the dimensionality of
the Pareto front is less than the original number of objectives
[23-25]. In DTLZ5 (I, M) problems, I represents the actual
dimensionality of the Pareto-optimal front and M represents
the original number of objectives. The motivation of design-
ing these test problems is to evaluate objective reduction
techniques for many-objective optimization problems. The
formulation of DTLZ5 (I, M) is given as follows.

Minimize
filx)=r (xM) cos (91) v

fo (x) = 7 (xpr) cos (6;) --
J3(x) =7 (xp) cos (6,) -~

-c0s (0p1_5) cos (Opr_1)»
+c08 (O) sin (Byr1) »

-sin (0y,,) (1)

Far- (x) =7 (%) cos (6,) sin (0,)
far (x) = 7 (xp) 5in (6;)

7
where
2
r(xpy) =1+g(xy) =1+ ) (x,-0.5)
X;€X)p
Ex,- fori=1,...,1-1
2
0; = T )
———(1+2g(xp)x;) fori=1I...,M-1
4r (xpy)
subject to
-2
2 pi 2 P
Yfm 2l =1, fori=1,..,(M-I+1),
=0
(12)
where
M1 fori=1
PR -1+ =i fori=2..M-1+1) (g3
0<x;<1, fori=12,...,n

The total number of decision variables is n = M +
k — 1, where k = 10 is used here. With regards to
redundant objectives, all objectives with {f,,..., far_r41) are
positively correlated, while each objectivein { fy_1,0, - -» fas}
is conflicting with every other objective in the problem; F, =
{fio fairs25---» far) defines the true POF [18], where k €
(,2,...,M—T+1}.

4.1.2. Parameter Setting Used in OC-ORA. The crossover and
mutation parameters for OC-ORA used in the experiments
are listed in Table 1, and the experiments are done on different
numbers of objectives for each test problem. The population
size and the number of generations in different objective
test problems are shown in Table 2. In calculating the self-
information or entropy of an objective, we divide the interval
on one objective into many subintervals. The number of
subintervals is set as 20; that is, we will calculate the self-
information or entropy of a discrete variable on 20 possible
points, and the number of predefined clusters k is set from 2
to | VM |. In the process of objective reduction, the threshold
0 [26] is set as 0.6.

For performance assessment, some evaluation criterions,
such as computational complexity and the success rate in
identifying the true PF, are used here to compare the perfor-
mance of the different algorithms.

4.1.3. Complexity Comparison of OC-ORA and Other Objec-
tive Reduction Algorithms. The computational complexity of
the OC-ORA consists of three parts: executing the evo-
lutionary multiobjective algorithm, calculating the inter-
dependence coefficient matrix between pairs of objectives,
and implementing the PAM clustering algorithm to reduce
redundant objectives. The complexity of the proposed algo-
rithm is O(gnzm) + O(W*m® + km?), where g is the number
of generations for each run of NSGA-II, n is the size of
the nondominated set, m is the number of objectives in
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TABLE 1: Parameters used for OC-ORA algorithm. TABLE 2: The pop size and generations in different test problems.
Parameter Value Test problems Pop size Generations
SBX crossover probability 0.9 DTLZ2 (5) 200 300
Crossover index 20 DTLZ2 (10) 300 500
Polynomial mutation probability 0.1 DTLZ2 (20) 300 1000
Mutation index 20 DTLZ5 (2,5) 200 200
DTLZ5 (3,5) 200 200
DTLZ5 (2,10) 300 300
N tund et Lt X DTLZ5 (3,10) 300 300
the current non.re undant o Je.ctwe set,' is the nu'm er DTLZ5 (5,10) 300 300
of clusters used in PAM clustering algorithm, and v is the
; . X : DTLZ5 (2,20) 500 500
number of subintervals in the calculation of mutual informa-
DTLZ5 (5,20) 500 500

tion. Generally, k is much smaller than v?, so the complexity
of OC-ORA is simplified as O( gnzm) +O(W*m?). In contrast,
the computational complexities of the compared objective
reduction approaches are summarized in Table 3. Note that
each of the objective reduction algorithm operates on the
nondominated set and share the same complexity on obtain-
ing the nondominated set; hence, it is unnecessary to consider
the computational complexity O(gn*m) of obtaining the non-
dominated set in each objective reduction algorithm. Thus,
the complexity of OC-ORA is simplified as O(v*m?). It can
be seen from Table 3 that (1) the computational complexity of
the exact algorithm for §—MOSS is almost impractical since it
is quadratic in n and exponential in 7 and the computational
complexity of the greedy algorithm for § — MOSS is likely
to be more expensive. In summary, the complexity of & —
MOSS is the worst compared with other algorithms. (2) The
complexity of the procedure of objective reduction in one
iteration is listed in Table 3, which shows that the efficiency
of OC-ORA is better than NL-MVU-PCA based reduction
method. Besides, the population size and the number of
generations of the proposed algorithm in one iteration of
objective reduction are much less than those of the compared
algorithms. For example, the population size and the number
of generations are set to be 800 and 1000 in NL-MVU-PCA,
which are much larger than those of the proposed algorithm.
Although the iterations used by the proposed algorithm
OC-ORA may be more than that used by NL-MVU-PCA
because at each iteration, OC-ORA removes one redundant
objective, while NL-MVU-PCA removes more than one the
total number of individuals used by the proposed algorithm,
which is a relatively fair metric to measure the computational
complexity of an algorithm, is smaller than that used by
NL-MVU-PCA. Thus, the computational complexity of the
proposed algorithm is lower than that of the compared
algorithms.

4.1.4. The Example Analysis on the Process of Objective Reduc-
tion. In order to verify the efficiency of interdependence
coefficient matrix [26] in measuring the relation between
objectives, we use the interdependence coefficient matrix
to implement objective clustering and reduction on both
redundant test functions DTLZ5 (3, 5) and nonredundant test
functions DTLZ2 (5) problems. The processes of objective
clustering and redundant objective removing are presented
in Table 4.

TaBLE 3: Complexity of the compared objective reduction algo-
rithms.

Algorithm Complexity

Deb and Saxena
(1) PCA based reduction

(2) NL-MVU-PCA
based reduction

Omm?* + m®)
om’® q3), where
q is the neighborhood size
In the most constrained case,

q=0(m)
6 — MOSS
(1) Exact Algorithm Om*m2™)
(2) Greedy Algorithm O(min{n*m?, n*m?})
OC-ORA oW*m’®)

In the original objective set in DTLZ5 (3, 5) is F, =
{1,2, 3, 4, 5}. In order to estimate the correlation between each
pair of objectives, the interdependence coefficient matrix is
computed on the nondominated set generated by NSGAIL.
An interdependence coefficient matrix with order five is
presented in the left part of Table 4(a), named D = (d;;)sys-
According to the interdependence coeflicient matrix, the
objective clustering algorithm is carried out to divide the
objective set F, into different k clusters, where k is prede-
termined and set to 2. Thus, the original objective set F, is
divided into two subsets F,; = {1,2,3} and F,, = {4,5}
by using the PAM clustering algorithm. Then, the objective
reduction algorithm is performed to remove the redundant
objective, where the first objective f; is the redundant objec-
tive which should be removed from the current objective
set, and thus the resulting nonredundant objective set is
Ft' = {2,3,4,5}. Afterwards, the next round of calculating
the interdependence coefficient matrix in the new objective
set Ft' = {2,3,4,5} is started, and the matrix with order four
is shown on the right part of Table 4(a). Through the new
round of PAM clustering and objective reduction strategy,
the second objective f, satisfies the condition of redundant
objective. Finally, after two iterations, the nonredundant
objective set is Ft' ' = {3, 4, 5}, which is the true nonredundant
objective set in DTLZ5 (3, 5).
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TABLE 4: (a) Inter-dependence coefficient matrix on DTLZ5 (3, 5). (b) Interdependence coefficient matrix on DTLZ2 (5).

(a)

Interdependence coeflicient matrix D based on

Interdependence coefficient matrix D based on

F, =1{1,2,3,4,5} F/=1{2,3,4,5}
0  0.3889 0.5332 1.2715 1.3065
0  0.3526 13326 1.3231
0.3889 0  0.5031 1.2653 1.2640
03526 0  1.3855 1.3430
0.5332 05031 0  1.3029 1.2857
1.3326 13855 0  1.3272
12715 1.2653 1.3029 0  1.2245
1.3231 1.3430 13272 0
1.3065 1.2640 1.2857 1.2245 0

(b)

Interdependence coeflicient matrix D based on
F, ={1,2,3,4,5}

0 1.3222 1.3814 0.6513 1.3323

1.3222 0
1.3814 0.7199

0.6513 1.2414 1.3630 0
1.3323 0.7387 1.3573 1.2798

0

0.7199 1.2414 0.7387

1.3630 1.3573
1.2798
0

TABLE 5: The success rate in identifying the true nonredundant
objective set F, with two algorithms out of 20 runs.

Success rate with Success rate with

Test problems OC-ORA L-PCA
DTLZ2 (5) 20/20 20/20
DTLZ2 (10) 20/20 19/20
DTLZ2 (20) 19/20 14/20
DTLZ5 (2,5) 20/20 18/20
DTLZ5 (3,5) 20/20 19/20
DTLZ5 (2,10) 19/20 7/20
DTLZ5 (3,10) 20/20 2/20
DTLZ5 (5,10) 17/20 3/20
DTLZ5 (2,20) 18/20 2/20
DTLZ5 (5,20) 15/20 3/20

With nonredundant test functions DTLZ2 (5) problems,
we calculate the interdependence coefficient matrix on orig-
inal objective set F, = {1,2,3,4,5}, shown in Table 4(b).
In the process of objective clustering, the number k of
clusters is also set to 2, and the original objective set F, is
divided into two subsets F,; = {1,4} and F,, = {2,3,5}.
The minimum interdependence coefficient in two clusters is
d,, = 0.6513, which represents that f; and f, are the most
highly correlated objectives in F,. According to the rule of
identifying redundant objectives, the value 0.6513 is larger
than threshold 0, so neither of them will be removed.

4.1.5. Comparison of Success Rate in Identifying the True
Nonredundant Objective Set F,. To test the performance of
the proposed algorithm for objective reduction, two different
kinds of the test problems with varying number of objectives
are studied, including 10 test examples. For each test example,

experiments are performed for 20 independent runs. Table 5
summarizes the results of the success rate in identifying the
true nonredundant objective set F, with objective number
increasing from 5 and 10 to 20. Meanwhile, we also compare
the success rates of OC-ORA and linear objective reduction
approach L-PCA [18]. The experiment results are shown as
follows.

For DTLZ2 (M), it can be seen from Table 5 that OC-
ORA can identify the true Pareto front accurately with
success rate of 100% for 5 and 10 objectives, respectively, and
95% for 20 objectives. The success rates are much higher than
those obtained by L-PCA. In nonredundant problems, the
threshold 0 avoids removing any nonredundant objective and
tries to keep all of objectives.

For all instances of DTLZ5 (I, M), it also can be seen
from Table 5 that the success rates obtained by OC-ORA are
obviously much higher than those obtained by L-PCA. The
superiority of OC-ORA is that it could express more com-
prehensive correlation between objectives, especially for non-
linear relationships of objectives. The experimental results
indicate that OC-ORA could find the true nonredundant
objective set efficiently.

The limitation of the proposed algorithm is that the
number of clusters k must be smaller than the number of
nonredundant objective in test problem. When the number of
clusters is more than the number of nonredundant objectives,
the objective reduction strategy is not applicable.

4.2. An Engineering Problem: Storm Drainage Systems. This is
an optimal planning problem for storm drainage systems in
urban areas, which is proposed by Musselman and Talavage
[27]. The problem consists of 5 objectives and 7 constraints.
The analytical model of the problem is given in Table 6. In
order to identify the redundant objectives of the problem,
the proposed algorithm is carried out. The population size
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TABLE 6: Analytical model of the storm drainage problem.
Name Function expression

Minimize 5 objectives

(1) Drainage network cost

(2) Storage facility cost

(3) Treatment facility cost

(4) Expected flood damage cost

(5) Expected economic loss cost due to flood

f1(x) = 106780.37(x, + x5) + 61704.67

f,(x) = 3000x,

£,(x) = (305700/(0.06 * 2289) A 0.65) * 2289x,
fa(x) =250 = 2289 % exp(—39.75x, + 9.9x; + 2.74)
fs(x) =25 % (1.39/(x,x,) + 4930x, — 80)

Subject to 7 constraints

(1) Average no. of floods/year

(2) Probability of exceeding a flood depth of 0.01 basin inches
(3) Average no. of pounds/year of suspended solids

(4) Average no. of pounds/year of settleable solids

(5) Average no. of pounds/year of BOD

(6) Average no. of pounds/year of N

(7) Average no. of pounds/year of PO,

g1 (x) = 0.00139/x, x, + 4.94x, — 0.08 < 1

g,(x) = 0.0000306/x, x, + 0.1082x; — 0.00986 < 0.10
g5(x) = 12.307/x, x, + 49408.24x; — 4051.02 < 50000
g4(x) = 2.098/x, x, + 8046.33x; — 696.71 < 16000
gs(x) = 2.138/x, x, + 7883.39x; — 705.04 < 10000
ge(x) = 0.417/x,x, + 1721.36x; — 136.54 < 2000
g5(x) = 0.164/x, x, + 631.13x; — 54.48 < 550

where 0.01 < x; <0.45,0.01 < x,,x; <0.10

is set to 200, and the generation is set to 200. In the
original objective set F, = {1,2, 3,4, 5}, the interdependence
coeflicient matrix based on the original objective set is shown
in Table 7. After calculating the interdependence coeflicient
matrix, we will execute objective clustering process to divide
the original objective set F, into two subsets F,; = {1,2,3}
and F,, = {4, 5}. Comparing the minimum interdependence
coefficient in each cluster, the cluster F,, is identified as
the most highly correlated cluster, and the interdependence
coefficient between f, and f; is the minimum. According to
the objective reduction rule, f; is considered as the redundant
objective, and thus the corresponding nonredundant objec-
tive set is Ft' = {2, 3,4, 5}. Thus, Ft' can be used to reconstruct
the Pareto front.

To validate this result, parallel coordinate plot is bor-
rowed here to visualize the nondominated solution set with
more objectives in a figure. It involves plotting the normal-
ized objective values of the nondominated solutions onto
parallel axes, one per normalized objective. The function
values in every objective for each nondominated solution
are connected by a line segment. The parallel coordinate
plots corresponding to the original set of objectives F, =
{1,2,3,4,5} and the reduced set FT' = {2,3,4,5} are shown
in Figures 3(a) and 3(b), respectively. Figure 3(a) shows the
parallel coordinate plot corresponding to the original set of
objectives, and Figure 3(b) refers to the reduced set. It can be
seen from Figure 3 that parallel coordinate plot correspond-
ing to the reduced set of objectives closely matches with that
obtained using the original set of objectives. This illustrates
that the omitting objective f; does not affect non-nominated
set, and the reduced set of objectives FT' = {2,3,4,5}isenough
to obtain the Pareto front for this problem.

5. Conclusion and Future Work

In this paper, a novel method has been proposed to iden-
tify the true nonredundant objective set in many-objective

TaBLE 7: The interdependence coefficient matrix based on original
objective set of storm drainage problem.

Interdependence coeflicient matrix based on F, = {1,2,3,4, 5}

0 1.3093 0.4905 1.4496 1.2137
1.3093 0 0.6419 1.2821 1.2714
0.4905 0.6419 0 1.5131 1.2792
1.4494 1.2821 1.5131 0 0.6340
1.2137 1.2714 1.2792 0.6340 0

problems. In order to overcome the defects of tradition-al
methods in quantitative representation of the relation be-
tween a pair of objectives, we adopt a new metric, interde-
pendence coefficient, by using the union of mutual informa-
tion and correlation coefficient to measure the correlation
between objectives. In addition, a new objective reduction
strategy is investigated in accordance with the results of PAM
clustering algorithm.

The efficiency of the proposed approach is demonstrated
by experiments on two kinds of benchmark test problems
including 10 test instances and a real engineering practice
problem, where the number of objectives tested is from 5
to 20. Moreover, a comparative analysis of computational
complexity and success rate between the proposed algorithm
and the correlation matrix-based algorithms has been made.
All the results show that the proposed algorithm performs
well in finding the true nonredundant objective set and
outperforms the compared algorithm.

A number of future works can be further conducted
from current work. First, the strategy of removing redundant
objective can be further enhanced by designing a specific
method, which should avoid the limitation of the provision
of the cluster number k. Also, it is important to realize that
for many-objective problems, different parts of the Pareto
front may give different non-redundant objective set. In such
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FIGURE 3: Parallel coordinate plots for storm drainage systems using various combinations of objectives. (a) The original set of objectives
F. =1{1,2,3,4,5} are considered. (b) The reduced set FT' = {2, 3,4, 5} is considered.

a case, the objective space needs to divide many subregions
to discuss.
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