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By applying the fixed point theorem, we derive some new criteria for the existence of multiple positive periodic solutions for
two kinds of 𝑛-dimension periodic impulsive functional differential equations with multiple delays and two parameters: 𝑥󸀠

𝑖
(𝑡) =

𝑎
𝑖
(𝑡)𝑥
𝑖
(𝑡) − 𝜆𝑏

𝑖
(𝑡)𝑓
𝑖
(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏

1
(𝑡)), . . . , 𝑥(𝑡 − 𝜏

𝑛
(𝑡)))), a.e., 𝑡 > 0, 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
, 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
) = 𝜇𝑐

𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
), 𝑖 = 1, 2, . . . , 𝑛,

𝑘 ∈ 𝑍
+
, and 𝑥󸀠

𝑖
(𝑡) = −𝑎

𝑖
(𝑡)𝑥
𝑖
(𝑡) + 𝜆𝑏

𝑖
(𝑡)𝑓
𝑖
(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏

1
(𝑡)), . . . , 𝑥(𝑡 − 𝜏

𝑛
(𝑡)))), a.e., 𝑡 > 0, 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
, 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
) = 𝜇𝑐

𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
),

𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ 𝑍
+
. As an application, we study some special cases of the previous systems, which have been studied extensively

in the literature.

1. Introduction

Let 𝑅 = (−∞, +∞), 𝑅
+
= [0, +∞), 𝑅

−
= (−∞, 0], 𝑅𝑛 =

{(𝑥
1
, . . . , 𝑥

𝑛
)
𝑇
: 𝑥
𝑖
≥ 0, 1 ≤ 𝑖 ≤ 𝑛}, 𝐽 ⊂ 𝑅, and

𝑍
+
= {1, 2, 3, . . .}, respectively. Denote by 𝑃𝐶(𝐽, 𝑅𝑛) the set of

operators 𝜑 : 𝐽 → 𝑅
𝑛 which are continuous for 𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡

𝑘

and have discontinuities of the first kind at the points 𝑡
𝑘
∈

𝐽 (𝑘 ∈ 𝑍
+
) but are continuous from the left at these points.

For each 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈ 𝑅
𝑛, the norm of 𝑥 is defined

as |𝑥| = ∑𝑛
𝑖=1
|𝑥
𝑖
|. Let 𝐵𝐶(𝑅, 𝑅𝑛

+
) denote the Banach space of

bounded continuous functions 𝜓 : 𝑅 → 𝑅
𝑛

+
with the norm

‖𝜓‖ = sup
𝜉∈𝑅
∑
𝑛

𝑖=1
|𝜓
𝑖
(𝜉)|, where 𝜓 = (𝜓

1
, 𝜓
2
, . . . , 𝜓

𝑛
)
𝑇. The

matrix 𝐴 > 𝐵 (𝐴 ≤ 𝐵)means that each pair of corresponding
elements of 𝐴 and 𝐵 satisfies the inequality “ > ” (“ ≤ ”). In
particular, 𝐴 is called a positive matrix if 𝐴 > 0.

Impulsive differential equations are suitable for themath-
ematical simulation of evolutionary process whose states are
subject to sudden changes at certain moments. Equations
of this kind are found in almost every domain of applied
sciences, and numerous examples are given in [1–4]. In recent
years, the existence theory of positive periodic solutions of
delay differential equations with impulsive effects or without

impulsive effects has been an object of active research, and
we refer the reader to [5–17]. Recently, in [5], Jiang and
Wei studied the following nonimpulsive delay differential
equation:

𝑥
󸀠

(𝑡)

= −𝑎 (𝑡) 𝑥 (𝑡)

+ 𝑓 (𝑡, 𝑥 (𝑡 − 𝜏
0
(𝑡)) , 𝑥 (𝑡 − 𝜏

1
(𝑡))) , . . . , 𝑥 (𝑡 − 𝜏

𝑛
(𝑡)) .

(1)

They obtained sufficient conditions for the existence of the
positive periodic solutions of (1). Motivated by [5], in [6],
Zhao et al. investigated the following impulsive delay differ-
ential equation:

𝑥
󸀠

(𝑡)

= −𝑎 (𝑡) 𝑥 (𝑡)

+ 𝑓 (𝑡, 𝑥 (𝑡 − 𝜏
0
(𝑡)) , 𝑥 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑥 (𝑡 − 𝜏

𝑛
(𝑡)))

a.e., 𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
;

𝑥 (𝑡
+

𝑘
) − 𝑥 (𝑡

𝑘
) = 𝑏
𝑘
𝑥 (𝑡
𝑘
) , 𝑘 = 1, 2, . . . .

(2)
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They derived some sufficient conditions for the existence of
the positive periodic solutions of (2). In [7], Huo et al. con-
sidered the following impulsive delay differential equation:

𝑥
󸀠

(𝑡) + 𝛼 (𝑡) 𝑥 (𝑡) = 𝑝 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡 − 𝜎 (𝑡)))

a.e., 𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
;

𝑥 (𝑡
+

𝑘
) − 𝑥 (𝑡

𝑘
) = 𝑏
𝑘
𝑥 (𝑡
𝑘
) , 𝑘 = 1, 2, . . . .

(3)

They got sufficient conditions for the existence and attractiv-
ity of the positive periodic solutions of (3). Motivated by [5–
7], in [8], Zhang et al. studied the following impulsive delay
differential equation:

𝑥
󸀠

(𝑡)

= −𝑎 (𝑡) 𝑥 (𝑡) + 𝑝 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡 − 𝜏
0
(𝑡)) , 𝑥 (𝑡 − 𝜏

1
(𝑡)) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡))) a.e., 𝑡 > 0, 𝑡 ̸= 𝑡

𝑘
;

𝑥 (𝑡
+

𝑘
) − 𝑥 (𝑡

𝑘
) = 𝑏
𝑘
𝑥 (𝑡
𝑘
) , 𝑘 = 1, 2, . . . .

(4)

They obtained some sufficient conditions for the existence
of the positive periodic solutions of (4). However, to this
day, only a little work has been done on the existence of
positive periodic solutions to the high-dimension impulsive
differential equations based on the theory in cones.Motivated
by this, in this paper, we mainly consider the following two
classes of impulsive functional differential equationswith two
parameters:

𝑥
󸀠

(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) − 𝜆𝐵 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡)) a.e. , 𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝜇𝐶

𝑘
𝑥 (𝑡
𝑘
) , 𝑘 ∈ 𝑍

+
,

(5)

𝑥
󸀠

(𝑡) = −𝐴 (𝑡) 𝑥 (𝑡) + 𝜆𝐵 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡)) a.e., 𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝜇𝐶

𝑘
𝑥 (𝑡
𝑘
) , 𝑘 ∈ 𝑍

+
,

(6)

with initial conditions:

𝑥
𝑖
(𝜃) = 𝜙

𝑖
(𝜃) , 𝜃 ∈ [−𝜏, 0] ,

𝜙
𝑖
(0) > 0, 𝜙

𝑖
∈ 𝐶 ([−𝜏, 0) , [0, +∞)) ,

𝑖 = 1, 2 . . . , 𝑛,

(7)

where

𝑢 (𝑡) = (𝑥 (𝑡 − 𝜏
1
(𝑡)) , . . . , 𝑥 (𝑡 − 𝜏

𝑛
(𝑡)))

= (𝑢
1
(𝑡) , . . . , 𝑢

𝑛
(𝑡)) ,

𝜏 = max
1≤𝑖≤𝑛

sup 𝜏
𝑖
(𝑡) ,

(8)

and 𝐴(𝑡) = diag[𝑎
1
(𝑡), 𝑎
2
(𝑡), . . . , 𝑎

𝑛
(𝑡)], 𝐵(𝑡) = diag[𝑏

1
(𝑡),

𝑏
2
(𝑡), . . . , 𝑏

𝑛
(𝑡)], 𝑎

𝑖
, 𝑏
𝑖
∈ 𝐶(𝑅, 𝑅

+
) (𝑖 = 1, 2 . . . , 𝑛) are 𝜔-

periodic; that is, 𝑎
𝑖
(𝑡 + 𝜔) = 𝑎

𝑖
(𝑡), 𝑏
𝑖
(𝑡 + 𝜔) = 𝑏

𝑖
(𝑡),

𝑓 = (𝑓
1
, . . . , 𝑓

𝑛
)
𝑇
∈ 𝑅×𝐵𝐶(𝑅, 𝑅

𝑛

+
)with 𝑓

𝑖
(𝑡 +𝜔, 𝑢

1
, . . . , 𝑢

𝑛
) =

𝑓
𝑖
(𝑡, 𝑢
1
, . . . , 𝑢

𝑛
), Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥

𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
𝑘
) (𝑖 = 1, 2, . . . , 𝑛)

(here 𝑥
𝑖
(𝑡
+

𝑘
) representing the right limit of 𝑥

𝑖
(𝑡) at the point

𝑡
𝑘
). 𝐶
𝑘
= (𝑐
1𝑘
, 𝑐
2𝑘
, . . . , 𝑐

𝑛𝑘
) ∈ 𝐶(𝑅

𝑛

+
, 𝑅
𝑛

−
); that is, 𝑥

𝑖
(𝑡) changes

decreasingly suddenly at times 𝑡
𝑘
, and 𝜔 > 0 is a constant.

We assume that there exists an integer 𝑞 > 0 such that 𝑡
𝑘+𝑞

=

𝑡
𝑘
+ 𝜔, 𝑐

𝑖(𝑘+𝑞)
= 𝑐
𝑖𝑘
(𝑖 = 1, 2, . . . , 𝑛), where 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ <

𝑡
𝑞
< 𝜔.
Throughout the paper, we make the following assump-

tions:

(𝑃
1
) 𝑎
𝑖
, 𝑏
𝑖
, 𝜏
𝑖
: 𝑅
+
→ 𝑅
+
are locally summable 𝜔-periodic

functions; that is, 𝑎
𝑖
(𝑡 + 𝜔) = 𝑎

𝑖
(𝑡), 𝑏
𝑖
(𝑡 + 𝜔) = 𝑏

𝑖
(𝑡),

and 𝜏
𝑖
(𝑡 + 𝜔) = 𝜏

𝑖
(𝑡) for all 𝑡 ≥ 0, 𝜆 > 0, and 𝜇 > 0 are

two parameters;

(𝑃
2
) 𝑓 = (𝑓

1
, . . . , 𝑓

𝑛
)
𝑇
∈ 𝑅 × 𝐵𝐶(𝑅, 𝑅

𝑛

+
) and for all

(𝑡, 𝑢
1
, . . . , 𝑢

𝑛
) ∈ 𝑅 × 𝐵𝐶(𝑅, 𝑅

𝑛
), 𝑓
𝑖
(𝑡 + 𝜔, 𝑢

1
, . . . , 𝑢

𝑛
) =

𝑓
𝑖
(𝑡, 𝑢
1
, . . . , 𝑢

𝑛
) such that 𝑓

𝑖
(𝑡, 𝑢
1
, . . . , 𝑢

𝑛
) ̸≡ 0, 𝑖 =

1, 2, . . . , 𝑛;
(𝑃
3
) {𝑡
𝑘
}, 𝑘 ∈ 𝑍

+
satisfies 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ <

𝑡
𝑘
< ⋅ ⋅ ⋅ and lim

𝑘→+∞
𝑡
𝑘
= +∞. 𝐶

𝑘
: 𝑅
𝑛

+
→

𝑅(𝑘 ∈ 𝑍
+
) satisfy Caratheodory conditions and are

𝜔-periodic functions in 𝑡. Moreover, there exists a
positive constant 𝑞 such that 𝑡

𝑘+𝑞
= 𝑡
𝑘
+ 𝜔, 𝑘 ∈ 𝑍

+
.

Without loss of generality, we can assume that 𝑡
𝑘
̸= 0

and [0, 𝜔] ∩ {𝑡
𝑘
, 𝑘 ∈ 𝑍

+
} = {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑞
};

(𝑃
4
) {𝑐
𝑖𝑘
} is a real sequence such that 𝜇𝑐

𝑖𝑘
> −1, 𝑖 = 1, 2,

. . . , 𝑛, 𝑘 ∈ 𝑍
+
and 𝑐
𝑖
(𝑡) := ∏

0<𝑡𝑘<𝑡
(1 + 𝜇𝑐

𝑖𝑘
) satisfies

𝑐
𝑖
(𝑡 + 𝜔) = 𝑐

𝑖
(𝑡) for all 𝑡 ≥ 0.

In addition, the parameters in this paper are assumed to
be not identically equal to zero.

To conclude this section, we summarize in the following
a few definitions and lemmas that will be needed in our
arguments.

Definition 1 (see [1]). A function 𝑥
𝑖
: 𝑅 → (0, +∞) is said to

be a positive solution of (5) and (6) if the following conditions
are satisfied:

(a) 𝑥
𝑖
(𝑡) is absolutely continuous on each (𝑡

𝑘
, 𝑡
𝑘+1
);

(b) for each 𝑘 ∈ 𝑍
+
, 𝑥
𝑖
(𝑡
+

𝑘
) and 𝑥

𝑖
(𝑡
−

𝑘
) exist, and 𝑥

𝑖
(𝑡
−

𝑘
) =

𝑥
𝑖
(𝑡
𝑘
);

(c) 𝑥
𝑖
(𝑡) satisfies the first equation of (5) and (6) for

almost everywhere (for short a.e.) in [0,∞] \ {𝑡
𝑘
} and

satisfies 𝑥
𝑖
(𝑡
+

𝑘
) = (1 + 𝑐

𝑖𝑘
)𝑥
𝑖
(𝑡
𝑘
) for 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
=

{1, 2, . . .}.

Under the previous hypotheses (𝑃
1
)–(𝑃
4
), we consider the

neutral nonimpulsive system:

𝑑𝑦

𝑑𝑡

= 𝐴 (𝑡) 𝑦 (𝑡) − 𝜆𝐵 (𝑡) 𝑓 (𝑡, V (𝑡)) , a.e., 𝑡 ≥ 0,
(9)

𝑑𝑦

𝑑𝑡

= −𝐴 (𝑡) 𝑦 (𝑡) + 𝜆𝐵 (𝑡) 𝑓 (𝑡, V (𝑡)) , a.e., 𝑡 ≥ 0,
(10)
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with initial conditions:

𝑦
𝑖
(𝜉) = 𝜑

𝑖
(𝜉) , 𝜉 ∈ [−𝜏, 0] ,

𝜑
𝑖
(0) > 0, 𝜑

𝑖
∈ 𝐶 ([−𝜏, 0) , 𝑅

+
) ,

𝑖 = 1, 2, 3, . . . , 𝑛,

(11)

where

V (𝑡) = (V
1
(𝑡) , . . . , V

𝑛
(𝑡))

= (𝑦 (𝑡 − 𝜏
1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡))) ,

𝑦 (𝑡 − 𝜏
𝑖
(𝑡)) = 𝑐

𝑖
(𝑡) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) ,

𝐵 (𝑡) = diag [𝐵
1
(𝑡) , 𝐵
2
(𝑡) , . . . , 𝐵

𝑛
(𝑡)] ,

𝐵
𝑖
(𝑡) =

𝑏
𝑖
(𝑡)

𝑐
𝑖
(𝑡)

,

𝑖 = 1, 2, . . . , 𝑛.

(12)

By a solution 𝑦(𝑡) = (𝑦
1
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇 of (9) and (10),

it means an absolutely continuous function 𝑦(𝑡) = (𝑦
1
(𝑡),

. . . , 𝑦
𝑛
(𝑡))
𝑇 defined on [−𝜏, 0] that satisfies (9) and (10), that

is, for 𝑡 ≥ 0, and 𝑦
𝑖
(𝜉) = 𝜑

𝑖
(𝜉), 𝑦󸀠
𝑖
(𝜉) = 𝜑

󸀠

𝑖
(𝜉) on [−𝜏, 0].

The following lemmas will be used in the proofs of our
results. The proof of the first lemma is similar to that of
Theorem 1 in [18].

Lemma 2. Suppose that (𝑃
1
)–(𝑃
4
) hold. Then

(i) if 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are solutions of (9) and (10)

on [−𝜏, +∞), then 𝑥
𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
(1 + 𝜇𝑐

𝑖𝑘
)𝑦
𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) are solutions of (5) and (6) on [−𝜏, +∞);

(ii) if 𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are solutions of (5) and (6) on

[−𝜏, +∞), then 𝑦
𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
(1 + 𝜇𝑐

𝑖𝑘
)
−1
𝑥
𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) are solutions of (9) and (10) on [−𝜏, +∞).

Proof. (i) It is easy to see that 𝑥
𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
(1 +

𝜇𝑐
𝑖𝑘
)𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are absolutely continuous on every

interval (𝑡
𝑘
, 𝑡
𝑘+1
], 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . .,

𝑥
󸀠

𝑖
(𝑡) − 𝑥

𝑖
(𝑡) 𝑎
𝑖
(𝑡) − 𝜆𝑏

𝑖
(𝑡) 𝑓 (𝑡, 𝑢 (𝑡))

= ∏

0<𝑡𝑘<𝑡

(1 + 𝜇𝑐
𝑖𝑘
) 𝑦
󸀠

𝑖
(𝑡)

− ∏

0<𝑡𝑘<𝑡

(1 + 𝜇𝑐
𝑖𝑘
) 𝑦
𝑖
(𝑡) 𝑎
𝑖
(𝑡)

− 𝜆𝑏
𝑖
(𝑡) 𝑓(𝑡, ∏

0<𝑡𝑘<𝑡

(1 + 𝜇𝑐
1𝑘
) 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . ,

∏

0<𝑡𝑘<𝑡

(1 + 𝜇𝑐
𝑛𝑘
) 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

= ∏

0<𝑡𝑘<𝑡

(1 + 𝜇𝑐
𝑖𝑘
)

× {𝑦
󸀠

𝑖
(𝑡) − 𝑦

𝑖
(𝑡) 𝑎
𝑖
(𝑡)

− 𝜆 ∏

0<𝑡𝑘<𝑡

(1 + 𝜇𝑐
𝑖𝑘
)
−1

× 𝑏
𝑖
(𝑡) 𝑓

× (𝑡, ∏

0<𝑡𝑘<𝑡

(1 + 𝜇𝑐
1𝑘
)

× 𝑦 (𝑡 − 𝜏
1
(𝑡)) , . . . ,

∏

0<𝑡𝑘<𝑡

(1 + 𝜇𝑐
𝑛𝑘
)

× 𝑦 (𝑡 − 𝜏
𝑛
(𝑡)))}

= ∏

0<𝑡𝑘<𝑡

(1 + 𝜇𝑐
𝑖𝑘
) {𝑦
󸀠

𝑖
(𝑡) − 𝑦

𝑖
(𝑡) 𝑎
𝑖
(𝑡) + 𝜆𝐵

𝑖
(𝑡)𝑓 (𝑡, V (𝑡))}

= 0.

(13)

On the other hand, for any 𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . .,

𝑥
𝑖
(𝑡
+

𝑘
) = lim
𝑡→ 𝑡
+

𝑘

∏

0<𝑡𝑗<𝑡

(1 + 𝜇𝑐
𝑖𝑘
) 𝑦
𝑖
(𝑡) = ∏

0<𝑡𝑗≤𝑡𝑘

(1 + 𝜇𝑐
𝑖𝑘
) 𝑦
𝑖
(𝑡
𝑘
) ,

𝑥
𝑖
(𝑡
𝑘
) = ∏

0<𝑡𝑗<𝑡𝑘

(1 + 𝜇𝑐
𝑖𝑘
) 𝑦
𝑖
(𝑡
𝑘
) , 𝑖 = 1, 2, . . . , 𝑛,

(14)

and thus

𝑥
𝑖
(𝑡
+

𝑘
) = (1 + 𝜇𝑐

𝑖𝑘
) 𝑥
𝑖
(𝑡
𝑘
) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . .

(15)

It follows from (13)–(15) that 𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are

solutions of (5). Similarly, if 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are

solutions of (10), we can prove that 𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are

solutions of (6).
(ii) Since 𝑥

𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
(1 + 𝜇𝑐

𝑖𝑘
)𝑦
𝑖
(𝑡) is absolutely

continuous on every interval (𝑡
𝑘
, 𝑡
𝑘+1
], 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . ., and

in view of (14), it follows that, for any 𝑘 = 1, 2, . . .,

𝑦
𝑖
(𝑡
+

𝑘
) = ∏

0<𝑡𝑗≤𝑡𝑘

(1 + 𝜇𝑐
𝑖𝑘
)
−1

𝑥
𝑖
(𝑡
+

𝑘
)

= ∏

0<𝑡𝑗<𝑡𝑘

(1 + 𝜇𝑐
𝑖𝑘
)
−1

𝑥
𝑖
(𝑡
𝑘
) = 𝑦
𝑖
(𝑡
𝑘
) ,
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𝑦
𝑖
(𝑡
−

𝑘
) = ∏

0<𝑡𝑗<𝑡𝑘

(1 + 𝜇𝑐
𝑖𝑘
)
−1

𝑥
𝑖
(𝑡
−

𝑘
)

= ∏

0<𝑡𝑗≤𝑡
−

𝑘

(1 + 𝜇𝑐
𝑖𝑘
)
−1

𝑥
𝑖
(𝑡
−

𝑘
) = 𝑦
𝑖
(𝑡
𝑘
) ,

(16)

which implies that 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are continuous on

[−𝜏, +∞). It is easy to prove that 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are

absolutely continuous on [−𝜏, +∞). Similar to the proof of
(i), we can check that 𝑦

𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
(1 + 𝜇𝑐

𝑖𝑘
)
−1
𝑥
𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) are solutions of (9) on [−𝜏, +∞). Similarly, if
𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are solutions of (6), we can prove that

𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are solutions of (10). The proof of

Lemma 2 is completed.

In the following section, we only discuss the existence of
a periodic solution for (9) and (10).

Definition 3 (see [19]). Let 𝑋 be a real Banach space, and let
𝐸 be a closed, nonempty subset of𝑋. 𝐸 is said to be a cone if

(1) 𝛼𝑥 + 𝛽𝑦 ∈ 𝐸 for all 𝑥, 𝑦 ∈ 𝐸, and 𝛼, 𝛽 > 0, and

(2) 𝑥, −𝑥 ∈ 𝐸 imply 𝑥 = 0.

Lemma 4 (Krasnoselskii fixed point theorem see [20–22]).
Let 𝐸 be a cone in a real Banach space𝑋. Assume thatΩ

1
and

Ω
2
are open subsets of 𝑋 with 0 ∈ Ω

1
⊂ Ω
1
⊂ Ω
2
, where

Ω
𝑖
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟

𝑖
} (𝑖 = 1, 2). Let 𝑇 : 𝐸 ∩ (Ω

2
\ Ω
1
) → 𝐸

be a completely continuous operator and satisfy either

(1) ‖𝑇𝑥‖ ≥ ‖𝑥‖, for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
1
and ‖𝑇𝑥‖ ≤ ‖𝑥‖, for

any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
2

or

(3) ‖𝑇𝑥‖ ≤ ‖𝑥‖, for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
1
and ‖𝑇𝑥‖ ≥ ‖𝑥‖, for

any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
2
.

Then 𝑇 has a fixed points in 𝐸 ∩ (Ω
2
\ Ω
1
).

The paper is organized as follows. In next section, firstly,
we give some definitions and lemmas. Secondly, we derive
some existence theorems for one or two positive periodic
solutions of system (5) by using Krasnoselskii fixed point
theorem under some conditions. In Section 3, we also get
some existence theorems for one or two positive periodic
solutions of system (6) that are also established by applying
Krasnoselskii fixed point theorem under some conditions.
Finally, as an application, we give two examples to show our
results.

2. Existence of Periodic
Solutions of System (5)

We establish the existence of positive periodic solutions of
(5) by applying the Krasnoselskii fixed point theorem on

cones. We will first make some preparations and list a few
preliminary results. For (𝑡, 𝑠) ∈ 𝑅2, 1 ≤ 𝑖 ≤ 𝑛, we define

𝐺
𝑖
(𝑡, 𝑠) =

𝑒
−∫
𝑠

𝑡
𝑎𝑖(𝜉)
𝑑𝜉

1 − 𝑒
−∫
𝜔

0
𝑎𝑖(𝜉)
𝑑𝜉

=

𝑒
∫
𝑡+𝜔

𝑠
𝑎𝑖(𝜉)
𝑑𝜉

𝑒
∫
𝜔

0
𝑎𝑖(𝜉)
𝑑𝜉 − 1

,

𝐺 (𝑡, 𝑠) = diag [𝐺
1
(𝑡, 𝑠) , 𝐺

2
(𝑡, 𝑠) , . . . , 𝐺

𝑛
(𝑡, 𝑠)] .

(17)

It is clear that 𝐺
𝑖
(𝑡 + 𝜔, 𝑠 + 𝜔) = 𝐺

𝑖
(𝑡, 𝑠), 𝜕𝐺

𝑖
(𝑡, 𝑠)/𝜕𝑡 =

𝑎
𝑖
(𝑡)𝐺
𝑖
(𝑡, 𝑠), 𝐺

𝑖
(𝑡, 𝑡) − 𝐺

𝑖
(𝑡, 𝑡 + 𝜔) = 1. In view of (𝑃

1
), we also

define for 1 ≤ 𝑖 ≤ 𝑛,

𝛼
𝑖
:= min
0≤𝑡≤𝑠≤𝜔

󵄨
󵄨
󵄨
󵄨
𝐺
𝑖
(𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
=

1

𝑒
∫
𝜔

0
𝑎𝑖(𝜉)𝑑𝜉

− 1

,

𝛽
𝑖
:= max
0≤𝑡≤𝑠≤𝜔

󵄨
󵄨
󵄨
󵄨
𝐺
𝑖
(𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
=

𝑒
∫
𝜔

0
𝑎𝑖(𝜉)𝑑𝜉

𝑒
∫
𝜔

0
𝑎𝑖(𝜉)𝑑𝜉

− 1

,

𝛼 = min
1≤𝑖≤𝑛

𝛼
𝑖
, 𝛽 = max

1≤𝑖≤𝑛

𝛽
𝑖
, 𝜎 =

𝛼

𝛽

∈ (0, 1) .

(18)

Let 𝑋 = {𝑦 = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇
∈ 𝐶(𝑅, 𝑅

𝑛
) | 𝑦(𝑡 +

𝜔) = 𝑦(𝑡)} with the norm ‖𝑦‖ = ∑
𝑛

𝑖=1
|𝑦
𝑖
|
0
, where |𝑦

𝑖
|
0
=

sup
𝑡∈[0,𝜔]

|𝑦
𝑖
(𝑡)|, and it is easy to verify that (𝑋, ‖⋅‖) is a Banach

space. Define 𝐸 to be a cone in𝑋 by

𝐸 = {𝑦 = (𝑦
1
(𝑡) , 𝑦
2
(𝑡) , . . . , 𝑦

𝑛
(𝑡))
𝑇

∈ 𝑋 : 𝑦
𝑖
(𝑡) ≥ 𝜎

󵄨
󵄨
󵄨
󵄨
𝑦
𝑖

󵄨
󵄨
󵄨
󵄨0
, 𝑡 ∈ [0, 𝜔]} ,

(19)

and we easily verify that 𝐸 is a cone in𝑋.
We define an operator 𝜓 : 𝑋 → 𝑋 as follows:

(𝜓𝑦) (𝑡) = ((𝜓
1
𝑦) (𝑡) , (𝜓

2
𝑦) (𝑡) , . . . , (𝜓

𝑛
𝑦) (𝑡))

𝑇

, (20)

where

(𝜓
𝑖
𝑦) (𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠)

× 𝑓
𝑖
(𝑠, 𝑦 (𝑠 − 𝜏

1
(𝑠)) , . . . , 𝑦 (𝑠 − 𝜏

𝑛
(𝑠))) 𝑑𝑠.

(21)

For convenience in the following discussion, we introduce the
following notations:

𝑏
𝑀
= max
1≤𝑖≤𝑛

{ sup
𝑡∈[0,𝜔]

𝑏
𝑖
(𝑡)} ,

𝑏
𝐿
= min
1≤𝑖≤𝑛

{ inf
𝑡∈[0,𝜔]

𝑏
𝑖
(𝑡)} ,

𝑔 =

1

𝜔

∫

𝜔

0

𝑔 (𝑡) 𝑑𝑡,

𝑓
𝑎
= lim sup
𝑢∈𝐸,‖𝑢‖→𝑎

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑢 (𝑡))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

‖𝑢‖

,

𝑓
𝑎
= lim inf
𝑢∈𝐸,‖𝑢‖→𝑎

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑢 (𝑡))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

‖𝑢‖

,

(22)
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where 𝑎 denotes either 0 or∞, 𝑔(𝑡) ∈ 𝐶(𝑅, 𝑅). Moreover, we
list several assumptions:

(𝐻
1
) : 𝑓
0
= ∞;

(𝐻
2
) : 𝑓
∞
= ∞;

(𝐻
3
) : 𝑓0 = 0;

(𝐻
4
) : 𝑓∞ = 0;

(𝐻
5
) : 𝑓0 = 𝜃

1
∈ [0, 1/𝜆𝛽𝑏

𝑀
);

(𝐻
6
) : 𝑓∞ = 𝛾

1
∈ [0, 1/𝜆𝛽𝑏

𝑀
);

(𝐻
7
) : 𝑓
0
= 𝜃
2
∈ (1/𝜆𝛼𝜎𝑏

𝐿
,∞);

(𝐻
8
) : 𝑓
∞
= 𝛾
2
∈ (1/𝜆𝛼𝜎𝑏

𝐿
,∞);

(𝐻
9
) : there exists 𝑅 > 0, such that∫𝜔

0
|𝑓(𝑡, V(𝑡))|𝑑𝑡 >

𝑅/𝜆𝑏
𝐿
𝛼, for any ‖𝑦‖ ∈ [𝜎𝑅, 𝑅];

(𝐻
10
) : there exists 𝑟 > 0, such that∫𝜔

0
|𝑓(𝑡, V(𝑡))|𝑑𝑡 <

𝑟/𝜆𝑏
𝑀
𝛽, for any ‖𝑦‖ ≤ 𝑟.

The proofs of the main results in this paper are based on an
application of Krasnoselskii fixed point theorem in cones. To
make use of fixed point theorem in cones, firstly, we need to
introduce some definitions and lemmas.

Lemma 5. Assume that (𝑃
1
)–(𝑃
4
) hold. The existence of pos-

itive 𝜔-periodic solution of (9) is equivalent to that of nonzero
fixed point of 𝜓 in 𝐸.

Proof. Assume that 𝑦 = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇
∈ 𝑋 is a

periodic solution of (9). Then, we have

[𝑦
𝑖
(𝑡) 𝑒
−∫
𝑡

0
𝑎𝑖(𝜉)𝑑𝜉

]

󸀠

= −𝜆𝑒
−∫
𝑡

0
𝑎𝑖(𝜉)𝑑𝜉

𝑏
𝑖
(𝑡) 𝑓
𝑖
(𝑡, V (𝑡)) ,

𝑖 = 1, 2, . . . , 𝑛.

(23)

Integrating the above equation over [𝑡, 𝑡 + 𝜔], we can have

𝑦
𝑖
(𝑠) 𝑒
−∫
𝑠

0
𝑎𝑖(𝜉)𝑑𝜉

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡+𝜔

𝑡

= −𝜆∫

𝑡+𝜔

𝑡

𝑒
−∫
𝑠

0
𝑎𝑖(𝜉)𝑑𝜉

𝑏
𝑖
(𝑠)

× 𝑓
𝑖
(𝑠, 𝑦 (𝑠 − 𝜏

1
(𝑠)) , . . . , 𝑦 (𝑠 − 𝜏

𝑛
(𝑠))) 𝑑𝑠.

(24)

Therefore, we have

𝑦
𝑖
(𝑡) 𝑒
−∫
𝑡

0
𝑎𝑖(𝜉)𝑑𝜉

[1 − 𝑒
−∫
𝜔

0
𝑎𝑖(𝜉)𝑑𝜉

]

= 𝜆∫

𝑡+𝜔

𝑡

𝑒
−∫
𝑠

0
𝑎𝑖(𝜉)𝑑𝜉

𝑏
𝑖
(𝑠)

× 𝑓
𝑖
(𝑠, 𝑦 (𝑠 − 𝜏

1
(𝑠)) , . . . , 𝑦 (𝑠 − 𝜏

𝑛
(𝑠))) 𝑑𝑠,

(25)

which can be transformed into

𝑦
𝑖
(𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝑒
−∫
𝑠

0
𝑎𝑖(𝜉)𝑑𝜉

𝑒
−∫
𝑡

0
𝑎𝑖(𝜉)𝑑𝜉

[1 − 𝑒
−∫
𝜔

0
𝑎𝑖(𝜉)𝑑𝜉

]

× 𝑏
𝑖
(𝑠) 𝑓
𝑖
(𝑠, 𝑦 (𝑠 − 𝜏

1
(𝑠)) , . . . , 𝑦 (𝑠 − 𝜏

𝑛
(𝑠))) 𝑑𝑠

= 𝜆∫

𝑡+𝜔

𝑡

𝑒
∫
𝑡+𝜔

𝑠
𝑎𝑖(𝜉)𝑑𝜉

𝑒
∫
𝜔

0
𝑎𝑖(𝜉)𝑑𝜉

− 1

× 𝑏
𝑖
(𝑠) 𝑓
𝑖
(𝑠, 𝑦 (𝑠 − 𝜏

1
(𝑠)) , . . . , 𝑦 (𝑠 − 𝜏

𝑛
(𝑠))) 𝑑𝑠

= 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠) 𝑓
𝑖

× (𝑠, 𝑦 (𝑠 − 𝜏
1
(𝑠)) , . . . , 𝑦 (𝑠 − 𝜏

𝑛
(𝑠))) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛.

(26)

Thus, 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are periodic solutions for (21).

If 𝑦 = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇
∈ 𝑋 and 𝜓𝑦 = (𝜓

1
𝑦, 𝜓
2
𝑦,

. . . , 𝜓
𝑛
𝑦)
𝑇
= 𝑦 with 𝑦 ̸= 0, then for any 𝑡 = 𝑡

𝑘
, derivative the

two sides of (21) about 𝑡,

(𝜓
𝑖
𝑦)
󸀠

(𝑡)

=

𝑑

𝑑𝑡

[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠)

× 𝑓
𝑖
(𝑠, 𝑦 (𝑠 − 𝜏

1
(𝑠)) , . . . , 𝑦 (𝑠 − 𝜏

𝑛
(𝑠))) 𝑑𝑠]

= 𝜆 [𝐺
𝑖
(𝑡, 𝑡 + 𝜔) 𝑏

𝑖
(𝑡 + 𝜔) 𝑓

𝑖

× (𝑡 +𝜔, 𝑦 (𝑠 − 𝜏
1
(𝑠)) , . . . , 𝑦 (𝑠 −𝜏

𝑛
(𝑠)))− 𝐺

𝑖
(𝑡, 𝑡) 𝑏

𝑖
(𝑡)

×𝑓
𝑖
(𝑡, 𝑦 (𝑠 − 𝜏

1
(𝑠)) , . . . , 𝑦 (𝑠 − 𝜏

𝑛
(𝑠)))] + 𝑎

𝑖
(𝑡) 𝑦
𝑖
(𝑡)

= 𝑎
𝑖
(𝑡) 𝑦
𝑖
(𝑡) − 𝜆𝑏

𝑖
(𝑡) 𝑓
𝑖
(𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

= 𝑦
󸀠

𝑖
(𝑡) .

(27)

Hence 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇
∈ 𝑋 is a positive

𝜔-periodic solution of (9). Thus we complete the proof of
Lemma 5.

Lemma 6. Assume that (𝑃
1
)–(𝑃
4
) hold. Then the solutions of

(5) are defined on [−𝜏,∞) and are positive.

Proof. By Lemma 2, we only need to prove that the solutions
𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) of (9) are defined on [−𝜏,∞) and are

positive on [0,∞). From (9), we have that, for any 𝜑
𝑖
∈

𝐶([−𝜏, 0), 𝑅
+
) (𝑖 = 1, 2, . . . , 𝑛) and 𝑡 > 0,

𝑦
𝑖
(𝑡)

= 𝜑
𝑖
(0)

× exp{∫
𝑡

0

[𝑎
𝑖
(𝜉)
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− 𝜆 (𝑏
𝑖
(𝜉) 𝑓
𝑖
(𝜉, 𝑦 (𝜉 − 𝜏

1
(𝜉)) ,

. . . , 𝑦 (𝜉− 𝜏
𝑛
(𝜉)))(𝑦

𝑖
(𝜉))
−1

)]𝑑𝜉}.

(28)

Therefore, 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are defined on [−𝜏,∞) and

are positive on [0,∞).Theproof of Lemma 6 is complete.

Lemma 7. Assume that (𝑃
1
)–(𝑃
4
) hold. Then 𝜓 : 𝐸 → 𝐸 is

well defined.

Proof. From (21), for any 𝑦 ∈ 𝐸,

(𝜓𝑦) (𝑡 + 𝜔) = 𝜆∫

𝑡+2𝜔

𝑡+𝜔

𝐺 (𝑡 + 𝜔, 𝑠) 𝐵 (𝑠)

× 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏
1
(𝑠)) ,

. . . , 𝑦 (𝑠 − 𝜏
𝑛
(𝑠))) 𝑑𝑠

= 𝜆∫

𝑡+𝜔

𝑡

𝐺 (𝑡 + 𝜔, 𝜂 + 𝜔) 𝐵 (𝑠 + 𝜔)

× 𝑓 (𝑠 + 𝜔, 𝑦 (𝑠 + 𝜔 − 𝜏
1
(𝑠 + 𝜔)) ,

. . . , 𝑦 (𝑠 + 𝜔 − 𝜏
𝑛
(𝑠 + 𝜔))) 𝑑𝑠

= 𝜆∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝐵 (𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏
1
(𝑠)) ,

. . . , 𝑦 (𝑠 − 𝜏
𝑛
(𝑠))) 𝑑𝑠

= (𝜓𝑦) (𝑡) .

(29)

Therefore, (𝑇𝑦) ∈ 𝑋. From (21), we have
󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
𝑦
󵄨
󵄨
󵄨
󵄨0

≤ 𝛽
𝑖
[𝜆∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖
(𝑠) 𝑓
𝑖
(𝑠, 𝑦 (𝑠 − 𝜏

1
(𝑠)) , . . . , 𝑦 (𝑠− 𝜏

𝑛
(𝑠)))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠] .

(30)

On the other hand, we obtain

(𝜓
𝑖
𝑦) (𝑡)

≥ 𝛼
𝑖
[𝜆∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖
(𝑠) 𝑓
𝑖
(𝑠, 𝑦 (𝑠 − 𝜏

1
(𝑠)) , . . . , 𝑦 (𝑠 − 𝜏

𝑛
(𝑠)))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠]

≥

𝛼
𝑖

𝛽
𝑖

󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
𝑦
󵄨
󵄨
󵄨
󵄨0
≥ 𝜎

󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
𝑦
󵄨
󵄨
󵄨
󵄨0
.

(31)

Therefore, 𝜓𝑦 ∈ 𝐸. The proof of Lemma 7 is complete.

Lemma 8. Assume that (𝑃
1
)–(𝑃
4
) hold, and there exists 𝜂 > 0

such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≥ 𝜂

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑦 ∈ 𝐸,

(32)

and then
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝜆𝑏
𝐿
𝛼𝜂
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑦 ∈ 𝐸. (33)

Proof. For any 𝑦 ∈ 𝐸, then
󵄨
󵄨
󵄨
󵄨
(𝜓
𝑖
𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≥ 𝛼
𝑖
[𝜆∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖
(𝑠) 𝑓
𝑖
(𝑠, 𝑦 (𝑠 − 𝜏

1
(𝑠)) , . . . , 𝑦 (𝑠 − 𝜏

𝑛
(𝑠)))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠]

≥ 𝑏
𝐿
𝜆𝛼∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡.

(34)

Thus, we have

󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
=

𝑛

∑

𝑖=1

sup
𝑡∈[0,𝜔]

󵄨
󵄨
󵄨
󵄨
(𝜓
𝑖
𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≥ 𝜆𝑏
𝐿
𝛼

𝑛

∑

𝑖=1

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑠, 𝑦 (𝑠 − 𝜏

1
(𝑠)) , . . . , 𝑦 (𝑠 − 𝜏

𝑛
(𝑠)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≥ 𝜆𝑏
𝐿
𝛼∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

≥ 𝜆𝑏
𝐿
𝛼𝜂
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
.

(35)

The proof of Lemma 8 is complete.

Lemma 9. Assume that (𝑃
1
)–(𝑃
4
) hold, and let 𝑟 > 0. If there

exists a sufficiently small 𝜖 > 0 such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≤ 𝜖

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑟
,

(36)

and then
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝜆𝑏
𝑀
𝛽𝜖
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟
. (37)

Proof. For any 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑟
, we have

󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩

=

𝑛

∑

𝑖=1

sup
𝑡∈[0,𝜔]

󵄨
󵄨
󵄨
󵄨
(𝜓
𝑖
𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 𝜆𝛽

𝑛

∑

𝑖=1

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖
(𝑠) 𝑓
𝑖
(𝑠, 𝑦 (𝑠 − 𝜏

1
(𝑠)) , . . . , 𝑦 (𝑠 − 𝜏

𝑛
(𝑠)))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ 𝜆𝑏
𝑀
𝛽∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

≤ 𝜆𝑏
𝑀
𝛽𝜖
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
.

(38)

The proof of Lemma 9 is complete.

Our main results of this paper are as follows.
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Theorem 10. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

1
) and (𝐻

4
) hold,

then system (5) has at least one positive 𝜔-periodic solution.

Proof. By (𝐻
1
), there exists 𝑟

1
> 0 such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≥ 𝜂

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑟1
,

(39)

where the constant 𝜂 > 0 satisfies 𝜂𝜆𝛽𝑏𝐿 > 1. Then by
Lemma 8, we have
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝜆𝑏
𝐿
𝛽𝜂
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≥
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟1
.

(40)

On the other hand, by (𝐻
4
), for any 0 < 𝜖 ≤ (1/2𝜆𝐵𝑀𝛽), there

exists𝑁
1
> 𝑟
1
> 0 such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≤ 𝜖

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

for any 𝑦 ∈ 𝐸, 󵄩󵄩󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝑁
1
.

(41)

We choose

𝑟
2
> 𝑁
1
+ 1 + 2𝜆𝐵

𝑀
𝛽

× sup
‖𝑦‖<𝑁1 ,𝑦∈𝐸

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡.

(42)

If 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑟2
, then

󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩

=

𝑛

∑

𝑖=1

sup
𝑡∈[0,𝜔]

󵄨
󵄨
󵄨
󵄨
(𝜓
𝑖
𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 𝜆𝑏
𝑀
𝛽∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

= 𝜆𝑏
𝑀
𝛽 [∫

𝐼1

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

+ ∫

𝐼2

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡]

≤

𝑟
2

2

+

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

(43)

where

𝐼
1
= {𝑦 ∈ 𝐸 :

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝑁
1
} , 𝐼

2
= {𝑦 ∈ 𝐸 :

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
> 𝑁
1
} .

(44)

This implies that
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟2
. (45)

In conclusion, under the assumptions (𝐻
1
) and (𝐻

4
), 𝜓

satisfies the conditions in Lemma 4, and then 𝜓 has a fixed
point in 𝐸 ∩ (Ω

𝑟2
\ Ω
𝑟1
). By Lemma 5, system (5) has at least

one positive 𝜔-periodic solution. The proof of Theorem 10 is
complete.

Theorem 11. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

2
) and (𝐻

3
) hold,

then system (5) has at least one positive 𝜔-periodic solution.

Proof. By (𝐻
3
), for any 0 < 𝜖 ≤ 1/𝜆𝐵𝑀𝛽, there exists 𝑅

1
> 0

such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≤ 𝜖

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑅1
.

(46)

Then by Lemma 9, we have
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝜆𝑏
𝑀
𝛽𝜖
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅1
.

(47)

On the other hand, by (𝐻
3
), there exists 𝑅

2
> 𝑅
1
> 0 such

that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≥ 𝜂

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

for any 𝑦 ∈ 𝐸, 󵄩󵄩󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
> 𝑅
2
,

(48)

where the constant 𝜂 > 0 satisfies 𝜂𝜆𝛽𝑏𝐿 > 1. Then by
Lemma 8, we have
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝜆𝑏
𝐿
𝛽𝜂
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≥
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅2
.

(49)

In conclusion, under the assumptions (𝐻
2
) and (𝐻

3
), 𝜓

satisfies the conditions in Lemma 4, then 𝜓 has a fixed point
in 𝐸 ∩ (Ω

𝑅2
\ Ω
𝑅1
). By Lemma 4, the system (5) has at least

one positive 𝜔-periodic solution. The proof of Theorem 11 is
complete.

Theorem 12. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

1
), (𝐻
2
), and (𝐻

10
)

hold, then system (5) has two positive 𝜔-periodic solutions 𝑥1
and 𝑥2 satisfying 0 < ‖𝑥1‖ < 𝑟 < ‖𝑥2‖, where 𝑟 is defined in
(𝐻
10
).

Proof. By (𝐻
1
), there exists 0 < 𝑟

1
< 𝑟 such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≥ 𝜂

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑟1
,

(50)

where the constant 𝜂 > 0 satisfies 𝜂𝜆𝛽𝑏𝐿 > 1. Then by
Lemma 8, we have
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝜆𝑏
𝐿
𝛽𝜂
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≥
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟1
.

(51)
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Likewise, from (𝐻
2
), there exists 𝑟

2
> 𝑟 > 0 such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≥ 𝜂

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

for any 𝑦 ∈ 𝐸, 󵄩󵄩󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
> 𝑟
2
,

(52)

where the constant 𝜂 > 0 satisfies 𝜂𝜆𝛽𝑏𝐿 > 1. Then by
Lemma 8, we have
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝜆𝑏
𝐿
𝛽𝜂
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≥
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟2
.

(53)

Define Ω
𝑟
= {𝑦 ∈ 𝑋 : ‖𝑦‖ ≥ 𝑟}. Then from (𝐻

10
), for any

𝑦 ∈ 𝐸, ‖𝑦‖ > 𝑟, we obtain

󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝜆𝑏
𝑀
𝛽∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

< 𝑟 ≤
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟
,

(54)

which yields
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟
. (55)

In conclusion, under the assumptions (𝐻
1
) and (𝐻

10
), 𝜓

satisfies the conditions in Lemma 4, and then 𝜓 has a fixed
point 𝑥1 ∈ 𝐸 ∩ (Ω

𝑟
\ Ω
𝑟1
). Likewise, under the assumptions

(𝐻
2
) and (𝐻

10
),𝜓 satisfies all the conditions in Lemma 4, and

then 𝜓 has a fixed point 𝑥2 ∈ 𝐸∩ (Ω
𝑟2
\Ω
𝑟
). By Lemma 5, the

system (5) has at two positive 𝜔-periodic solutions 𝑥1 and 𝑥2
satisfying 0 < ‖𝑥1‖ < 𝑟 < ‖𝑥2‖. The proof of Theorem 12 is
complete.

Theorem 13. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

3
), (𝐻
4
), and (𝐻

9
)

hold, then system (5) has two positive 𝜔-periodic solutions 𝑥1
and 𝑥2 satisfying 0 < ‖𝑥1‖ < 𝑅 < ‖𝑥2‖, where 𝑅 is defined in
(𝐻
9
).

Proof. By (𝐻
3
), for any 0 < 𝜖 ≤ 1/𝜆𝐵

𝑀
𝛽, there exists 𝑅 >

𝑅
1
> 0 such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≤ 𝜖

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑅1
.

(56)

Then by Lemma 9, we have
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝜆𝑏
𝑀
𝛽𝜖
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅1
.

(57)

Likewise, by (𝐻
4
), for any 0 < 𝜖 ≤ 1/2𝜆𝐵

𝑀
𝛽, there exists

𝑁
2
> 𝑅 > 0 such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≤ 𝜖

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

for any 𝑦 ∈ 𝐸, 󵄩󵄩󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝑁
2
.

(58)

We choose
𝑅
2
> 𝑁
2
+ 1 + 2𝜆𝐵

𝑀
𝛽

× sup
‖𝑦‖<𝑁2 ,𝑦∈𝐸

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡.

(59)

If 𝑦 ∈ 𝐸⋂𝜕Ω
𝑅2
, then

󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩

=

𝑛

∑

𝑖=1

sup
𝑡∈[0,𝜔]

󵄨
󵄨
󵄨
󵄨
(𝜓
𝑖
𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 𝜆𝑏
𝑀
𝛽∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

= 𝜆𝑏
𝑀
𝛽 [∫

𝐼1

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

+ ∫

𝐼2

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡]

≤

𝑅
2

2

+

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

(60)

where
𝐼
1
= {𝑦 ∈ 𝐸 :

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝑁
2
} , 𝐼

2
= {𝑦 ∈ 𝐸 :

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
> 𝑁
2
} .

(61)

This implies that
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅2
. (62)

Define Ω
𝑅
= {𝑦 ∈ 𝑋 : ‖𝑦‖ ≥ 𝑅}. Then from (𝐻

9
), for any

𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑅
, we obtain

󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝜆𝑏
𝐿
𝛼∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

> 𝜆𝑏
𝐿
𝛼

𝑅

𝜆𝑏
𝐿
𝛼

= 𝑅 =
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟2
,

(63)

which yields
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
>
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅
. (64)

In conclusion, under the assumptions (𝐻
3
) and (𝐻

9
), 𝜓

satisfies the conditions in Lemma 4, and then 𝜓 has a fixed
point 𝑥1 ∈ 𝐸 ∩ (Ω

𝑅
\ Ω
𝑅1
). Likewise, under the assumptions

(𝐻
2
) and (𝐻

10
),𝜓 satisfies all the conditions in Lemma 4, and

then 𝜓 has a fixed point 𝑥2 ∈ 𝐸 ∩ (Ω
𝑅2
\ Ω
𝑅
). By Lemma 4,

the system (5) has at two positive𝜔-periodic solutions 𝑥1 and
𝑥
2 satisfying 0 < ‖𝑥1‖ < 𝑅 < ‖𝑥2‖. The proof of Theorem 13

is complete.

Theorem 14. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

9
) and (𝐻

10
) hold,

then system (5) has at least one positive 𝜔-periodic solution 𝑥
satisfying 𝑟 < ‖𝑥‖ < 𝑅, where 𝑟 and 𝑅 are defined in (𝐻

9
) and

(𝐻
10
), respectively.
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Proof. Without loss of generality, wemay assume that 0 < 𝑟 <
𝑅. If 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟
, then by (𝐻

10
), one can get

󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
=

𝑛

∑

𝑖=1

sup
𝑡∈[0,𝜔]

󵄨
󵄨
󵄨
󵄨
(𝜓
𝑖
𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 𝜆𝑏
𝑀
𝛽∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

< 𝜆𝑏
𝑀
𝛽

𝑟

𝜆𝑏
𝑀
𝛽

= 𝑟 =
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

(65)

which yields
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
<
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟
. (66)

Likewise, for 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑅
, then from (𝐻

8
), we can get

󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
=

𝑛

∑

𝑖=1

sup
𝑡∈[0,𝜔]

󵄨
󵄨
󵄨
󵄨
(𝜓
𝑖
𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≥ 𝜆𝑏
𝐿
𝛼∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

> 𝜆𝑏
𝐿
𝛼

𝑅

𝜆𝑏
𝐿
𝛼

= 𝑅 =
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

(67)

which yields
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
>
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅
. (68)

In conclusion, under the assumptions (𝐻
8
) and (𝐻

10
), 𝜓

satisfies the conditions in Lemma 4, and then 𝜓 has a fixed
point 𝑥1 ∈ 𝐸 ∩ (Ω

𝑅
\ Ω
𝑟
). By Lemma 4, the system (5) has at

least one positive𝜔-periodic solution 𝑥1 satisfying 𝑟 < ‖𝑥1‖ <
𝑅, where 𝑟 and 𝑅 are defined in (𝐻

9
) and (𝐻

10
), respectively.

The proof of Theorem 14 is complete.

Theorem 15. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

5
) and (𝐻

8
) hold,

then system (5) has at least one positive 𝜔-periodic solution.

Proof. By (𝐻
5
), for any 𝜖 = 1/𝜆𝛽𝑏𝑀 − 𝜃

1
> 0, there exists a

sufficiently small 𝑟 > 0 such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

< 𝜃
1
+ 𝜖 =

1

𝜆𝛽𝑏
𝑀
, for 󵄩󵄩󵄩

󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝑟;

(69)

that is

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

<

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝜆𝛽𝑏
𝑀
≤

𝑟

𝜆𝛽𝑏
𝑀
, for 󵄩󵄩󵄩

󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝑟,

(70)

which implies that (𝐻
10
) is satisfied.

Likewise, by (𝐻
8
), for any 𝜖 = 𝛾

2
− 1/𝜆𝛼𝜎𝑏

𝐿
> 0, there

exists a sufficiently large 𝑅 > 0 such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

> 𝛾
2
+ 𝜖 =

1

𝜆𝛼𝜎𝑏
𝐿
, for 󵄩󵄩󵄩

󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝜎𝑅;

(71)

that is

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

>

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝜆𝛼𝜎𝑏
𝐿
≤

𝜎𝑅

𝜆𝛼𝜎𝑏
𝐿
=

𝑅

𝜆𝛼𝑏
𝐿
, for 󵄩󵄩󵄩

󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝑅,

(72)

which implies that (𝐻
9
) is satisfied.Therefore, byTheorem 14,

we complete the proof.

Theorem 16. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

6
) and (𝐻

7
) hold,

then system (5) has at least one positive 𝜔-periodic solution.

Proof. By (𝐻
7
), for any 𝜖 = 𝜃

2
− 1/𝜆𝛼𝜎𝑏

𝐿
> 0, there exists a

sufficiently small 𝑅 > 0 such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

> 𝜃
2
+ 𝜖 =

1

𝜆𝛼𝜎𝑏
𝐿
, for 0 < 󵄩󵄩󵄩

󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝑅;

(73)

that is

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

>

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝜆𝛼𝜎𝑏
𝐿
≥

𝜎𝑅

𝜆𝛼𝜎𝑏
𝐿
=

𝑅

𝜆𝛼𝑏
𝐿
, for 𝜎𝑅 ≤ 󵄩󵄩󵄩

󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝑅,

(74)

which implies that (𝐻
9
) is satisfied. On the other hand, by

(𝐻
6
), for any 𝜖 = 1/𝜆𝛽𝑏𝑀 − 𝛾

1
> 0, there exists a sufficiently

large 𝑟∗ > 0 such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

< 𝛾
1
+ 𝜖 =

1

𝜆𝛽𝑏
𝑀
, for 󵄩󵄩󵄩

󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝑟
∗
.

(75)

In the following, we consider two cases to prove (𝐻
6
) to be

satisfied: ∫𝜔
0
|𝑓(𝑡, 𝑦(𝑡−𝜏

1
(𝑡)), . . . , 𝑦(𝑡−𝜏

𝑛
(𝑡)))|𝑑𝑡 are bounded

and unbounded. The bounded case is clear. If ∫𝜔
0
|𝑓(𝑡, 𝑦(𝑡 −

𝜏
1
(𝑡)), . . . , 𝑦(𝑡 − 𝜏

𝑛
(𝑡)))|𝑑𝑡 are unbounded, then there exist

𝑦
∗
∈ 𝑅
𝑛

+
, 𝑟 = ‖𝑦

∗
‖ ≥ 𝑟
∗ and 𝑡

0
∈ [0, 𝜔] such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

≤ ∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦

∗
(𝑡 − 𝜏
1
(𝑡)) , . . . , 𝑦

∗
(𝑡 − 𝜏
𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡,

for any 󵄩󵄩󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑦
∗󵄩
󵄩
󵄩
󵄩
= 𝑟.

(76)
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Since 𝑟 = ‖𝑦‖ ≥ ‖𝑦∗‖ ≥ 𝑟∗, then we get

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

≤ ∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦

∗
(𝑡 − 𝜏
1
(𝑡)) , . . . , 𝑦

∗
(𝑡 − 𝜏
𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

<

󵄩
󵄩
󵄩
󵄩
𝑦
∗󵄩󵄩
󵄩
󵄩

𝜆𝛽𝑏
𝑀
=

𝑟

𝜆𝛽𝑏
𝑀
, for any 0 < 󵄩󵄩󵄩

󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝑟,

(77)

which implies that the condition (𝐻
6
) holds. By Theorem 14,

we complete the proof.

Theorem 17. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

5
), (𝐻
6
), and (𝐻

9
)

hold, then system (5) has at two positive 𝜔-periodic solutions
𝑥
1 and 𝑥2 satisfying 0 < ‖𝑥1‖ < 𝑅 < ‖𝑥2‖, where 𝑅 is defined

in (𝐻
9
).

Proof. By (𝐻
5
) and the proof of Theorem 15, there exists a

sufficiently small 𝑟
1
∈ (0, 𝑟) such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

<

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝜆𝛽𝑏
𝑀
≤

𝑟
1

𝜆𝛽𝑏
𝑀
, for 0 < 󵄩󵄩󵄩

󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝑟
1
.

(78)

On the other hand, from (𝐻
6
) and the proof of Theorem 16,

there exists a sufficiently large 𝑟
2
∈ (𝑟,∞) such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 <

𝑟

𝜆𝛽𝑏
𝑀
,

for 0 < 󵄩󵄩󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝑟
2
.

(79)

Therefore, from the proof of Theorem 14, there exist two
positive solutions 𝑦1 and 𝑦2 satisfying 𝑟 < ‖𝑦

1
‖ < 𝑟 <

‖𝑦
2
‖ < 𝑟
2
, where 𝑟 is defined in (𝐻

9
); the proof ofTheorem 17

is complete.

Theorem 18. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

7
), (𝐻
8
), and

(𝐻
10
) hold, then system (5) has at least two positive 𝜔-periodic

solutions 𝑥1 and 𝑥2 satisfying 0 < ‖𝑥1‖ < 𝑟 < ‖𝑥2‖, where R is
defined in (𝐻

10
).

Proof. Theproof is similar to that ofTheorem 17, andwe omit
the details here.

Theorem 19. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

1
) and (𝐻

6
) hold,

then system (5) has at least one positive 𝜔-periodic solution.

Proof. Let Ω
𝑟
= {𝑦 ∈ 𝑋 : ‖𝑦‖ < 𝑟}. By (𝐻

1
) and the proof of

Theorem 10, there exists a sufficiently small 𝑟
1
∈ (0, 𝑟) such

that
󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝜆𝑏
𝐿
𝛽𝜂
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≥
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟1
. (80)

Likewise, by (𝐻
6
) and the proof of Theorem 16, there exists a

sufficiently large 𝑟
2
∈ (𝑟,∞) such that

󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
<
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟2
. (81)

In conclusion, under the assumptions (𝐻
1
) and (𝐻

6
), 𝜓

satisfies the conditions in Lemma 4, and then 𝜓 has a fixed
point in𝐸∩(Ω

𝑟2
\Ω
𝑟1
). By Lemma 4, the system (5) has at least

one positive 𝜔-periodic solution. The proof of Theorem 19 is
complete.

Similar to Theorem 19, we can get the following conse-
quences.

Theorem 20. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

2
) and (𝐻

5
) hold,

then system (5) has at least one positive 𝜔-periodic solution.

Theorem 21. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

3
) and (𝐻

8
) hold,

then system (5) has at least one positive 𝜔-periodic solution.

Theorem 22. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

4
) and (𝐻

7
) hold,

then system (5) has at least one positive 𝜔-periodic solution.

Theorem23. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

1
), (𝐻
8
), and (𝐻

10
)

hold, then system (5) has two positive 𝜔-periodic solutions 𝑥1
and 𝑥2 satisfying 0 < ‖𝑥1‖ < 𝑟 < ‖𝑥2‖, where 𝑟 is defined in
(𝐻
10
).

Proof. Let Ω
𝑟
= {𝑦 ∈ 𝑋 : ‖𝑦‖ < 𝑟}. By (𝐻

1
) and the proof of

Theorem 10, there exists a sufficiently small 𝑟
1
∈ (0, 𝑟) such

that

󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝜆𝑏
𝐿
𝛽𝜂
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≥
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟1
.

(82)

Likewise, by (𝐻
8
) and the proof of Theorem 15, there exists a

sufficiently large 𝑟
2
∈ (0, 𝑟) such that

󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝜆𝑏
𝐿
𝛽𝜂
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≥
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟2
.

(83)

Incorporating (𝐻
10
) and the proof of Theorem 14, we know

that there exist two positive 𝜔-periodic solutions 𝑥1 and 𝑥2
satisfying 𝑟

1
< ‖𝑥
1
‖ < 𝑟 < ‖𝑥

2
‖ < 𝑟
2
, where 𝑟 is defined in

(𝐻
10
). The proof of Theorem 23 is complete.

Similar toTheorem 23, one immediately has the following
consequences.

Theorem24. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

2
), (𝐻
7
), and (𝐻

10
)

hold, then system (5) has two positive 𝜔-periodic solutions 𝑥1
and 𝑥2 satisfying 0 < ‖𝑥1‖ < 𝑟 < ‖𝑥2‖, where 𝑟 is defined in
(𝐻
10
).

Theorem 25. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

3
), (𝐻
6
), and (𝐻

9
)

hold, then system (5) has two positive 𝜔-periodic solutions 𝑥1
and 𝑥2 satisfying 0 < ‖𝑥1‖ < 𝑅 < ‖𝑥2‖, where R is defined in
(𝐻
9
).

Theorem 26. In addition to (𝑃
1
)–(𝑃
4
), if (𝐻

4
), (𝐻
5
), and (𝐻

9
)

hold, then system (5) has two positive 𝜔-periodic solutions 𝑥1
and 𝑥2 satisfying 0 < ‖𝑥1‖ < 𝑅 < ‖𝑥2‖, where R is defined in
(𝐻
9
).
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3. Existence of Periodic Solutions of System (6)
Now, we are at the position to study the existence of positive
periodic solutions of system (6). By carrying out similar
arguments as in Section 2, it is not difficult to derive sufficient
criteria for the existence of positive periodic solutions of
system (6). For simplicity, we prefer to list below the cor-
responding criteria for system (6) without proof, since the
proofs are very similar to those in Section 2.

For (𝑡, 𝑠) ∈ 𝑅2, 1 ≤ 𝑖 ≤ 𝑛, we define

𝐺
∗

𝑖
(𝑡, 𝑠) =

𝑒
∫
𝑠

𝑡
𝑎𝑖(𝜉)𝑑𝜉

𝑒
∫
𝜔

0
𝑎𝑖(𝜉)𝑑𝜉

− 1

,

𝐺
∗

(𝑡, 𝑠) = diag [𝐺∗
1
(𝑡, 𝑠) , 𝐺

∗

2
(𝑡, 𝑠) , . . . , 𝐺

∗

𝑛
(𝑡, 𝑠)] ,

(84)

and it is clear that 𝐺∗
𝑖
(𝑡, 𝑡) ≤ 𝐺

∗

𝑖
(𝑡, 𝑠) ≤ 𝐺

∗
(𝑡, 𝑡 + 𝜔),

𝜕𝐺
∗

𝑖
(𝑡, 𝑠)/𝜕𝑡 = 𝑎

𝑖
(𝑡)𝐺
∗

𝑖
(𝑡, 𝑠), 𝐺∗

𝑖
(𝑡, 𝑡 + 𝜔) − 𝐺

∗

𝑖
(𝑡, 𝑡) = 1. In

view of (𝑃
1
), we also define for 1 ≤ 𝑖 ≤ 𝑛

𝛼
∗

𝑖
:= min
0≤𝑡≤𝑠≤𝜔

󵄨
󵄨
󵄨
󵄨
𝐺
∗

𝑖
(𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
=

1

𝑒
∫
𝜔

0
𝑎𝑖(𝜉)𝑑𝜉

− 1

= 𝛼
𝑖
,

𝛽
∗

𝑖
:= max
0≤𝑡≤𝑠≤𝜔

󵄨
󵄨
󵄨
󵄨
𝐺
∗

𝑖
(𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
=

𝑒
∫
𝜔

0
𝑎𝑖(𝜉)𝑑𝜉

𝑒
∫
𝜔

0
𝑎𝑖(𝜉)𝑑𝜉

− 1

= 𝛽
𝑖
,

𝛼
∗
= min
1≤𝑖≤𝑛

𝛼
∗

𝑖
= 𝛼, 𝛽

∗
= max
1≤𝑖≤𝑛

𝛽
∗

𝑖
= 𝛽,

𝛿 =

𝛼
∗

𝛽
∗
∈ (0, 1) = 𝜎,

𝐵
𝑖
(𝑡) = max {󵄨󵄨󵄨

󵄨
𝑏
1𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑏
2𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
} ,

𝐵
󸀠

𝑖
(𝑡) = min {󵄨󵄨󵄨

󵄨
𝑏
1𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑏
2𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
} ,

𝐵 (𝑡) = max
1≤𝑖≤𝑛

{𝐵
𝑖
(𝑡)} , 𝐵

󸀠

(𝑡) = min
1≤𝑖≤𝑛

{𝐵
󸀠

𝑖
(𝑡)} .

(85)

Let 𝑋 = {𝑦 = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇
∈ 𝑃𝐶(𝑅, 𝑅

𝑛
) |

𝑦(𝑡 + 𝜔) = 𝑦(𝑡)} with the norm ‖𝑦‖ = ∑
𝑛

𝑖=1
|𝑦
𝑖
|
0
, |𝑦
𝑖
|
0
=

sup
𝑡∈[0,𝜔]

|𝑦
𝑖
(𝑡)|, and it is easy to verify that (𝑋, ‖⋅‖) is a Banach

space. Define 𝑃 to be a cone in𝑋 by

𝑃 = {𝑦 = (𝑦
1
(𝑡) , 𝑦
2
(𝑡) , . . . , 𝑦

𝑛
(𝑡))
𝑇

∈ 𝑋 : 𝑦
𝑖
(𝑡) ≥ 𝛿

󵄩
󵄩
󵄩
󵄩
𝑦
𝑖

󵄩
󵄩
󵄩
󵄩0
, 𝑡 ∈ [0, 𝜔]} .

(86)

We easily verify that 𝑃 is a cone in 𝑋. We define an operator
𝐴 : 𝑋 → 𝑋 as follows:

(𝐴𝑦) (𝑡) = ((𝐴
1
𝑦) (𝑡) , (𝐴

2
𝑦) (𝑡) , . . . , (𝐴

𝑛
𝑦) (𝑡))

𝑇

,

(87)

where

(𝐴
𝑖
𝑦) (𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
∗

𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠) 𝑓
𝑖

× (𝑠, 𝑦 (𝑠 − 𝜏
1
(𝑠)) , . . . , 𝑦 (𝑠 − 𝜏

𝑛
(𝑠))) 𝑑𝑠.

(88)

The proof of the following lemmas and theorems is similar to
those in Section 2, and we all omit the details here.

Lemma 27. Assume that (𝑃
1
)–(𝑃
4
) hold. The existence of

positive 𝜔-periodic solution of system (6) is equivalent to that
of nonzero fixed point of 𝐴 in 𝑃.

Lemma 28. Assume that (𝑃
1
)–(𝑃
4
) hold. Then the solutions of

system (6) are defined on [−𝜏,∞) and are positive.

Lemma 29. Assume that (𝑃
1
)–(𝑃
4
) hold. Then 𝐴 : 𝑃 → 𝑃 is

well defined.

Lemma30. Assume that (𝑃
1
)–(𝑃
4
) hold, and there exists 𝜂 > 0

such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≥ 𝜂

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑦 ∈ 𝑃,

(89)

and then

󵄩
󵄩
󵄩
󵄩
𝜓𝑦
󵄩
󵄩
󵄩
󵄩
≥ 𝜆𝑏
𝐿
𝛼𝜂
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑦 ∈ 𝑃. (90)

Lemma 31. Assume that (𝑃
1
)–(𝑃
4
) hold, and let 𝑟 > 0. If there

exists a sufficiently small 𝜖 > 0 such that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
(𝑡)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≤ 𝜖

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
,

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑦 ∈ 𝑃 ∩ 𝜕Ω
𝑟
,

(91)

and then

󵄩
󵄩
󵄩
󵄩
𝐴𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝜆𝑏
𝑀
𝛽𝜖
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑦 ∈ 𝑃 ∩ 𝜕Ω

𝑟
. (92)

Theorem32. Assume that (𝑃
1
)–(𝑃
4
) and (𝐻

9
) hold.Moreover,

if one of the following conditions holds:

(𝐻
3
) 𝑎𝑛𝑑 (𝐻

4
); (𝐻

3
) 𝑎𝑛𝑑 (𝐻

6
); (𝐻

4
) 𝑎𝑛𝑑 (𝐻

5
);

(𝐻
5
) 𝑎𝑛𝑑 (𝐻

6
),

then system (6) has two positive 𝜔-periodic solutions 𝑥1 and 𝑥2
satisfying 0 < ‖𝑥1‖ < 𝑅 < ‖𝑥2‖, where 𝑅 is defined in (𝐻

9
).

Theorem 33. Assume that (𝑃
1
)–(𝑃
4
), and (𝐻

10
) hold. More-

over, if one of the following conditions holds:

(𝐻
1
) 𝑎𝑛𝑑 (𝐻

2
); (𝐻

1
) 𝑎𝑛𝑑 (𝐻

8
); (𝐻

2
) 𝑎𝑛𝑑 (𝐻

7
);

(𝐻
7
) 𝑎𝑛𝑑 (𝐻

8
),

then system (6) has two positive 𝜔-periodic solutions 𝑥1 and 𝑥2
satisfying 0 < ‖𝑥1‖ < 𝑟 < ‖𝑥2‖, where r is defined in (𝐻

10
).

Theorem 34. Assume that (𝑃
1
)–(𝑃
4
) hold. Moreover, if one of

the following conditions holds:

(𝐻
1
) 𝑎𝑛𝑑 (𝐻

4
); (𝐻

1
) 𝑎𝑛𝑑 (𝐻

6
); (𝐻

2
) 𝑎𝑛𝑑 (𝐻

3
);

(𝐻
2
) 𝑎𝑛𝑑 (𝐻

5
); (𝐻

3
) 𝑎𝑛𝑑 (𝐻

8
); (𝐻

4
) 𝑎𝑛𝑑 (𝐻

9
);

(𝐻
5
) 𝑎𝑛𝑑 (𝐻

8
); (𝐻
6
) 𝑎𝑛𝑑 (𝐻

7
); (𝐻
9
) 𝑎𝑛𝑑 (𝐻

10
),

then system (6) has at least one positive 𝜔-periodic solution.
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4. Examples

In order to illustrate our results, we take the following
examples.

Example 35. We consider the following generalized so-called
Michaelis-Menton type single species growth model with
impulse:

𝑦
󸀠

(𝑡) = 𝑦 (𝑡) [𝑎 (𝑡) − 𝜆

𝑛

∑

𝑖=1

𝛼
𝑖
(𝑡) 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))

1 + 𝛽
𝑖
(𝑡) 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))

] ,

𝑡 ∈ 𝑅, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = 𝜇𝑐

𝑘
𝑦 (𝑡
𝑘
) , 𝑘 ∈ 𝑍

+
,

(93)

which is a special case of system (5), and where 𝑎(𝑡), 𝛼
𝑖
(𝑡),

𝛽
𝑖
(𝑡), 𝜏
𝑖
(𝑡) ∈ 𝐶(𝑅, 𝑅

+
) (𝑖 = 1, 2, . . . , 𝑛) are 𝜔-periodic, and 𝜆 >

0, 𝜇 > 0 are two parameters.

Theorem 36. Assume that (𝑃
1
)–(𝑃
4
) hold. Moreover, if the

following condition holds:

𝑛

∑

𝑖=1

∫

𝜔

0

𝛼
𝑖
(𝑡) 𝑑𝑡 >

𝛽
𝑀

𝑖

𝜆𝛼𝜎
3
𝑏
𝐿
, (94)

then system (93) has at least one positive 𝜔-periodic solution.

Proof. Note that

𝑓 (𝑡, 𝑦 (𝑡 − 𝜏
𝑖
(𝑡))) = 𝑦 (𝑡)

𝑛

∑

𝑖=1

𝛼
𝑖
(𝑡) 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))

1 + 𝛽
𝑖
(𝑡) 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))

.

(95)

We can construct the same Banach space 𝑋 and cone 𝐸 as in
Section 2. Then for any 𝑦 ∈ 𝐸, we have

∫

𝜔

0

𝑓 (𝑡, 𝑦 (𝑡 − 𝜏
𝑖
(𝑡))) 𝑑𝑡

=

𝑛

∑

𝑖=1

∫

𝜔

0

𝑦 (𝑡)

𝛼
𝑖
(𝑡) 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))

1 + 𝛽
𝑖
(𝑡) 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))

𝑑𝑡

≥

𝜎
2󵄩󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

2

1 + 𝑐
𝑀

𝑖

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝑛

∑

𝑖=1

∫

𝜔

0

𝛼
𝑖
(𝑡) 𝑑𝑡.

(96)

This can lead to

∫

𝜔

0
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))) 𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

≥

𝜎
2 󵄩󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

1 + 𝛽
𝑀

𝑖

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝑛

∑

𝑖=1

∫

𝜔

0

𝛼
𝑖
(𝑡) 𝑑𝑡.

(97)

Then we can have

𝑓
∞
≥

𝜎
2

𝛽
𝑀

𝑖

𝑛

∑

𝑖=1

∫

𝜔

0

𝛼
𝑖
(𝑡) 𝑑𝑡 >

1

𝜆𝛼𝜎𝑏
𝐿
. (98)

On the other hand, we have

∫

𝜔

0

𝑓 (𝑡, 𝑦 (𝑡 − 𝜏
𝑖
(𝑡))) 𝑑𝑡

=

𝑛

∑

𝑖=1

∫

𝜔

0

𝑦 (𝑡)

𝛼
𝑖
(𝑡) 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))

1 + 𝛽
𝑖
(𝑡) 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))

𝑑𝑡

≤
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

2

𝑛

∑

𝑖=1

∫

𝜔

0

𝛼
𝑖
(𝑡) 𝑑𝑡.

(99)

This can lead to

∫

𝜔

0
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))) 𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝑛

∑

𝑖=1

∫

𝜔

0

𝛼
𝑖
(𝑡) 𝑑𝑡 󳨀→ 0,

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
󳨀→ 0.

(100)

That is

𝑓
0
= 0. (101)

By Theorem 21, it follows that system (93) has at least one
positive 𝜔-periodic solution. The proof of Theorem 36 is
complete.

Example 37. We consider the following generalized
hematopoiesis model with impulse:

𝑦
󸀠

(𝑡) = −𝛼 (𝑡) 𝑦 (𝑡) + 𝜆𝛽 (𝑡) exp {−𝛾 (𝑡) 𝑦 (𝑡 − 𝜏 (𝑡))} ,

𝑡 ∈ 𝑅, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = 𝜇𝑐

𝑘
𝑦 (𝑡
𝑘
) , 𝑘 ∈ 𝑍

+
,

(102)

which is a special case of system (6), and where 𝑥(𝑡) is the
number of red blood cells at time 𝑡, 𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡) and 𝜏(𝑡) ∈
𝐶(𝑅, 𝑅

+
) are 𝜔-periodic and 𝜆 > 0, 𝜇 > 0 are two parameters.

Theorem 38. Assume that (𝑃
1
)–(𝑃
4
) hold. Moreover, if the

following condition holds:

𝑛

∑

𝑖=1

∫

𝜔

0

𝛼
𝑖
(𝑡) 𝑑𝑡 >

𝛽
𝑀

𝑖

𝜆𝛼𝜎
3
𝑏
𝐿
, (103)

then system (102) has at least one positive 𝜔-periodic solution.

Proof. Note that

𝑓 (𝑡, 𝑦 (𝑡 − 𝜏 (𝑡))) = exp {−𝛾 (𝑡) 𝑦 (𝑡 − 𝜏 (𝑡))} . (104)

We can construct the same Banach space 𝑋 and cone 𝐸 as in
Section 2. Then for any 𝑦 ∈ 𝐸, we have

∫

𝜔

0
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏 (𝑡))) 𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

≥

𝜔

exp {𝛾𝑀 󵄩󵄩󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
}
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

;

∫

𝜔

0
𝑓 (𝑡, 𝑦 (𝑡 − 𝜏 (𝑡))) 𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

≤

𝜔

exp {𝛾𝐿 󵄩󵄩󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
}
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

.

(105)
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This can lead to

𝑓
∞
= 0,

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
󳨀→ ∞;

𝑓
0
= ∞,

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
󳨀→ 0.

(106)

By Theorem 34, it follows that system (102) has at least one
positive 𝜔-periodic solution. The proof of Theorem 38 is
complete.

Remark 39. We apply the main results obtained in the
previous sections to study some examples which have some
biological implications.A very basic and important ecological
problem associated with the study of population is that of
the existence of positive periodic solutions which play the
role played by the equilibrium of the autonomous models
and means that the species is in an equilibrium state. From
Theorems 36 and 38, we see that under the appropriate
conditions, the impulsive perturbations do not affect the
existence of periodic solution of the systems.
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