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Motivated by some preliminary works about general solution of impulsive system with fractional derivative, the generalized
impulsive differential equations with Caputo-Hadamard fractional derivative of ¢ € C (R(q) € (1,2)) are further studied by
analyzing the limit case (as impulses approach zero) in this paper. The formulas of general solution are found for the impulsive

systems.

1. Introduction

Hadamard fractional calculus is a key part of the theory of
fractional calculus. The authors in [1-6] made an important
development of the fractional calculus within the frame of
Hadamard fractional derivative. For the general theory of
Hadamard fractional calculus, one can see the monograph of
Kilbas et al. [7].

Recently, Jarad et al. made a progress on Hadamard
fractional derivative to present the definition of Caputo-
Hadamard fractional derivative in [8] and developed the
fundamental theorem of this fractional derivative in [8, 9].

Furthermore, impulsive differential equations are utilized
as a valuable tool to describe the dynamics of processes in
which sudden, discontinuous jumps occur, and impulsive
differential equations with Caputo fractional derivative were
widely researched in [10-26]. Next, the general solutions of
several kinds of impulsive fractional differential equations
have been found in [27-30], respectively.

Motivated by the above-mentioned works, we will further
seek the general solution of generalized impulsive system
with Caputo-Hadamard fractional derivative:

exDLx(® = £ (60,
te@T], t#t, (k=12...,m), t#5 (I=12....p),

AX|yey, = x(t) = x () = L (x (t)) € C,

k=1,2,...,m,
. S 1)
M| = () - (5) =T (= (7)) € €,
I=12,...,p,

x(a) =x, €C,
x'(a) =%, € C.

Here g € Cand R(g) € (1,2), C—HDZ* denotes left-sided

Caputo-Hadamard fractional derivative of order gand a > 0,



f :[aT] x C — Cis an appropriate continuous function,
a=ty <t <. <t, <t,, =T anda =1, <t <

© < t, <ty = T. Here x(t;) = lim,_gx(t; + ¢) and
x(ty) = lim,_- x(t; + €) represent the right and left limits of
u(t) att = t,, respectively, and x'(f?) and x' (¢, ) have similar
meaning. Let us queue a,t,,...,t,,t,...,t,, T toa =ty <
t) <ty <--- <ty <ty,, =T such that

set{t),.. .ty

obtm

dpb=set{tyty. . tgh. ()

For each [a, t,'(] (k =0,1,...,II), suppose [a, t; ] < [a, t,'c] C
(@, t; 1] (here k; € {1,2,...,m}) and [a,sz] C [a, t,’c] C
(@, ty, 1] (here k, € {1,2,..., p}), respectively.

In order to get the solution of (1), we will first consider the
following system:

ey DLx () = f (tx (1),

(3a)
te(@T), t#t, (k=1,....m), t#¢ (I=1,...,p),
Axlicy, = x (t) = x (t) = I (x (t)) € C,

(3b)

k=12,...,m,
Adx|,5 = Ox (l_‘;r) - 6x (f;) =] (x (f;)) €C,
(3¢)
I=1,2,...,p,
x(a)=x,€C,
3d)

Ox(a)=Xx, €C,

where differential operator § = t(d/dt), 8%x(t) = x(t).

Next, some definitions and conclusions are introduced
in Section 2, and the formulas of general solution will be
given for some impulsive differential equations with Caputo-
Hadamard fractional derivative in Section 3.

2. Preliminaries

Definition I (see [7, p. 110]). Let 0 < a < b < oo be finite or
infinite interval of the half-axis R*. The left-sided Hadamard
fractional integral of order « € C of function ¢(x) is defined

by

“ 0= (X)) o ®
(570 9) (x) = T () L <1n s) () s’ (4)

(a<x<b),

where I'(-) is the Gamma function.

Definition 2 (see [7, p. 110]). The left-sided Hadamard frac-
tional derivative of order & € C (R () > 0) on (a, b) is defined

by
(4D59) (x) = 8" (1F - "9) (x)

() ) Tt

(a<x<b),
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where n = [R(«)] + 1 and differential operator § = x(d/dx)
and 8% y(x) = y(x).

Lemma 3 (see [7, p. 114-116]). Let a, § € C such that R(«) >
R(B) >0.For0 <a<b<ooifpelPlab)(l<pc<
00), then HDf+ al P = Hfz:ﬁ(p and . Fo: Hffup =
ja+ﬁ¢
H? a* :
The left-sided Caputo-Hadamard fractional derivative
was defined in [8] by

cnDar (%)

n—1 ok k (6)
- 020 - £ 50 (1 Y o,

]
par S

here R(x) > 0,n = [R(a)] + 1,0 < a < b < oo, differential
operator § = x(d/dx), 8°y(x) = y(x), and

¢ (x) € ACj [a,b] = {q): [a,b] — C: S(n_l)(P(X)
(7)
d
€ AC [a, b], 6:x—}.
dx

Theorem 4 (see [8, p. 4]). Let R(a) = 0, n = [R(x)] + 1,
and ¢ € AC§[a,b], 0 < a <b < co. Then, C_HDZ+ @(x) exist
everywhere on [a, b] and

(@) ifa ¢ Ny,

. B 1 X x n—o—1 " ds
cnDap () = I'n-a) L (ln §> 9 () s (8)

= yFa 09 (x),

(b) ifa =neN,,
cuDare (x) =89 (x). €)
In particular,

Do (x) = (x). (10)

Lemma 5 (see [8, p. 5]). Let R(a) > 0, n = [R(x)] + 1 and
@ € Cla,b]. If R(ax) # 0 ora € N, then

C-HDZ* (sz+‘l’) x)=9(x). (11)

Lemma 6 (see [8, p. 6]). Let ¢ € ACg[a,b] or let C[a, b] and
« € C; then,

¥ @ <ln ’Z‘)k (12)

0T (enlie) (9= (0 - 3=
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Lemma 7 (see [29, p. 4]). Let w € C and R(w) € (0, 1), and
let & be a constant. A function u(t) : [a,T] — C is general
solution of system

cnDau(®) =gtu(),
te(@T], t+t, (k=1,2,...,m),
u (t)
1 ‘ A ds
“u+mL (lﬂ;> g(s,u(s))?

S - 1 (ff ) ds
ua'f';Ai(u(t ))+r w) J; (hl;) g(s’u(s))?

A;(u(t)))

EZ I'(w)
B Jt <ln£>w_1 9 (s,u(s) %]

provided that the integral in (14) exists.

3. Main Results

Firstly, let us consider some limit cases in system (3a), (3b),
(3¢), and (3d):

lim {system (3a), (3b), (3¢),and (3d)} —

I (x(t; ) =0 Vke{1,2,....,m},
Ji(x(t, ))—0VIE{1,2,....p}

lim  {system (3a),(3b),(3¢c),and (3d)}
Ji(x())—0
VIe{1,2,...,p}

e DLx(®) = f (t,x (1),

Axlpoy = x(t) = x(t;) = L (x(t;)) € C, k=1,2,...,m,

x(a)=x, €C,

Ox(a)=%,€C,

lim  {system (3a),(3b),(3c),and (3d)}
T (x(t;))—0,
VkE{1,2,...m}

f(tx(®),

CH a* x(t)

x(a)=x, €C,

Ox(a) =%, € C.

Adx|, = Ox (t;r) - 8x (Z;) =] (x (E;)) €C,

3
Au't:tk = ”(t}:) - ”(t};) = Ay (“ (tl;)) eC
k=12,...,m
u(a)=u, u,ecC,
(13)
if and only if u(t) satisfies the integral equation
for t € (a,t,],

(14)

[L <ln%>w_l g (s,u(s)) ? + J: <1n£)w71 g(s,u(s)) ?

fort e (ttiy], k=1,2,...,m

cnDhx () = f(tx (),
x(a)=x, €C, (15)
O0x(a) =%, €C,

te(aT],

te(@T], t#t (k=1,...,m),

(16)

te(@T], t+t (I=1,...,p),

17)
I=1,2,...,p,



Thus,

(1) lim {the solution of system (3a),

I (x(t;)) =0 Vke(1,2,..,m},
Ji(x(E; ) =0 VIE(L,2,....p}

(3b), (3c),and (3d)} = {the solution of system (15)},

(i) lim  {the solution of system (3a), (3b), (3c),

Ji(x(E;))—0,
Vie{1,2,...p} (18)

and (3d)} = {the solution of system (16)},

(iii) lim  {the solution of system (3a), (3b), (3c),

L (x(t;)—0,
Vke{l,2,...,m}

and (3d)} = {the solution of system (17)}.

Thus, the definition of solution of system (3a), (3b), (3c), and
(3d) is presented as follows.

Definition 8. A function z(f) : [a,T] — C is said to be a
solution of (3a), (3b), (3¢), and (3d) if z(a) = x, and dz(a) =
X, the equation condition C_HDZ+ z(t) = f(t, z(t)) for each
t €laT]/ {ti,t;, s th} is verified, the impulsive conditions
Azlt:tk = Ii(z(t;)) (here k = 1,2,...,m) and ASZIt:;l =
Ji(z(t;)) (here | = 1,2,...,p) are satisfied, the restriction
of z(:) to the interval (t,/(,t,'ﬁl] (here k = 0,1,2,...,II) is
continuous, and the conditions (i)-(iii) hold.

Next, define a function by

() =x(t])+x(t) lnti
k

[ ) s

x (t)

t t gq-1 d
<ln;> f(s,x(s))?s

~ t 1 J’
X, +X,In -+ —
a

a T(q)

k
X+ Ty ln =4 YT (x(1)) +
i=1

_ Jt (ln g)qfl F(sx(s) ?] + ;Izétf t"l)) J

a N

provided that the integral in (21) exists.
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for t € (t;,ty,;] (here k=0,1,2,...,m).

(19)
By Theorem 4, we have
1 t t 2—g-1
q = N z
[C'HD“+X (t)]te(tk’tkﬂ] B { T (2 - q) Ja <1n S)
-8 [x(t+) +0x(t))In 2y L
k ¥t T(g)
s q-1 d d
s ny|as
S ()" x| %}
th ( n 1S ) ietten
(20)

AL e,

= f(t’x(t))lte(tk

This means that X(t) satisfies (3a), and X(t) satisfies (3b)-(3d).
However, X(t) does not satisfy the conditions (i)-(iii), and it
is not a solution of system (3a), (3b), (3c), and (3d). Therefore,
X(t) is considered as an approximate solution to seek the exact
solutions of (3a), (3b), (3c), and (3d). Next, let us prove some
useful conclusions.

’tkﬂ] :

Lemma 9. Let g € C, R(q) € (1,2), and & is a constant.
System (16) is equivalent to the integral equation

for t € (at,],

ﬁ Jt (1n E)q_l flox(s) % 21)
) s [ [ () rsxe e [ () sxin
i=1 a 2

" (1n E)‘H f(sx(s) %}

fort € (ttyy], 1<k<m
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Proof.
Necessity. Letting I (x(t,)) — 0 (k = 1,2,...,m) in (16), we
have
lim  {system (16)}
T (x(t))—0,
Vke{1,2,...,m}
c HDa x(t)=ftx(t), te(aT], (22)
— 1x(a)=x, €C,
Ox(a) =%, € C.
1 troop\2at s <
[C-HDZ*x(t)]ze(zA,zM] = <m L (ln g> &8 {xu +X,In - + ;Ii (x(

That is,

lim  {the solution of system (16)}
L (x(£,))—0,
Vke{1,2,...m} (23)

= {the solution of system (15)}.

In fact, we can verify that (21) satisfies the condition (23).
Next, taking fractional derivative to (21) for t € (t;, ;]
(here k =0,1,2,...,m), we get

_ 15/, s\ dn & _
D [ (05) s e

Jetg [ () s @ (1 2) sts 2 [ (2] s 2]+ L [ () s nto 2} d—)(]

- T {[ () e ([ (m2) s ) & sir G () e ([ () sonxtan ) -

s q-1 dn\ d k -

So, (21) satisfies the condition of fractional derivative in
system (16).

Finally, using (21) for each t; (here k € {1,2,
have

m}), we

x(ty) - x(tk)—hmx(t) x(t;) =x,+% lnt(;<

+ggua
FlaxeZ £gli (x(5))

{7 s
o )"
[ () r e &

. J: <ln%>q72f(s,x(s)) %} —x,—%,Ink te

_ %q) Ltk <ln%>qi1

flsx (S)) —

i

In (t,./t;)
I(q-1)

S h()

(24)

L)

= X e

te(totr]
ds k-1

flox () - EXI(x(t)))
i=1

I INCR Nk
v j )’ f(s,x(s»%
tk In (t,/t;)
j t rn(qtk—/tl)

.megyzf@xkn?}zh

It means that (21) satisfies the impulsive condition of (16).
Hence, (21) satisfies all conditions of system (16).

k f(S, dS:| +

(x (£)) -

(25)

Sufficiency (by mathematical induction). By Lemma 6, the
solution of (16) satisfies

- t
x(t)=x,+X,In—
a

BNt ds (26)
) J <lns> flox )=

for t € (a,t,].



Using (26), we obtain

x(ty) = x(t) + 1 (x(£))
+1 (x (1))

1 (b t\9! ds
+@L (ln?> flxe) e,
S (t]) = 6x(t})

_ t
=x, +X,In L
a

(27)

:xa

r(q—l J( )q 2f(s’x(s))%.
)i

Thus, the approximate solution X(t) is given by

~ + + t 1
x(t)=x(t1)+8x(t1)lna+@

t gq-1
J <1nf> Feox) B ox +7,mnL
t, N S a

+1; (x (1))
Al et o

L) o]

INCE
for t € (t,,t,].

Let e, (t) = x(t) — %(t), for t € (t;,t,]. By (26), the exact
solution x(t) of system (16) satisfies

D fexen ®

t
lim x(t)=x,+%x,In—
I (x(£7))—0 a

1 (fy, t\1! ds (29)
+@J’a (11’1;) f(S,X(S)) ?,
for t € (t;,1,].
Then,

lim ¢

(t)= lim
I, (x(t))—0

I, (x(t))—0

[ o) s

Jsx(s ))— (30)

{x (&) -x®)}

In(t/t,)
I(qg-1)

f@m@»?]—

~

In ;I)H f(sx(s) ?.
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This shows that e (t) is connected with I,(x(¢])) and
limy (,(-y)€; (£). Thus, we assume

e (t) =

x (I (x(6)))  lim

I e (t)
L (x(t7))—0

= —x (L (x (1))
{ripll (o) sexor

) st

1

SIONEEEIE T

byt d
INCO N
for t € (t,,1,],

where function y is an undetermined function with y(0) = 1.
So,

x() =% () +e, (t)zxa+?caln£+11 (x(£]))

g L) e e

—x (L (x(5)))]
{02 serr

)

1

(32)

[t e ®]

[ @8 roner®]

for t € (t,,1,].
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Letting p(I, (x(t)))) = 1 — x(I, (x(£]))), we get Therefore, the approximate solution X(t) is provided by
X0 =x, 45,00 Lo (o) + ﬁ r (in E)qfl () = x(6) + 0x () In :2 ) L (1n —)q_l
FlexO ey (1 (1) Fex @)% x ezt
- {ﬁ Ut <ln %)qil f(s,x(s))% + izzmli (x(£))
) "l s
[ () sexn )+ i“(f;f “1)) f (8) rexe S ?‘((tf tzl))
r <ln%>q2f(s,x(s))?} I ( f) f(sx( )—+y(1 (x(£))))
for € (t1,5]. A [ ) rexo®
Using (33), we obtain . r (35)

x(6) =% (5) + 1 (x(85)) = %+ Ty n 2 In (t,/8,)

t,\97! ds
ln:) f(s,x(s))?]+r(q_1)

r (m%)q 2f(s,x(s))%]»

y( ((5), ¢

L)+ B )+ s [ ()

N

FlexO ey (1 (1)

o e ds r(@-1) t
{F(q) “ (ln S> S xS bt N2 ds
b T ds | “ (03) sexeT
" L <ln ?) fexe)s
1 + Jtz (ln t—2>q 2f(s,x(s))é
- Jtz <ln t—2>q_l f(s,x(s)) é] + In (t2/%,) h s s
M s ’ s I(g-1) t 42
t, ds
. (34) - I (ln —) f(s,x(s))—| forte(tyts].
.Jtl <lnt_1>q 2f(sx(s))£} a S S
A s ’ s’
. o 1 t £, )42 Let e, (t) = x(t) — x(t) for t € (t,, t3].. Moreover, by (33), the
Ox(t;) =0x(t;) =%, + m L <ln ?> exact solution x(f) of system (16) satisfies
dS B 1
-f(s,x(s))? Il(x1(1tn)1)ﬂox(t)—x +% lnt+12( (2))+m
Y (L (e (E)) [ (" (1t \T2 ds t g-1 d
+ W [Ja (hl?) f(S,x(S))? . ‘L <ln§> f(s,x(s))?s +Y(IZ (x (t;)))
t2 t,\972 ds -1
+L (02)" fexen S {_)U (n2)" Fxn®

I'(q
NG () reren®



L) s 2]

I'(q

) j: (ln %)q_zf(s,x(s)) %}

for t € (t,,t5],
Iz(xl(lt?)l)aox ()= %+ X ln h (X(t )) m
INCH RS ))
{rig L (2] soron®
r <ln
J~t
1)

1
>q f(s,x(s)) as
s

» |+

41 ds ln(f/tl)
) fls,x ())?] T(g-1)

In

[Z NN

(
(ln > fs x(S))_}

fort e (tz’t3] >
1 t t q-1
+_J <ln—)
T(q) Ja\ s

.f(s,x(S))% for t € (t,,15].

_ t
lim X (t) = x, +%,In—
I (x(t]))—0, a
L(x(t;))—0

(36)
Then,

lim e, ()= lim {x@t)-%@®)}=[-1
I (x(t7)—0 Lx())=0

+y (L (x()))]
{etg ([ ) s

+ J: (10 E)q_l f (S’x(s))%

2

[ s ity

) Ltz <1n %)q 2f(s,x(s)) %}

for t € (t,,15],

Mathematical Problems in Engineering

lim e, ()= lim {x(@)-x@®)}=][-1
L(x(t;))—0 Lixn)=0

+y (I (x (7)))]
el it

) s

2

(e ]

INCHIEEE

-y (I, (x(t))))
el s

+ Lt <1n E)q_l f(s’x(s))%

2

- <mz>*lf<s,x<s»%1+é‘zéfi?)

for t € (t,,t5],

lim e, ()= lim {x@) -% ()}
L (x(67)) -0, L)) -0
L (x(t))—0 L(x(t;))—0
ds
[ 2 f (s, x(s)) —
T S

; J (1n Z)q fls,x(9) %

L) s ] e

[ s

fort e (t23t3] :
(37)
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By (37), we get

Then,

x(t):%(t)+e2(t):xa+§aln£+ Y1 (x(6))

ey () = [y (I (x (1)) +y (L (x(£3))) - 1] y
. {ﬁ “: (111 %)q_l f(s,x(s))% " ﬁ Lt (ln E)q_l f(s’x(s))%
e 0 )
o s )
. Jt <1n E)qil F(5x(9) ?] + in(;titzl)) " J: (1n E)q_l £ (5% () %
) Ltz (ln %)q_z f(sx(s)) ?} - Lt <ln E)q_l f(s,x(s)) %] + l[ll(étitll))
) oo () e % 7
{L “h q—lf(’ ) +V(Iz(x(fj_)))
lz(q) “tl f S> R {ﬁ“; <ln%>q_1f(5,x(s))%
£\ d
" L <ln ;) flox(s) ?S + LZ <ln E)q_l f(s,x(s)) %
[ et B ]

I ) 0]

1

for t € (t,,t5].

for t € (2, 15]. Consider the following limit case

[ cuDLx(t) = f(t,x(1), te(at;], t#t, t#t,

AX|y=y, =x(tp) —x(t) =L (x(t)) € C, k=12,
thirtl . (40)
t x(a)=x, €C,

| 6x (a) =X, € C.

[ DL x(®) = f(tx(1), te(at), t#4

e s n ) e ) "
x(a)=x, €C,

A(Sx (a) =%, €C.
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Using (33) and (39) for (41) and (40), respectively, we have

x (I (x(6))) + I (x (1))
= x (I (x () + x (I (2 (£,)))
for VI, (x (), L, (x (;)) € €
Therefore, x(2) = £z Vz € C; here & is a constant. Thus,

1

f+n<«»+ﬂa

x(t) =x,+X,In

t\11

. Jt (m ;> f(s,x(s)) % +&1 (x (1))

. 1% Ht (ln %)q% F(sx(s) %

[ 02) s

1

_ Jt <ln §>q_l Flsx(s) %] N
[ ]

In(t/t;)
I'(g-1)

for t € (¢,,1,],

X0 = x4 Eoln =+ 4 (2 (1)) + L (x (1)

1)jt<1n§>q fexenE e ()

+_
I'(q) Ja

[l i
() rere

- Jt (n)" rexe ?] . rl(gf fll))
7 f s %} 8 (x (1))

L[ ) s

8 =
/N
—
=
|=

Mathematical Problems in Engineering

)
_ Jt <ln E)q_l Flsx(s) ?] +
[ ]

In (¢/t,)
I(q-1)

for t € (t,,t5].

Next, suppose
t < 1
H=x,+x,In—+ ) L(x(t))+—
x(0)=x,+ %0 2w YL () + s

J <‘“§)q Flax)® +£;1
| {ﬁ [[[(n2)" rexn®

' J: ()" Foxen®
() rero £ 5 (tft"l))

I'(q
[t )

for t € (tjotys] -
Using (44), we obtain

_ _ N t
X (tZH) =X (tk+1) + Ik+1 (x (tk+1)) =Xt X, In k;l

k+1 1

s vt q-1
) ] ()
ds . _
flox() T+ EYL(x(6)

. {ﬁ “t <ln %)qil f(s,x(s))%

)

(43)

(44)



Mathematical Problems in Engineering

_
I'(q-1)

[ ) s

69(5 (t2+1) = 69(5 (t1:+1) = "Aca +

L (x(t))

zz i T(q-1) “ (ln%y—zf(s’x(s))?

_ Jt <ln t’%l)q_z £ (s x(5)) % .
(45)

Therefore, the approximate solution X(¢) is presented by

t 1
X(t)=x(ty,,) +0x(t;, ) In — + ——
ot o trr1 I (Q)

t gq-1
J (ln£> f(s,x(s))é:xu+9?alnE
t S N a

k+1

k+1

+ ZIi (x(t))

[ () i

+jt ()" s L] lngg/ikil))

INCEORTE

+EY 1 (x(1)

. {qu) “t (ln %)q_l f(s,x(s))%

7 )

In (tk+1/ti)

_Ltkﬂ <lntkT+l>q_1f(s’x(s))% "Tq-1

1

[/ ]

I (x () In (¢/134.1)

ey T(g-1)

i=1

[0 i

B r" <ln ""‘T“)H £ (s x(5)) %

for t e (tk+1’tk+2] :
(46)

Let ey, (t) = x(t) — X(t) for t € (t;,,ty,])- In addition, by
(44), the exact solution x(t) of system (16) satisfies

t, 1 broot\1!
lim  x(t)=x,+Xx,In— J (ln )
L(x(t]))—0, a T (‘1)

Vie{l,2,....k+1}

ds
< f(s,x(s)) . for t € (tgo iy ]
| t)=x,+Xx,In— L(x(t;
I(xén)l)—w)x() Yo+ X " Z ()

1<i<k+1,
it

N ﬁ r <1n E)q_l Fsx(s) %

v ) Lx(R) (47)

1<z<k+1

INCONTETT
[ (t) s ] 2
INCORTEEE

fort € (tgotpyr]> j€{1,2,....,k+1}.
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Then,
lim e (t) = lim  x(t)-X(t)
L;(x(t;))—0, L;(x(t;))—0,
Vie{l,2,....k+1} Vie{l,2,....k+1}
-1 Jtm ( te >q—1 ds
= — In — s, x(s) —
e [ . < f(sx(s)) .
t t q-1 d t t q-1
+J (m-) f(s,x(s))—s—J' (m-)
7%} S S a S
ds In (t/tk+1)
flsx(s) S] P
98] t q—2
. J <1n k+1> f(S,x(S))é
a N N
fOr t e (tk’ tk+l] N
lim e, ()= Ilm x@)-%@)=4-1
I{,-(x(t]f))—)O Ij(x(t]f))—>0

+& Z L(x(t))

1<i<k+1,
itj

: {ﬁ [ J (m tkS“ )q_1 Flsx(9) %

L) o

k+1

() s ] )

[ ) ]

-8 ) Lkx(R)

1<i<k+1,
it

{05 serr
o[ (2) s

_ J (0" Fsxo) ?] -2 E;/ikil))

. J:M <ln tk;rl >q—2 f(s,x(s)) %}

for t € (tyotypr], j€{1,2,....k+1}.

(48)

Mathematical Problems in Engineering

By (48), we obtain

e () = {—1 + flilz‘ (x (tl))}

[rgll () s

+ J: <ln§>q_1 f(s,x(s))?

_ J (0" Fisx o) ?] = E;/i“f))

[ ) ]

k+1

€)1 (x(1) )

{rg[l () e

) s

ANt ds] In(t/te)
_L () f(s’x(s))?]‘ T(g-1)

N

for t € (tpotpyy)> j€{1,2,....,k+1}.

Thus, we have

k+1

RO =FO + e ©= 5T+ Y L)

+ ﬁ r (ln E)q_l F(5x(s) %

k+1

YL (1)

{rwlh <ln%>”1f<s,x<s>>? -
I
[
], (m

q-1

flsx (5)) —

In

» |

[N N

In

1)

q-2

s

)

o s1, In(/n)
) fs s] F(qtt
) f(sx(s))—}

fort e (tk+1’ tk+2] .

Then, the solution of system (16) satisfies (21).
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By the proof of Sufficiency and Necessity, system (16) is
equivalent to (21). The proof is completed. O

x(t)

X, +X,In—

f -1

+ﬁL <1n£>q f(s,x(s))%,
~ t ! _7 , 1

xa+xuln;+;]j(x(tj))lnf+mj

j a

+cji11j (x (%)) {ﬁ [

provided that the integral in (51) exists.

Remark 11. For (17), we have

lim {system (17)}
J1(x(E,)=0,..0.] 5 (x(2,))—0 (52)
— {system (15)}.
Then,
lim {the solution of system (17)}
Jix(E))=0,0] , (x(E,) =0 (53)

= {the solution of system (15)} .

Ox (t)

oy ()

o () s

I (x(t

) Jt (mé)ﬂ F(s,x(s) %]

provided that the integral in (55) exists.

13

Lemma 10. Let g € C, R(q) € (1,2), and { is a constant.
System (17) is equivalent to the integral equation

fort € (a,t,],

() e ®

(51)

[(n3) romor®f () roxen

£, g\l ds | Wn(t/t;) (i E\T7
_L<ln;> f(s,x(s))?]+r(q_l)Ja <1n?

f(s,x(s))%}, forte(tpt,], 1<l<p

In fact, we can verify that (51) satisfies the condition (53).
Moreover, the approximate solution X(t) of system (17) is
defined by

%(t):x(fl)+8x(tl)lnt—
!

1 (f t\1! ds (54)
+mj’ (ln;> f(s,x(s))?

t
fOr te (El’fl+l] 5

here x(£,) = x(t,) and dx(f;) = Ox() + Ji(x(F)), I =
2,...,p.

Due to similarity with Lemma 9, the proof is omitted.

Corollary 12. Let g € C, R(q) € (1,2), and & is a constant.
A function x(t) : [a, T] — C is general solution of the system
(16); then,

for t € (at],

(55)

SN[t rrin e | () s

forte (tten], 1<k<m
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Corollary 13. Let q € C, R(q) € (1,2), and { is a constant.

A function x(t) : [a,T] — C is general solution of the system
(17); then,

Ox (t)

Ly e

2T

I(q-1)

L6 s

d

Remark 14. By Corollaries 12 and 13, it is shown that two
kinds of impulses Axlt:tk (k=1,2,...,m) and A(letzgl (I =
1,2,..., p) have similar effect on 8x(t) of system (15).

provided that the integral in (56) exists.

ox (t)

1

I(q-1)
EVIEOE
521 ((x(_tl))

_ Lt <ln§)q_2 f(s,x(s)
k,

Ji (x(t)))
+Cj=zl I(g-1)

[(o0) oo

_
I(g-1

.t

5]
N

() s

provided that the integral in (57) exists.

Proof. According to Corollaries 12 and 13, the solutions of
system (3a), (3b), (3¢), and (3d) satisfy

() sin®
l ( ) Fox T [ ()" rexen

) jt ()" Fsxon®

/(2 ™ ) e ®

VAN
lL (ln?) f(s,x(s)) % + L

Mathematical Problems in Engineering

for t € (at,],

(56)

fOr t e (El,zl+1], 1< 1 SP

Lemma 15. Let g € C, R(q) € (1,2), and & and { are two
constants. A function x(t) : [a,T] — C is general solution of
the system (3a), (3b), (3¢), and (3d); then,

forte (a,t;] ,

(57)

brot\12 ds
(ln;) f(s,x(s) -

j

forte (t,’c,t,'ﬁl], 1<k<II

N
F@—

)

X,

VAN o ds
Sx () = [10n5> flexo -

fort € (a,ti] .
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By the definition of Caputo-Hadamard fractional derivative,
system (3a), (3b), (3¢), and (3d) satisfies

{system (3a), (3b), (3¢c), and (3d)}

(DI Ox () = f(tx (1),

— 1 A0x|,; =0x(f)-0x()=J(x(f)) eC, 1

x(a)=x, €C,

[6x (a) =%, € C.

Moreover, it is reasonable that impulses Ax|._, (k
1,2,...,m) are considered as special impulses Adx|,_; (I
1,2,..., p) in system (59) by Remark 14. Therefore, using
Lemma 7 for system (59) (as t € (t,'c,t,'m], here k
1,2,...,1I), we have

-f(s,x(s))%

ZIEF((; _(tl))) [ J <1n %>q_2 f(s,x(s))%

i=1

0 it [

i

-f(sx(s))%]

&85 (x(5;)) { g ( £ >q2 ds
+ y —- In = f(s,x(s) —
JZ{ I'(g-1) .[ s s

a

) res % [ (md)”

J

-f(ax(s))%],

where & (i = .,k;) and Cj (j = 1,2,...,k,) are
undetermined constants. Letting ] j(x(f;)) =0 (forall j €
{1,2,...,k;}) and L(x(t;)) = 0 (foralli € {1,2,...,k}),

Axley, = x(t) = x () = L (x () € C, k=1,2,..

15
te]=@T], t+t, (k=1,....m), t#¢t (I=1,...,p),
., m,
(59)
‘-)p)

respectively, we get &, = & (foralli € {1,2,...,k}) and Cj =(
(forall j € {1,2,...,k,}) by Corollaries 12 and 13. Thus,

ky

=5 60 ()

-f(s,x(s»%

EZIF((:(t ) “ <1n%>q72f(s,x(s))%

() renen®

i

_ Jt (mé)ﬁ Flsx(s) %] (61)

b1 (x(TN [ i/ 7\
+CZ—]](x(t])) ljj<ln%> f(s,x(s))?
= s

= T(q-1)

) s

J

_ r <1n§>ﬁf(s,x(s)) %} ,

for t € (totyy ], 1<k <IL

This proof is completed. O
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Theorem 16. Let g € C, R(q) € (1,2), and & and { are two
constants. System (3a), (3b), (3¢), and (3d) is equivalent to the
integral equation

x (t)
R t t\1! ds ,
xu+xaln;+mL <ln;> f(s,x(s))? forte(a,tl],
X, + X, In— + il (x(t)) + i}- (x(£;))In LA Jt <lnE>{r1 £ (s,x(5) ds
o =l l =1 ! ! Z] I(q) Ja S ’ S
k
L _ 1 LAY ds (ty/, t\1! ds
#E) (1) {@ “ (02)" xS+ L (08)" Fexe s .
= 4 t £\91 In (t/ti) t; t; q-2 ds
_ J (ln;) O R J <ln§) F(sx(s) ?}
& — 1 4 1 t " ds ! It -1 ds
+(j;]j (x(tj)) m L n f(s,x(s)) <t Lj ( n;) f(s,x(s)) -
rop\al ds | I(t/5) (/. N\ ds .,
- J (1“2) f(5x(s) ?] + F(q—Jl) j <1n;]> faxe) S forte(tht,], 1<k<I
provided that the integral in (62) exists. Next, taking the fractional derivative to (62) for t €
(t,’c, t1,<+1] (here k =0,1,2,...,1I), we get
Proof.
Necessity. We can verify that (62) satisfies conditions (i)-(iii)
by Lemmas 9, 10, and 6.

¢ 2-g-1 k k, _ Ky
[OHDZ*x(t)]tE“L%] - { 1 L (]n %) g (xa X, lng + 1 (x () + j:zl]j (x (2;))111; n ﬁ L" (ln Z)q 1 f(sx(s) % + E;I,- (x(5))

r (2 - q) i=1 J

: {ﬁ [[[ (%) s [[(22) rexo S [ (n2) sxen ]« ;“(;”f t;)) [[(n)" rexe ?} . ijiZzlfj (< (7))

i

1 g Zj ! ds ("(. n\i! ds [T/ n\1! ds In ('7/?1) U] Ej 2 ds dn
{I‘(q)[L <1n;> f(s,x(s))?+‘|’7 (ln;) f(s,x(s))?—L <1n;) f(s,x(s))? +F(q—1) L ln? f(s,x(s))? ; y
1€ty ] (63)
TTe-9r(@ 1 s

! {jt (n £>Z_q_1 5 {j" (0" fsxen @+ E:z'lzi () [f (n ) rex E-[ (0 D)" fex ]+ :;szj (=(5))

n 9-1 d. n q-1 d d Ky -
: [J (1) rexo T ()" fexo) ” :} - {f(t,x(t))lm $ LD [ 05 O = £ 2 O]
te(toty,,] a

t

ky
+ 0T (2 (7)) [ £ 6 x @], - f(nx(t))t,zu]} = Xy -
j=1

'
te(tity,,]

So, (62) satisfies (3a).
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Finally, it is straightforward to verify that (62) satisfies
(3b) and (3¢). So, (62) satisfies all conditions of system (3a),
(3b), (3¢), and (3d).

Sufficiency. According to Lemmas 9 and 10, the solutions of
system (3a), (3b), (3¢), and (3d) satisfy

~ t
x(t)=x,+X,In—
a

F(lq) J | <1nt>q Faxe) ? (64)

fort e (a, t;] .

Next, by Lemma 15, the solutions of system (3a), (3b), (3¢c),
and (3d) satisty

k
SN - 1
6x(t):xu+;]j(x(tj))+m

L e )

] (Z F((q(_ 1)) (65)

g Zj i ds
. [ ) <ln;> f(s,x(s))?

+ Jt <ln£>q_2 f(s,x(s)) ?

t q-2 d
_ g(lné) f(s,x(s))?s ,

| S

for t € (totypy ], 1<k <IL

Using (65), we have

_ %, L)
x(t)—C+J'<|;+jZ1 p +F(q—1)

L(02) branr®

17

le (x_ ; “t (1n5>q72 %f(s,x(s))%
S

_ L’? (1n g)‘H %f(s,x(s)) ?]

&7 (x (1))
% vy

g Zj q721 ds
[J (ln?> pCEICIE

‘ f <1n g>q_2 % Flsx(s)) ?

3]

_ L" (m?)q_z %f(s,x(s))%] } dn=C

e Y, (x (7)) Int + (lq) Jt<1nf)q71

j=1

ds &L (x())Int
f(s,x(s)) < ZW

i=1

) ren®

k, . __~ 1 ?j t; .
+ZMJ <ln%> f(s,X(S))%

j=1 I(q-1)

+§Hi ﬁx((%‘)) “: (lné)q_lf(s,x(s))%

i=1

_ Lt <lng)qil f(s,x(s)) %]
L3 9:1x0) “: ()" fxen®

j=1 I'(q)

_ Jt (h{)qil Flsx(9)) %] .

(66)
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Letting ]j(x(f]_.)) =0 (forall j € {1,2,..., ph) and L(x(t))) =
0 (foralli € {1,2,..., my}) in (66), respectively, by Lemmas 9
and 10, we obtain

ky
t.

20;(x(5)F;

Ky
C=x,-%,na+ YL (x(t)) -
i=1 j=1

- Y8 (<)

1

-1
N fexe s

E(m—

S
)
n)qf@m@»%}

1

I'(q)

(67)

g-1 J
) f@m@Df

q-2 d
) f@m@»f}.

ks

)+ 2T (x (7))

j=1

Thus,

k
t ! _
H=x +% In=+ YT (x (£
x(t) xa+xana+;,(x(l)

) s

EYL(x(1)

x (t)
_ .t I A
xa+axaln;+mja(ln;) f(,

- P B k _ t 1
xa+axaln; +;Ii(x(ti ))+];tj1j(x(tj))1n;—j + @
k, t \1!
0o [ [[[ (0% seeen

t t.
In- :
s

In (¢/t;)
T(q-1)

jt (ln

CCHE

N

L

provided that the integral in (69) exists.

t
)
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'{ﬁb{EKm%ylf@x@»?

+ J: (ln z)q‘l f (s, x(s)) %
_LXmEYAf@xu»%]+$5?g
. Lt <1n %)’H f(s,x(s)) %}

In (t/t;)

I(q-1)

q-1

f@mu»%]+

q-2 d
) f@m@»f}

for t € (totyy ], 1<k <IL
(68)

So, the solutions of system (3a), (3b), (3¢c), and (3d) satisty
(62). This proof is completed. O

Corollary 17. Let q € C, R(q) € (1,2), and & and { are two
constants. System (1) is equivalent to the integral equation

forte (a,ti] ,

(69)

S 1 i ot i ds ("7, t\1! ds
+{jzzltjlj(x(tj)) {@ [J <ln?> f(s,x(s))?+Lj <ln;> floxn®
t -1 d In t/; G t 2 d 1o
_Ja(ln§> f(S,x(s))—Sl+r(‘(1_’1)) L <ln;’> f(s,x(s))?s} forte(titiy], 1<k<T
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Remark 18. Substituting X, = ax, and J ]-(x(f]_.)) = f]jj(x(f;))
into (62), (69) can be obtained. Next, let us analyze the limited
case of system (1):

lim {system (1)}
q—2"

(6% (x (1) = f (t,x (1),
Ax|yy =x (te) = x(t) = L (x (%)) € C,
Ax'|t=i’ =x' (f;r) - x' (fl_) =1 (x (fl_)) €C,

x(a) =x, € C,

| x' (a) =%, € C.

On the other hand, by (69), we have

t 1 (f 0t ds
_+@L1n;f(s,x(s))?,

Ky

_ .t _ b_ —\\<- .t
xa+axaln;+21,-(x(ti ))+];Ij(x(tj))tjln? +

i=1

It can be verified that (71) is the solution of (70), which
indirectly supports our conclusion.
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