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Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local
search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger
theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses,
and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each
antibody, the algorithm adjusts antibodies’ concentrations through its own danger signals and then triggers immune responses of
self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages
in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet,
and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions tomeet the accuracies within
the specified function evaluation times.

1. Introduction

In the practice of engineering, there are awide variety of com-
plex optimization problems to be solved, such as multimodal
optimization, high-dimensional optimization, and dynamic
optimization of time-varying parameters. These problems
are manifested in the form of minimization of energy con-
sumption, time, or risk, or maximization of the quality or
efficiency, and usually can be expressed by getting the maxi-
mum or minimum of multivariable functions with a series
of equations and (or) inequality constraints. In order to solve
such problems, optimization theories and technologies have
been rapidly developed, and its impact on society is also
increasing.

Current research focus of optimization algorithms is evo-
lutionary computation methods represented by genetic algo-
rithms (GAs) [1–3]. The genetic algorithm simulates the
biological evolution process, is a random search optimization
method, and shows excellent performance in solving typical
problems. Although GA has characteristics of global search
andprobabilistic choice, the performance ofGA is sensitive to
some key parameters which are crossover rate and mutation

rate. Moreover, it is difficult for GA to solve multimodal
function optimization due to its random crossover pairing
mechanism. So, on one hand, researchers hope to make con-
tinuous improvements on existing genetic algorithms, and on
the other hand, they try to build new algorithmmodels based
on new biological theories.

Artificial immune system (AIS) is one of bionic intelligent
systems inspired by biological immune system (BIS), and is
new frontier research in artificial intelligence areas.The study
of AIS has four major aspects, including negative selection
algorithms (NSAs), artificial immune networks (AINEs),
clonal selection algorithms (CLONALGs), the danger theory
(DT), and dendritic cell algorithms (DCAs) [4]. It cannot
only detect and eliminate nonself-antigens regarded as illegal
intrusions, but also has the evolutionary learning mecha-
nism [5–7]. There have been a great progress by applying
the artificial immune to optimization problems, and many
research papers have been sprung up. In artificial immune
optimization algorithms, solutions to optimization problems
which are to be solved and are usually expressed as high-
dimensional functions are viewed as antigens, candidate
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solutions are viewed as antibodies, and qualities of candidate
solutions correspond with affinities between antibodies and
antigens [8, 9]. The process of seeking feasible solutions is
the process of immune cells recognizing antigens andmaking
immune responses in the immune system. The following
works are typical. de Castro and Fernando proposed the basic
structure named CLONALG [10] of function optimization
and pattern recognition based on the clonal selection mech-
anism. Halavati et al. [11] added the idea of symbiosis to
CLONALG.This algorithm is initializedwith a set of partially
specified antibodies, each with one specified property, and
then the algorithm randomly picks antibodies to add to an
assembly.This work showed better performance than CLON-
ALG. de Castro and Von Zuben proposed an optimized
version of aiNet [12], named opt-aiNet [9]. This algorithm
introduces the idea of network suppression to CLONALG
and can dynamically adjust the population size, having strong
multivalued search capabilities.Thework in [13] presented an
algorithm called dopt-aiNet to suit the dynamic optimization.
This algorithm introduces a line search procedure and two
mutation operators, enhances the diversity of the population,
and refines individuals of solutions.

Existing artificial immune optimization algorithms have
maintained many merits of BIS, such as fine diversity, strong
robustness, and implicit parallelism, but also reflect a number
of shortcomings, such as premature convergence and poor
local search ability [14, 15]. By introducing the danger theory
into the optimization algorithm and integrating the clonal
selection theory and the immune network theory, this paper
proposes a danger-theory-based immune network optimiza-
tion algorithm, named dt-aiNet. The main contributions of
this paper are (1) introducing the danger theory into the
optimization algorithms by simulating the danger zone and
danger signals; (2) giving a new antibody concentration
mechanism.

The remainder of this paper is organized as follows. The
principles of artificial immune theories and influential arti-
ficial immune based optimization algorithms are described
in Section 2.The flow description and optimization strategies
of dt-aiNet are described in Section 3. The computational
complexity, convergence, and robustness analyses of dt-aiNet
are presented in Section 4. The effectiveness of dt-aiNet is
verified using typical problems in Section 5. Finally, the
conclusion is given in the last section.

2. Related Works

In this section, three artificial immune theories being adopted
in this paper are introduced, including the clonal selection,
the immune network, and the danger theory. And three
influential artificial immune based optimization algorithms,
includingCLONALG, opt-aiNet, and dopt-aiNet which are to
be comparedwith the proposed algorithm in the experiments
are described.

2.1. Artificial Immune Theories. From the humoral immune
response in the biological immune mechanism, the main
idea of the clonal selection [5–7, 16] is that, when immune

cells are stimulated by antigens, clonal proliferation occurs,
which result in a large number of clones, and then these
clones differentiate into effect cells andmemory cells through
the high-frequency variation. In the process of proliferation,
effect cells generate a large number of antibodies, and then the
antibodies duplicate and mutate to make affinities gradually
increase and eventually reach affinity maturation. The clonal
selection theory simulates the process of evolution of immune
cells, which can learn andmemorize themodes of antigens. In
optimization algorithms, we simplify the concept of immune
cells and use antibodies to represent a variety of immune cells.
Antibodies evolve through the clonal selection theory, which
means search in the solution space.

The main idea of the immune network [5–7, 17] is that,
when antibodies recognize invasive antigens, a variety of
antibodies constitute a dynamic network through interac-
tions between themselves. The immune system is viewed
as a mutual influential and mutual restricted network. The
network can maintain a balance according to the immune
regulation mechanism. When similarity between antibodies
is higher, the network will produce inhibition. When sim-
ilarity is low, the network will produce stimulus. So, the
network can maintain population diversity and equilibrium,
and ultimately becomes stable, composed of a variety of
memory cells. The theory is an important complement and
development to the clonal selection theory. In the optimiza-
tion algorithms, the concept that the immune network can
delete redundant solutions andmaintain the balance of global
and local search is used.

The danger theory [18] proposed by Matzinger indicated
that the key why the immune system is able to distinguish
the nonself-antigens and self-antigens is that these nonself-
antigens make the body produce biochemical reactions dif-
ferent fromnatural rules and the reactionswillmake the body
produce danger signals of different levels. So, the immune
system produces danger signals based on the environmental
changes and then leads to the immune responses. In essence,
the danger signal creates a danger zone around itself and
immune cells within this danger zone will be activated to
participate in the immune response. Compared with the
clonal selection theory and the immune network theory, the
danger theory introduces the environmental factors of the
body, describes some important characteristics of the biolog-
ical immune system, and explains some immune phenomena
which the traditional immune theory cannot explain, such
as autoimmune diseases. Therefore, through combination
of the clonal selection theory and the immune network
theory, the danger theory can simulate the biological immune
mechanism more completely and accurately. The theory is
a new addition to artificial immune algorithms. The danger
theory is introduced in this paper to express the ambient envi-
ronmental state of antibodies, which can better simulate the
biological immune system,maintain the population diversity,
and accelerate the convergence of the algorithm. In danger
theory, there are not any specific definitions of danger signals.
So, using the danger theory is crucial to defining the suitable
danger signals and danger zones according to the actual
situation.
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(1) Initialize. Randomly generate the initial network population;
(2) While (termination conditions are not meet) do
Begin

(2.1) While (changes of the average fitness of the population compared with that of the last generation is greater than
the specified value) do
Begin

(2.1.1) Compute the fitness of every individual in the population;
(2.1.2) Clone the same number for every individual, and get clone groups;
(2.1.3) Mutate the clone groups, and get mutated groups;
(2.1.4) Compute the fitness of every clone in the mutated groups;
(2.1.5) Select the clone with highest fitness in every mutated group, and form a new population;
(2.1.6) Compute the average fitness of the population;

End;
(2.2) Compute the distance between any two individuals; if the distance is less than the threshold, retain one;
(2.3) Randomly generate a certain number of antibodies;

End;

Algorithm 1: The description of opt-aiNet.

2.2. Influential Optimization Algorithms. CLONALG [10]
proposed by de Castro simulates the activation process of
immune cells. Only those immune cells that can recognize
antigens split and amplify. Clones of immune cells with high
affinity are more, and the variation rate is small; clones of
cells with low affinity are less, and the variation rate is large.
This algorithm searches for the global optimal solutions
through the cloning and high-frequency variation of immune
cells, which makes full use of the diversity mechanism
in the immune system. This algorithm is simple, and the
disadvantage is the premature convergence [8, 14].

opt-aiNet [9] introduces the concept of immune network
based on the clonal selection theory into optimization prob-
lems. This algorithm is described in Algorithm 1.

opt-aiNet includes two loops. At first, the algorithm
enters into the first loop. Implant a specific number of anti-
bodies (real-valued vectors) in the definition domain of the
objective function, constituting the artificial immune net-
work. Then, the algorithm enters into the second loop. In
order to obtain the local optimal solution, perform the clonal
selection to every antibody in the network. The process
continues until the average fitness of the population is close
to that of the previous generation, which means that the
network is stabilized. Then, the algorithm jumps out of the
second loop. Antibodies in the network interact with each
other, and the network suppression occurs. At last, randomly
introduce new antibodies. Repeat the process until the
termination conditions are met. Due to the nested loops, the
algorithm increases unnecessary function evaluation times.
The algorithm maintains the diversity of the population,
but has disadvantages of slow convergence and low search
accuracy [8, 14].

dopt-aiNet extends opt-aiNet to deal with time-varying
fitness functions [13]. This algorithm introduces a line search
procedure called golden section and two mutation operators,
which are one-dimensional mutation and gene duplication.
The golden section is to choose the best step size of mutation.
The one-dimensional mutation performs similarly to the

traditional Gaussian mutation but only for one direction at a
time. In the operation of gene duplication, a randomly chosen
element (coordinate) is copied to another element, simulating
the chromosome behavior in the evolution of species. This
algorithm increases the search accuracy, but the twomutation
operations waste too much function evaluation times, which
makes the algorithm converge slowly.

3. Description of the Proposed Algorithm

This section describes the basic idea of dt-aiNet. The flow of
the algorithm is described in Section 3.1. The simulation of
optimization algorithm for the immune system is introduced
in Section 3.2. And the optimization strategies of dt-aiNet
are introduced in Section 3.3. These strategies are comple-
mentary to each other and are applied in the process of the
algorithm.

3.1. Flow Description. In this paper, the danger theory is
introduced into the optimization algorithm and the clonal
selection theory and the immune network theory are inte-
grated. All the antibodies which interact with each other form
the immune network. First, the algorithm defines the danger
zone to calculate danger signals for each antibody and then
adjusts antibodies’ concentrations through its own danger
signals. Second, the algorithm performs the clonal prolif-
eration operation, generating clone groups by duplicating a
certain number of random antibodies, and thenmutates each
clone, but keeps the parent antibody. Third, the algorithm
selects the antibody with highest fitness which is in the
parent antibody’s danger zone and selects antibodies with
higher fitness than the parent antibody which are not in
the parent antibody’s danger zone. Fourth, the algorithm
adds randomly generated antibodies to adjust the population
size, recalculates danger signals for all antibodies, and then
removes antibodies whose concentration equals to zero. All
the individuals in the population constitute the immune
network which improves the affinities of the population in
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1. Initialize. Randomly generate the initial network population within the definition domain, and set initial concentrations;
2. While (termination conditions are not meet) do
Begin

2.1. Compute the affinity and danger signals of each antibody in the population;
2.2. Select better individuals to clone, and make them active. The number of clones is related to concentrations;
2.3. Perform the mutation operation to the clones, and then affinity mutation occurs. The mutation rate is related
to affinities and can be adaptively adjusted;
2.4. Perform the clonal suppression, and select better individuals to add into the network;
2.5. Update the fitness, danger signals and concentrations of the population, and perform the network suppression;
2.6. Randomly generate a certain number of antibodies, and add them into the network;

End;
3. Update the fitness, danger signals and concentrations of the population, and perform the network suppression;
4. Output the population.

Algorithm 2: The description of dt-aiNet.

constant evolution. The network makes antibodies with low
concentration and low affinity dead, and survival antibod-
ies are viewed as memory individuals. When the number
of memory individuals does not change, these individuals
are the optimization solutions of the multimodal function.
Therefore, the algorithm composes of seven elements, danger
signals and concentrations calculation, clonal selection (𝑇𝑠),
clonal proliferation (𝑇𝑐), hypermutation (𝑇𝑚), clonal suppres-
sion (𝑇𝑐𝑠), network suppression (𝑇𝑛𝑠), and population updat-
ing (𝑇𝑢). The termination conditions are that the function
evaluation times (FEs) reach the maximum or the function
error of the found optimal solution reaches or is less than a
specified value (Algorithm 2).

3.2. Representations of Antibodies, Antigens, and Affinities.
The optimization function is expressed as 𝑃 = min𝑓(𝑥). The
variable 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑅𝑛 is the decision variable,
and the variable 𝑛 is the variable dimension. The function
min represents obtaining minimum of function 𝑓(𝑥), and
we can also obtain maximum of function 𝑓(𝑥). The algo-
rithm uses real coding. Assumed that 𝐴𝑏 represents the
antibodies set which is also the population of the network,𝐴𝑔 represents the antigens set. For the rest of the paper,
population always means the collection of antibodies. So,
antibody𝐴𝑏𝑖 and antigen𝐴𝑔𝑗 are 𝑛-dimensional real vectors,
and 𝑖, 𝑗 are natural integers. The antibody population is of𝑅𝑛 scale. So the optimization problem can be transformed to
min{𝑓(𝐴𝑏𝑖), 𝐴𝑏𝑖 ∈ 𝑅𝑛} or max{𝑓(𝐴𝑏𝑖), 𝐴𝑏𝑖 ∈ 𝑅𝑛}.

The affinity between antibody and antigen is the binding
strength between antibody and antigen, which is the solution
fitness to the problem. It is expressed by affinity(𝐴𝑏𝑖), and is
the normalized representation of function value 𝑓(𝐴𝑏𝑖). The
affinity of 𝐴𝑏𝑖 is calculated according to (1)

affinity (𝐴𝑏𝑖) =
{{{{{{{{{

𝑓(𝐴𝑏𝑖) − 𝑓min𝑓max − 𝑓min
, 𝑃 = max𝑓 (𝑥) ,

1 − 𝑓 (𝐴𝑏𝑖) − 𝑓min𝑓max − 𝑓min
, 𝑃 = min𝑓 (𝑥) ,

(1)

where 𝑓(𝐴𝑏𝑖) is the function value of antibody 𝐴𝑏𝑖, 𝑓min is
the minimum of the current population, and 𝑓max is the
maximum of the current population.

The affinity between antibody and antibody represents
the similarity degree between the two antibodies and is ex-
pressed by affinity(𝐴𝑏𝑖, 𝐴𝑏𝑗). For real coding, it is usually
related to the distance between the two antibodies and is
calculated as follows:

affinity (𝐴𝑏𝑖, 𝐴𝑏𝑗) = 1
dis (𝐴𝑏𝑖, 𝐴𝑏𝑗) , (2)

where dis is the Euclidean distance between antibody𝐴𝑏𝑖 and
antibody 𝐴𝑏𝑗 and is expressed as follows:

dis (𝐴𝑏𝑖, 𝐴𝑏𝑗) = √ 𝑛∑
𝑘=1

(𝐴𝑏𝑖𝑘 − 𝐴𝑏𝑗𝑘)2. (3)

3.3. Optimization Strategies. This section describes some of
the steps in the process of the algorithm, which are different
from the influential artificial immune based optimization
algorithms.

3.3.1. Danger Zone and Danger Signals. Because danger sig-
nals are associated with the environment, we use the proxim-
ity measurement to simulate the danger zone. The concen-
trations of antibody populations in the danger zone reflect
the environment condition for the optimization problem.
According to the danger theory [18], if an antigen 𝐴𝑔𝑖 necro-
tizes, the nearby area𝐴𝑔𝑖-centered will become a danger zone𝐷(𝐴𝑔𝑖). Because antigens are invisible for the optimization
problem, we assume that each antibody is the peak point, and
the vicinity around the peak is the danger zone. The danger
zone is defined as follows:

𝐷(𝐴𝑏𝑖) = {𝐴𝑏𝑗 | dis (𝐴𝑏𝑖, 𝐴𝑏𝑗) < 𝑟danger} , (4)

where 𝑟danger is the danger zone radius, and the value is related
to the intensity of the peak points.

Interactions between antibodies within𝐴𝑏𝑖’s danger zone
are 𝐴𝑏𝑖’s environmental state. Then, the danger signal func-
tion 𝑑𝑠 is defined by (5). This function takes the concen-
tration con(𝐴𝑏𝑗) of antibody 𝐴𝑏𝑗 whose affinity is greater
than affinity(𝐴𝑏𝑖) in 𝐴𝑏𝑖’s danger zone and the distance
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dis(𝐴𝑏𝑖, 𝐴𝑏𝑗) between 𝐴𝑏𝑖 and 𝐴𝑏𝑗 as inputs and then pro-
duces the danger signal of antibody 𝐴𝑏𝑖:𝑑𝑠 (𝐴𝑏𝑖)

= ∑
𝐴𝑏𝑗∈𝐷(𝐴𝑏𝑖)∩affinity(𝐴𝑏𝑗)>affinity(𝐴𝑏𝑖)con (𝐴𝑏𝑗)

⋅ (𝑟danger − dis (𝐴𝑏𝑖, 𝐴𝑏𝑗)) ,
(5)

where con is the antibody concentration. In the population,
only if antibody 𝐴𝑏𝑗 is within the danger zone of antibody𝐴𝑏𝑖, and the affinity between𝐴𝑏𝑗 and antigens is greater than
the affinity between𝐴𝑏𝑖 and antigens, antibody𝐴𝑏𝑗 will exert
an influence on antibody𝐴𝑏𝑖.The higher the concentration of𝐴𝑏𝑗 is, the greater the impact on the environment of antibody𝐴𝑏𝑖 is. The closer 𝐴𝑏𝑖 and 𝐴𝑏𝑗 are, the greater the impact on
the environment of antibody 𝐴𝑏𝑖 is.
3.3.2. Concentration Calculation. The antibody concentra-
tion is dynamic and is related to the danger signal of the
antibody and the affinity between the antibody and antigens.
These two factors are the main reasons for the dynamically
changing of antibody concentration.

When the surroundings change, the antibody concen-
tration will change. If the danger signal of an antibody is
not zero; that is to say, there are better solutions around the
antibody and the danger signal will inhibit the antibody, the
concentration of the antibody will decay with the evolution.
The greater the danger signal is, the greater the impact on the
environment of the antibody is. When the surroundings do
not change, the antibody is in a relatively stable environment;
that is to say, there are not better solutions around the anti-
body. So, the antibody is regarded as a candidate peak point,
and the concentration of the antibody will increase with the
evolution.

The affinity between the antibody and antigens will affect
the antibody’s concentration aswell.The greater the affinity is,
the better the fitness of the antibody as a solution is.When the
antibody is regarded as a candidate peak point, the increment
of the antibody’s concentration will be proportional to the
affinity. When the danger signal of the antibody exists, the
attenuation of the antibody’s concentration will be inversely
proportional to the affinity.

The concentration con(𝐴𝑏𝑖) of antibody 𝐴𝑏𝑖 is calculated
according to (6). In the equation, con(𝐴𝑏𝑖) depends on the
iteration. The variable 𝑡 represents evolution generation, and𝑡 + 1 means the next generation after 𝑡. So, con(𝐴𝑏𝑖)𝑡 means
the concentration of antibody 𝐴𝑏𝑖 at generation 𝑡:
con(𝐴𝑏𝑖)𝑡+1

=
{{{{{{{{{{{{{{{{{

con(𝐴𝑏𝑖)𝑡 (1 + exp (affinity(𝐴𝑏𝑖)0.25))𝑑𝑠 (𝐴𝑏𝑖) = 0,
con(𝐴𝑏𝑖)𝑡 (1 − ln (1 + affinity (𝐴𝑏𝑖))

affinity (𝐴𝑏𝑖) ) − 𝑑𝑠 (𝐴𝑏𝑖)
𝑑𝑠 (𝐴𝑏𝑖) > 0.

(6)

For the initial population, each antibody is set an initial
concentration con0. When the danger signal of the antibody
exists, the antibody’s concentration will gradually decrease
and ultimately to zero. When it does not exist, the antibody’s
concentration will gradually increase and up to 1. Therefore,
con(𝐴𝑏𝑖) ∈ [0, 1]. Danger signals provide the changes of con-
centrations of antibodies a baseline andmaintain the diversity
of the population.

3.3.3. Mutation Operation. The mutation operation simu-
lates high-frequency variation mechanism in the immune
response. And this operator generates antibodies with higher
affinities and enhances the diversity of antibody population.
The algorithmof opt-aiNet [9] adoptsGaussian variation, and
the related formulas are as follows:

𝑐󸀠 = 𝑐 + 𝛼𝑁 (0, 1) ,
𝛼 = ( 1𝛽) exp (−𝑓∗) ,

(7)

where 𝑐󸀠 is a mutated cell 𝑐, 𝑁(0, 1) is the Gaussian random
variable with mean 0 and deviation of 1, and 𝑓∗ is the fitness
of an individual normalized in the interval [0, 1]. 𝛽 is the
control parameter to adjust themutation range and is an user-
specified value in the algorithm of opt-aiNet.

There are certain shortcomings in this method. For dif-
ferent functions, 𝛽 is difficult to determine. In the search
process, if 𝛽 is too large, individuals will search with higher
probability, which is more conducive to global search and
leads to a slow rate of convergence. If 𝛽 is too small, indi-
viduals will search with smaller probability, which is more
conducive to local search and makes the algorithm searching
around the local minimums, impossible to escape from the
local minima and result in precociousness. Therefore, this
paper adopts dynamic self-adaptive 𝛽, and the mutation
mechanism is expressed as follows:

𝐴𝑏𝑖 (𝑡 + 1) = 𝐴𝑏𝑖 (𝑡) + 𝛼𝑁 (0, 1) ,
𝛼 = 𝛽 (𝑡) exp (−affinity (𝐴𝑏𝑖)) ,
𝛽 (𝑡) = 𝛽01 + exp ((𝑡 − 𝑡0) /𝑘) ,

(8)

where 𝑡 is the number of iteration times. 𝐴𝑏𝑖(𝑡) means the
antibody 𝐴𝑏𝑖 at generation 𝑡, and 𝐴𝑏𝑖(𝑡 + 1) means the
antibody 𝐴𝑏𝑖 at generation 𝑡 + 1. In the initial stage of the
algorithm, 𝛽 is large, and the algorithm approaches toward
the peak points with higher probability, which speeds up the
convergence rate.When the algorithm iterates a certain num-
ber of times, 𝛽 becomes small, and the algorithm searches
in the neighborhood of the peak points, which improves
the accuracy of solutions. Because affinity(𝐴𝑏𝑖) ∈ [0, 1],
exp(−affinity(𝐴𝑏𝑖)) ∈ [0.3679, 1]. 𝛽0 is the control parameter
and determines the range of 𝛽, and 𝛽 ∈ [0, 𝛽0]. 𝑘 is the
regulation parameter and adjusts the rate of change of exp(𝑡−𝑡0). 𝑡0 is the demarcation point of 𝛽 changes, that is, global
search with large probability and local search with small
probability. When 𝑡 < 𝑡0, 𝛽 ∈ [𝛽0/2, 𝛽0], and the algorithm
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Figure 1: Changing curves of 𝛽.
should search into the neighborhood of peak points. When𝑡 > 𝑡0, 𝛽 ∈ [0, 𝛽0/2], and the algorithm starts to do a small-
scale search near the peaks. Figure 1 shows the changing
curves of 𝛽 under different initial values of 𝑘 and 𝛽0. In the
first chart, 𝑘 is stable, and 𝛽0 varies between 0.1, 0.01, and
0.05. As can be seen, the range of 𝛽 is [0, 𝛽0]. So, we need to
select the appropriate 𝛽0. In the second chart, 𝛽0 is 0.01, and𝑘 varies between 20, 50, and 100. The larger the value of 𝑘 is,
the more evidently 𝛽 changes. The smaller 𝑘 is, the smaller
the change rate of 𝛽 is.

3.3.4. Suppression Operation. In artificial immune optimiza-
tion algorithms, the suppression operations are divided into
two kinds, which are clonal suppression and network sup-
pression.

Performing the clone operation to every antibody in the
population will produce clone groups. Then, variations of
clone groups will create antibodies with higher affinity. The
clone suppression means retaining antibodies with higher
affinity from clone groups, and giving up the rest of the clone
individuals. In opt-aiNet, clonal suppression means selecting
the antibody with highest affinity from the temporary set
which is composed of the parent antibody and its clonal group
to join the network. dt-aiNet still chooses this way to add anti-
bodies into the network, and meanwhile selects antibodies
into the network which have higher affinity than the parent
antibody and are not in the parent antibody’s danger zone. So,
clonal suppression operation 𝑇𝑐𝑠 can be expressed as follows:

𝑇𝑐𝑠 (𝐴𝑏{𝑖}) = 𝐴𝑏{𝑖}󸀠 + 𝐴𝑏{𝑖}󸀠󸀠, (9)

where 𝐴𝑏{𝑖} is the collection of antibody 𝐴𝑏𝑖 and its clonal
group.𝐴𝑏{𝑖}󸀠 and𝐴𝑏{𝑖}󸀠󸀠 are expressed by (10) and (11). In (10),
it selects antibodies with highest affinity in the parent anti-
body’s danger zone. In (11), it selects antibodies with higher

affinity than that of the parent antibody and not in the parent
antibody’s danger zone. After the two selection operations,
clonal suppression operation retains better antibodies and
discards the other ones:

𝐴𝑏{𝑖}󸀠={𝐴𝑏{𝑖}𝑘 |affinity (𝐴𝑏{𝑖}𝑘)=max (affinity (𝐴𝑏𝑗))
∩𝐴𝑏𝑗 ∈ 𝐴𝑏{𝑖} ∩ 𝐴𝑏{𝑖}𝑘 ∈ 𝐷 (𝐴𝑏𝑖) } , (10)

𝐴𝑏{𝑖}󸀠󸀠 = {𝐴𝑏{𝑖}𝑘 | affinity (𝐴𝑏{𝑖}𝑘) > affinity (𝐴𝑏𝑖)
∩𝐴𝑏{𝑖}𝑘 ∉ 𝐷 (𝐴𝑏𝑖)} . (11)

Network suppression operation simulates the immune
network regulation principle, which reduces the redundant
antibodies and eliminates similar solutions. In dt-aiNet, this
operation deletes antibodies with concentrations equaling to
zero. An antibody’s concentration is zero indicates that the
danger signals of this antibody always exist, and there are bet-
ter individuals around this antibody. This antibody is redun-
dant. Network suppression operation 𝑇𝑛𝑠 can be expressed as
follows:

𝑇𝑛𝑠 (𝐴𝑏) = 𝐴𝑏 − {𝐴𝑏𝑖 | con (𝐴𝑏𝑖) = 0} . (12)

4. Algorithm Analyses

This section analyzes the algorithm from three aspects,
including the computational complexity, the convergences
and the robustness.

4.1. Computational Complexity Analysis

Theorem 1. The computational complexity of dt-aiNet is𝑂(𝑡󸀠 ⋅𝑁2 ⋅ 𝑛) or 𝑂(𝑡󸀠 ⋅ 𝑁 ⋅ 𝑁𝑐 ⋅ 𝑛), where 𝑡󸀠 is the total number of
iterations, 𝑁 is the population size, 𝑛 is the dimension of the
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Table 1: Calculation complexities of the algorithms.

Algorithms Complexities
CLONALG O(t󸀠 ⋅N ⋅Nc ⋅ n) [10]
opt-aiNet O(t󸀠 ⋅ 𝑁2 ⋅ n) or O(t󸀠 ⋅N ⋅Nc ⋅ n) [9]
dt-aiNet O(t󸀠 ⋅ 𝑁2 ⋅ n) or O(t󸀠 ⋅N ⋅Nc ⋅ n)
problem to be solved, and𝑁𝑐 is themax number of clones which
an antibody generates.

Proof. As shown in the algorithm flow, dt-aiNet consists of
six major components: the clonal selection operation, the
cloning operation, the mutation operation, the suppression
operations, the population updating operation, and the
danger signals and concentrations adjusting operations. In
iteration 𝑡, the number of calculation times of the clonal
selection operation is 𝑁. The number of the calculation
times of the cloning operation does not exceed 𝑁 ⋅ 𝑁𝑐. The
number of calculation times of the mutation operation does
not exceed𝑁⋅𝑁𝑐⋅𝑛 because each dimension of a vector needs
tomutate.Thenumber of calculation times of the suppression
operations does not exceed𝑁 ⋅ 𝑁𝑐.

Supposing the population size is 𝑁1, 𝑁1 ≥ 𝑁, and 𝑁1 is
related to𝑁, after the suppression operations.The calculation
number of the population updating operation is 𝑑% ⋅𝑁1 ⋅𝑁1,
where 𝑑 is the percentage of population updating and is a
user-specified value. The calculation number of the danger
signals and concentrations adjusting operations is𝑁1 ⋅ (𝑁1 −1) ⋅ 𝑛, where we first calculate the danger zone of each
antibody, then compute the danger signal of each antibody,
and at last adjust the concentration of each antibody. In
iteration 𝑡, the total number 𝑔(𝑡) of calculation times meets

𝑔 (𝑡) ≤ 𝑁 + 𝑁 ⋅ 𝑁𝑐 + 𝑁 ⋅ 𝑁𝑐 ⋅ 𝑛 + 𝑁 ⋅ 𝑁𝑐
+ 𝑑% ⋅ 𝑁1 ⋅ 𝑁1 + 𝑁1 ⋅ (𝑁1 − 1) ⋅ 𝑛. (13)

Therefore, if the total number of iterations is 𝑡󸀠, the
computational complexity of algorithm is 𝑂(𝑡󸀠 ⋅ 𝑁2 ⋅ 𝑛) or𝑂(𝑡󸀠⋅𝑁⋅𝑁𝑐⋅𝑛).This expression shows that the time complexity
of the algorithm is related to the population size 𝑁.

Similarly, the calculation complexities of CLONALG and
opt-aiNet can be analyzed. Table 1 shows the contrasts of the
calculation complexities of the three algorithms. In the case of
a certain dimension, reducing the population size can greatly
reduce the complexity of the algorithm.

4.2. Convergence Analysis. From the running mechanism of
dt-aiNet, each generation of the population consists of two
parts. One is the memory antibodies from the previous gen-
eration, and another is the new antibodies randomly added.
Antibodieswith higher affinities from themutation operation
are mainly in the neighborhood of the parent antibody.
After the clonal suppression operation, population affinities
will be higher than those of the previous generation. The
antibodies with higher affinities will change the surrounding
environments and then make danger signals of antibodies
with lower affinities in the danger zone stronger and their

concentrations lower. As the generation increases, if antibod-
ies with lower affinities cannot escape from the danger zone
under strengthened danger signals, their concentrations will
decay to zero and then they will die. Antibodies with high
affinities will retain in the memory population due to the
unchanged environments. In this mechanism, antibodies in
the memory population basically have high affinities and are
peak points. It will be ensured that new antibodies randomly
added to the population in each generation are not in the
danger zone of memory antibodies. So, they will develop a
new search space, and then the algorithm will eventually find
all the peaks with the evolution.

Same as before, we assume that 𝑡 is the number of genera-
tion. So, 𝐴𝑏(𝑡) represents the population 𝐴𝑏 at generation 𝑡.
Due to the state of population,𝐴𝑏(𝑡+1) is only related to that
of the previous generation 𝐴𝑏(𝑡), and has nothing to do with
those of the past generations, the entire population sequences{𝐴𝑏(𝑡)} constitute a randomprocess of theMarkov chain [19].

Theorem 2. For any distribution of the initial population, dt-
aiNet is the weak convergence of probability, that is to say,

lim
𝑡→∞

𝑃 (𝐴𝑏 (𝑡) ∩ 𝐴𝑏∗ /= 0) = 1, (14)

where 𝐴𝑏∗ is a set which contains the optimal solution.

Proof. Known from the total probability formula,𝑃 (𝐴𝑏 (𝑡 + 1) ∩ 𝐴𝑏∗ = 0)
= 𝑃 (𝐴𝑏 (𝑡) ∩ 𝐴𝑏∗ = 0)
⋅ (1 − 𝑃 (𝐴𝑏 (𝑡 + 1) ∩ 𝐴𝑏∗ /= 0 | 𝐴𝑏 (𝑡) ∩ 𝐴𝑏∗ = 0))
+ 𝑃 (𝐴𝑏 (𝑡) ∩ 𝐴𝑏∗ /= 0)
⋅ 𝑃 (𝐴𝑏 (𝑡 + 1) ∩ 𝐴𝑏∗ = 0 | 𝐴𝑏 (𝑡) ∩ 𝐴𝑏∗ /= 0) .

(15)

After operations of selection, clone, mutation, and sup-
pressions, affinities of population 𝐴𝑏(𝑡) will arise, That is to
say,

affinity (𝐴𝑏 (𝑡 + 1)) ≥ affinity (𝐴𝑏 (𝑡)) . (16)

So,

𝑃 (𝐴𝑏 (𝑡 + 1) ∩ 𝐴𝑏∗ = 0 | 𝐴𝑏 (𝑡) ∩ 𝐴𝑏∗ /= 0) = 0. (17)

From the above equation, we have𝑃 (𝐴𝑏 (𝑡 + 1) ∩ 𝐴𝑏∗ = 0)
= 𝑃 (𝐴𝑏 (𝑡) ∩ 𝐴𝑏∗ = 0)
⋅ (1 − 𝑃 (𝐴𝑏 (𝑡 + 1) ∩ 𝐴𝑏∗ /= 0 | 𝐴𝑏 (𝑡) ∩ 𝐴𝑏∗ = 0)) .

(18)

Suppose 𝐴𝑏𝑖 ∈ 𝐴𝑏∗, 𝐴𝑏𝑖 ∈ 𝐴𝑏(𝑡 + 1), and 𝐴𝑏𝑖 ∉ 𝐴𝑏(𝑡),
then, 𝑃 (𝐴𝑏 (𝑡 + 1) ∩ 𝐴𝑏∗ /= 0 | 𝐴𝑏 (𝑡) ∩ 𝐴𝑏∗ = 0)

= 𝑃 (𝑇𝑐,𝑚,𝑠,𝑐𝑠,𝑛𝑠,𝑢 (𝐴𝑏 (𝑡)) = 𝐴𝑏 (𝑡 + 1))
≥ 𝑃 (𝑇𝑚 (𝐴𝑏𝑗) = 𝐴𝑏𝑖) = 𝜀,

(19)
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Figure 2: Charts of changes of parameter robustness.

where 𝑇𝑐,𝑚,𝑠,𝑐𝑠,𝑛𝑠,𝑢 means these operations including clone,
mutation, selection, suppression, and updating.

Known from the induction,𝑃 (𝐴𝑏 (𝑡) ∩ 𝐴𝑏∗ = 0) ≤ (1 − 𝜀)𝑡. (20)
So,

lim
𝑡→∞

𝑃 (𝐴𝑏 (𝑡) ∩ 𝐴𝑏∗ = 0) = 0; (21)

that is,
lim
𝑡→∞

𝑃 (𝐴𝑏 (𝑡)∩𝐴𝑏∗ /=0)=1− lim
𝑡→∞

𝑃 (𝐴𝑏 (𝑡)∩𝐴𝑏∗=0)=1.
(22)

4.3. Robustness Analysis. The algorithm contains a num-
ber of parameters. Most of them have little effect on the
search performance and can be set conventionally. But the
two parameters 𝑘 and 𝑡0 are more critical and will affect
the algorithm performance. 𝑘 is the adjustable parameter
of mutation rate 𝛽 and decides the change rate of 𝛽. 𝑡0 is
demarcation point of changes of 𝛽, that is, cutoff point of the
global searchwith a high probability and the local searchwith
a small probability. There are two evaluation indicators of
robustness measurement, which are the relationship between
the convergence probability and the parameter set (𝑘, 𝑡0) and
the relationship between the average evaluation number of
the function and the parameter set (𝑘, 𝑡0).

Here are three definitions to more clearly explain the
evaluation indicators [20].

Definition 3 (successful test). Given the parameters and the
max iterative times to be allowed, if the function error
between the optimal solution and the best solution gained
from running the algorithm is not greater than 𝜀, the test is
successful, and then the algorithm stops.

Definition 4 (convergence probability). It means the success
ratio in tests of𝑚 times.

Definition 5 (the average number of evaluation times). Given
the parameters and the max iterative times to be allowed, the
average number of evaluation times is the average times of
computing the objective function in tests of𝑚 times.

We choose the ninth function 𝐹9(𝑥) defined in the work
[21] as the testing function. And the work in [21] provides the
optimization accuracy 1𝑒 − 2 for this function. Here is the
definition of this function:

𝐹9 (𝑥) = 𝐷∑
𝑖=1

(𝑧𝑖2 − 10 cos (2𝜋𝑧𝑖) + 10) + 𝑓bias9 , (23)

where 𝑧 = 𝑥 − 𝑜, 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝐷], 𝐷 is the dimension,
and 𝑥 ∈ [−5, 5]𝐷. 𝑜 is the extreme point of the function, and𝑜 = [𝑜1, 𝑜2, . . . , 𝑜𝐷]. 𝐹9(𝑜) = 𝑓bias9 = −330.

Given 𝜀 = 0.01 and 𝑚 = 25, this function includes a
large number of local optimal solutions and a global optimal
solution.These solutions are relatively evenly distributed, and
there aremany local optimal solutions near the global optimal
solution.Theminimumof the function is−330.We select this
function for the robustness test, mainly because this function
is relatively more complex, and its features are poor, and
general intelligent algorithms are difficult to get satisfactory
results. Figure 2 shows the relationships with the convergence
probability 𝑝(𝑘, 𝑡0) and the relationships with the average
evaluation number 𝜓(𝑘, 𝑡0).

As can be seen from Figure 2, when 𝑘 → 0 and 𝑡0 → 0,
the convergence probability is basically zero, and the average
evaluation number is close to the maximum evaluation num-
ber of 10000.This range is the nonconvergence zone. Because
the variation is very small and almost negligible in this range,
only immune selection operation and population updating
operation contribute to the search process, and the search
process is completely random.Thus, the algorithm is basically
impossible to guarantee the convergence. When 𝑘 → 200
and 𝑡0 → 500, the convergence probability is greater than
zero but small, and the average evaluation number is close to
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Table 2: Accuracies of functions.

Functions Accuracies𝐹2 −450 + 1𝑒 − 6𝐹4 −450 + 1𝑒 − 6𝐹9 −330 + 1𝑒 − 2𝐹12 −460 + 1𝑒 − 2
themaximum evaluation number of 10000 as well.This range
is the danger zone. In this range, the mutation rate is large,
and the algorithm is easy to jump out of the neighborhood
of peak points. So, it will search for a long time to get the
optimal solution. When 𝑘 and 𝑡0 is in the middle range,
the convergence probability approaches 1, and the average
evaluation number is close to 3400, which is the minimum
evaluation number to find the optimal solution. So, for these
two parameters, we should choose values of themiddle range.

5. Experiments

This section applies the algorithm to the benchmark func-
tions, which run in 2-dimensional spaces and 10-dimensional
spaces. The selection of functions and the evaluation criteria
of algorithms are described in Section 5.1. The experimental
results are shown in Section 5.2 as well as comparisons
with the other three artificial immune based optimization
algorithms.

5.1. Function Selection and Evaluation Criteria. For that the
performance evaluation criteria of optimizing algorithms
are not uniform, Suganthan et al. [21] jointly published the
report about problem definitions and evaluation criteria on
real-parameter optimization in the 2005 IEEE Congress on
Evolutionary Computation. In this report, 25 benchmark
functions are given, and a common termination criterion, size
of problems, initialization scheme, and so forth are specified.
We choose 𝐹2, 𝐹4, 𝐹9, and 𝐹12 and related evaluation criteria,
including function error values of the optimal solution, the
gained peak numbers, success rates, and convergence graphs
to assess the quality and the efficiency of the algorithms.

The termination conditions are that FEs reach 𝑛∗104 (𝑛 is
the dimension), or the function error value of the found
optimal solution reaches or is less than the required function
errors [21].

We select the influential optimization algorithms based
on artificial immune to do the experiments, including
CLONALG, opt-aiNet, and dopt-aiNet. The accuracies of the
optimization functions are shown in Table 2. The parameters
of the four algorithms are as follows:

𝐹2 (𝑥) = 𝐷∑
𝑖=1

( 𝑖∑
𝑗=1

𝑧𝑗)
2 + 𝑓bias2 , (24)

where 𝑧 = 𝑥 − 𝑜, 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝐷], 𝑥 ∈ [−100, 100]𝐷,𝐹2(𝑜) = 𝑓bias2 = −450
𝐹4 (𝑥) = ( 𝐷∑

𝑖=1

( 𝑖∑
𝑗=1

𝑧𝑗)
2) ∗ (1 + 0.4 |𝑁 (0, 1)|) + 𝑓bias4 ,

(25)

where 𝑧 = 𝑥 − 𝑜, 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝐷], 𝑥 ∈ [−100, 100]𝐷,𝐹4(𝑜) = 𝑓bias4 = −450
𝐹9 (𝑥) = 𝐷∑

𝑖=1

(𝑧𝑖2 − 10 cos (2𝜋𝑧𝑖) + 10) + 𝑓bias9 , (26)

where 𝑧 = 𝑥 − 𝑜, 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝐷], 𝑥 ∈ [−5, 5]𝐷, 𝐹9(𝑜) =𝑓bias9 = −330
𝐹12 (𝑥) = 𝐷∑

𝑖=1

(𝐴 𝑖 − 𝐵𝑖 (𝑥))2 + 𝑓bias12 ,
𝐴 𝑖 = 𝐷∑
𝑗=1

(𝑎𝑖𝑗 sin𝛼𝑗 + 𝑏𝑖𝑗 cos𝛼𝑗) ,
𝐵𝑖 (𝑥) = 𝐷∑

𝑗=1

(𝑎𝑖𝑗 sin𝑥𝑗 + 𝑏𝑖𝑗 cos𝑥𝑗) , for 𝑖 = 1, . . . , 𝐷,
(27)

where 𝐴 and 𝐵 are two 𝐷 ∗ 𝐷 matrices, 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are
integer random numbers in the range [−100, 100], 𝛼 =[𝛼1, 𝛼2, . . . , 𝛼𝐷], 𝛼𝑗 are random numbers in the range [−𝜋, 𝜋],𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝐷], 𝑥 ∈ [−𝜋, 𝜋]𝐷, 𝐹12(𝛼) = 𝑓bias12 = −460.

The parameters of dt-aiNet are 𝑁 (initial population
size) = 50, 𝑘 (regulation of mutation rate) = 20, 𝑡0 (demar-
cation point of mutation rate) = 200, 𝛽0 (range of mutation
rate) = 0.01, con0 (initial concentration) = 0.5, 𝑁𝑐 (number
of clones) = 10, 𝑟danger (radius of danger zone) = 0.1, and 𝑑%
(percentage of updating population) = 0.3.

The parameters of CLONALG are 𝑁 (initial population
size) = 50, 𝛽 (mutation rate) = 0.01, and 𝑁𝑐 (number of
clones) = 10.

The parameters of opt-aiNet are 𝑁 (initial population
size) = 50, 𝑁𝑐 (number of clones) = 10, 𝛽 (mutation rate) =
100, 𝜎𝑠 (network suppression threshold) = 0.2 or 0.05, and𝑑% (percentage of updating population) = 0.4.

The parameters of dopt-aiNet are 𝑁 (initial population
size) = 50, 𝑁𝑐 (number of clones) = 10, 𝛽 (mutation rate) =
100, 𝜎𝑠 (network suppression threshold) = 0.5, and 𝑑%
(percentage of updating population) = 0.4.

5.2. Results of Performance Tests. The algorithms run in 2-
dimensional space and 10-dimensional space for the above
functions in order to accurately assess the performances.

Table 3 shows the results of performing 25 times for the
four algorithms in 2-dimensional space, including function
error values (𝑓 − 𝑓∗) of the optimal solution and peak
numbers, where values in brackets are variances. From
Table 3, we can see that errors of opt-aiNet are lower than
those of CLONALG and dopt-aiNet, and errors of dt-aiNet
are lower than those of opt-aiNet. Although dopt-aiNet has
local search operation, the two new mutation operations,
one-dimensional mutation and gene duplication, take up too
much evaluation times; so the algorithm usually cannot find
the optimal solution yet when reaches the maximum number
of evaluation times. In addition, for the two unimodal
functions, 𝐹2 and 𝐹4, dt-aiNet can only find the optimal
solution, while CLONALG, opt-aiNet, and dopt-aiNet not
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Table 3: Results (errors) in 2-dimensional spaces.

Function errors of the optimal solution Number of peaks
dt-aiNet 1.62 ∗ 10−11 (2.1 ∗ 10−11) 1 (0)

𝐹2 CLONALG 5.78 ∗ 101 (3.34 ∗ 101) 1 (1.46)
opt-aiNet 6.01 ∗ 10−5 (4.61 ∗ 10−5) 5 (1.42)
Dopt-aiNet 2.13 ∗ 10−1 (4.5 ∗ 10−1) 2.41 (1.2)
dt-aiNet 5.86 ∗ 10−11 (1.25 ∗ 10−11) 1 (0.2)

𝐹4 CLONALG 6.93 ∗ 101 (3.38 ∗ 101) 3.6 (2.21)
opt-aiNet 4.57 ∗ 10−5 (4.32 ∗ 10−5) 5.8 (2.2)
dopt-aiNet 1.03 ∗ 10−1 (5.81 ∗ 10−1) 3.69 (1.3)
dt-aiNet 1.2 ∗ 10−9 (1.03 ∗ 10−9) 82.54 (8.22)

𝐹9 CLONALG 2.12 ∗ 100 (4.58 ∗ 100) 45.6 (20.28)
opt-aiNet 3.99 ∗ 10−5 (2.47 ∗ 10−5) 60.11 (23.87)
dopt-aiNet 6.87 ∗ 10−1 (3.9 ∗ 10−1) 32.09 (12.7)
dt-aiNet 1.68 ∗ 10−11 (1.06 ∗ 10−11) 7.22 (0.43)

𝐹12 CLONALG 7.56 ∗ 101 (4.35 ∗ 101) 4.6 (3.10)
opt-aiNet 5.01 ∗ 10−2 (2.23 ∗ 10−2) 5 (1.43)
dopt-aiNet 7.61 ∗ 10−1 (5.84 ∗ 10−1) 8.67 (1.33)
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Figure 3: Convergence graphs in 2-dimensional spaces.

only find the optimal solution, but also some redundancy
solutions.

Table 4 shows the results of performing 25 times for the
four algorithms in 2-dimensional space, including success
rates and success performances. Known from the work [21],
the optimization success rate is defined by Success Rate =
successful runs/total runs, and the optimization success per-
formance is defined by Success Performance = mean (FEs for
successful runs)∗(total runs)/(successful runs). It can be seen
from Table 4 that only dt-aiNet can find the solution which

meets the accuracies when limiting the maximum number of
function evaluation times.

Figure 3 shows the convergence graphs in 2-dimensional
space of the four algorithms. As can be seen, after initial
populations are randomly generated, the convergence curve
of each algorithm continues to lower with the evolution.
CLONALG is easily trapped in local minima. Opt-aiNet
maintains a good diversity of the population, but converges
slowly due to the nested loops and increasing unnecessary
function evaluation times. dopt-aiNet can find solutions with
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Figure 4: Convergence graphs in 10-dimensional spaces.

Table 4: Results (success rates) in 2-dimensional spaces.

dt-aiNet CLONALG opt-aiNet dopt-aiNet
Success
rates

Success
performance

Success
rates

Success
performance

Success
rates

Success
performance

Success
rates

Success
performance𝐹2 100% 2.209 ∗ 103 0% — 0% — 0% —𝐹4 100% 2.576 ∗ 103 0% — 0% — 0% —𝐹9 100% 3.413 ∗ 103 0% — 0% — 0% —𝐹12 100% 5.278 ∗ 103 0% — 0% — 0% —

greater accuracies because of the local search operation,
but it wastes a large number of function evaluation times
for performing the two mutation operations to the mem-
ory population and the nonmemory population. So dopt-
aiNet converges more slowly. dt-aiNet maintains a better
diversity of the population by extracting the environmental
information and mutating in a dynamic rate and makes the
population quickly converge to the optimal solution.

Tables 5 and 6 show the results of performing 25 times
for the four algorithms in 10-dimensional space. Seen from
the tables, dt-aiNet still possesses preferable optimization
performances in high-dimensional space and is better than
CLONALG, opt-aiNet, and dopt-aiNet. In addition, the
average function error values and variances are relatively
stable and are able to maintain a high level in the 25 times
of independently running.

Figure 4 shows the convergence graphs in 10-dimensional
space of the four algorithms. As seen from the graphs, dt-
aiNet still possesses preferable optimization performances
with the increase of dimensions and is better than CLON-
ALG, opt-aiNet, and dopt-aiNet.

6. Conclusions

This paper proposes a danger-theory-based immune net-
work optimization algorithm, named dt-aiNet, for solving
multimodal optimization problems. In order to increase the
solution quality and the population diversity, the proposed
algorithm introduces the danger theory into the optimiza-
tion algorithms and integrates the clone selection theory
and the immune network theory. It simulates the danger
zones and the danger signals and adopts concentrations to
comprehensively evaluate antibodies. Experimental results
show that compared with influential optimization algorithms
based on artificial immune, including CLONALG, opt-aiNet,
and dopt-aiNet, the proposed algorithm has smaller error
values and higher success rates and can find solutions to
meet the accuracies within the specified FEs. However, the
algorithm cannot apply to any kind of optimization problems,
and with the increase of dimension, the success rates of
the algorithm are not always 100%. The next steps will
be improving the efficiency of the algorithm in the high-
dimensional space and extending the application scopes, such
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Table 5: Results (errors) in 10-dimensional spaces.

Function errors of the optimal solution Number of peaks
dt-aiNet 7.52 ∗ 10−10 (1.84 ∗ 10−10) 1 (0)

𝐹2 CLONALG 9.74 ∗ 101 (2.67 ∗ 101) 57.80 (7.26)
opt-aiNet 5.32 ∗ 10−3 (4.61 ∗ 10−3) 13.76 (6.81)
dopt-aiNet 1.56 ∗ 10−2 (5.77 ∗ 10−2) 46.49 (1.33)
dt-aiNet 9.65 ∗ 10−7 (3.24 ∗ 10−7) 1 (0.1)

𝐹4 CLONALG 1.32 ∗ 101 (5.79 ∗ 101) 123.6 (11.02)
opt-aiNet 8.68 ∗ 10−3 (3.54 ∗ 10−3) 5 (1.17)
dopt-aiNet 7.14 ∗ 10−1 (2.94 ∗ 10−1) 12.2 (2.32)
dt-aiNet 1.12 ∗ 10−2 (2.11 ∗ 10−2) 188.33 (0.31)

𝐹9 CLONALG 3.17 ∗ 102 (4.58 ∗ 102) 45.6 (20.28)
opt-aiNet 5.66 ∗ 101 (2.47 ∗ 101) 433.55 (3.43)
dopt-aiNet 7.43 ∗ 101 (2.80 ∗ 101) 52.5 (4.67)
dt-aiNet 1.83 ∗ 100 (5.66 ∗ 100) 193.5 (5.65)

𝐹12 CLONALG 3.22 ∗ 104 (6.43 ∗ 104) 376.67 (5.19)
opt-aiNet 2.06 ∗ 103 (1.33 ∗ 103) 379.43 (0.33)
dopt-aiNet 5.69 ∗ 103 (2.14 ∗ 103) 41.61 (2.26)

Table 6: Results (success rates) in 10-dimensional spaces.

dt-aiNet CLONALG opt-aiNet dopt-aiNet
Success
rates

Success
performance

Success
rates

Success
performance

Success
rates

Success
performance

Success
rates

Success
performance𝐹2 100% 2.677 ∗ 104 0% — 0% — 0% —𝐹4 100% 5.542 ∗ 104 0% — 0% — 0% —𝐹9 100% 4.798 ∗ 104 0% — 0% — 0% —𝐹12 93% 5.415 ∗ 104 0% — 0% — 0% —

as dynamic optimization, combinatorial optimization, and
constrained optimization.

Acknowledgments

This work has been supported by the National Natural
Science Foundation of China under Grants nos. 61173159 and
60873246 and the Cultivation Fund of the Key Scientific and
Technical Innovation Project,Ministry of Education of China
under Grant no. 708075.

References

[1] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and
Machine Learning, House of Addison-Wesley, Reading, Mass,
USA, 1989.

[2] L. Z. Li and Q. L. Ding, “Routing optimization algorithm for
QoS anycast flows based on genetic algorithm,” Computer Engi-
neering, vol. 6, no. 34, pp. 45–47, 2008.

[3] Y. T. Kao and E. Zahara, “A hybrid genetic algorithm and
particle swarm optimization formultimodal functions,”Applied
Soft Computing Journal, vol. 8, no. 2, pp. 849–857, 2008.

[4] D. Dasgupta, S. Yu, and F. Nino, “Recent advances in artificial
immune systems: models and applications,” Applied Soft Com-
puting Journal, vol. 11, no. 2, pp. 1574–1587, 2011.

[5] T. Li, Computer Immunology, House of Electronics Industry,
Beijing, China, 2004.

[6] L. N. de Castro and J. Timmis,Artificial Immune Systems: ANew
Computational Intelligence Approach, Springer-Verlag, London,
UK, 2002.

[7] N. Sun, Artificial Immune Optimization Algorithm and Applica-
tions, Harbin Institute of Technology, Shandong, China, 2006.

[8] F. Freschi, C. A. C. Coello, and M. Repetto, “Multiobjective
optimization and artificial immune systems: a review,” in
Multiobjective Optimization, pp. 1–12, 2009.

[9] L. N. de Castro and J. Timmis, “An artificial immune network
for multimodal function optimization,” in Proceedings of the
IEEEWorld Congress on Evolutionary Computation (WCCI ’12),
pp. 699–704, 2002.

[10] L. N. de Castro and J. Fernando, “Learning and optimization
using the clonal selection principle,” IEEE Transactions on Evol-
utionary Computation, vol. 6, no. 3, pp. 239–251, 2002.

[11] R. Halavati, S. B. Shouraki, M. J. Heravi, and B. J. Jashmi, “An
artificial immune system with partially specified antibodies,” in
Proceedings of the 9th Annual Genetic and Evolutionary Com-
putation Conference (GECCO ’07), pp. 57–62, July 2007.

[12] L. N. de Castro and F. J. Von Zuben, “aiNet: artificial immune
network for data analysis,” in Data Mining: A Heuristic Ap-
proach, pp. 231–259, 2001.



The Scientific World Journal 13

[13] F. O. de Franca, F. J. Von Zuben, and L. N. de Castro, “An arti-
ficial immune network for multimodal function optimization
on dynamic environments,” in Proceedings of the Conference
on Genetic and Evolutionary Computation, ACM, pp. 289–296,
2005.

[14] J. Timmis, C. Edmonds, and J. Kelsey, “Assessing the perfor-
mance of two immune inspired algorithms and a hybrid genetic
algorithm for function optimisation,” in Proceedings of the 2004
Congress on Evolutionary Computation (CEC ’04), vol. 1, pp.
1044–1051, June 2004.

[15] I. Aydin, M. Karakose, and E. Akin, “A multi-objective artificial
immune algorithm for parameter optimization in support vec-
tor machine,” Applied Soft Computing Journal, vol. 11, no. 1, pp.
120–129, 2011.

[16] F. Burnet, The Clonal Selection Theory of Acquired Immunity,
Vanderbilt University Press, Nashville, Tenn, USA, 1959.

[17] N. K. Jerne, “Towards a network theory of the immune system,”
Annals of Immunology, vol. 125, no. 1-2, pp. 373–389, 1974.

[18] P. Matzinger, “The danger model: a renewed sense of self,”
Science, vol. 296, no. 5566, pp. 301–305, 2002.

[19] W. X. Zhang and Y. Liang,Mathematical Foundation of Genetic
Algorithms, Xi’an Jiaotong University Press, Shaanxi, China,
2001.

[20] Z. H. Zhang, Study on theory and applications of intelligent
optimization and immune network algorithms in artificial im-
mune systems [Ph.D. thesis], ChongqingUniversity, Chongqing,
China, 2004.

[21] P. N. Suganthan, N. Hansen, J. J. Liang et al., “Problem defini-
tions and evaluation criteria for the CEC, 2005 special session
on real-parameter optimization,” Tech. Rep., Nanyang Techno-
logical University, Singapore, 2005.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


