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Covering is a type of widespread data representation while covering-based rough sets provide an efficient and systematic theory to
deal with this type of data. Matroids are based on linear algebra and graph theory and have a variety of applications in many fields.
In this paper, we construct two types of covering cycle matroids by a covering and then study the graphical representations of these
two types of matriods. First, through defining a cycle graph by a set, the type-1 covering cycle matroid is constructed by a covering.
By a dual graph of the cycle graph, the covering can also induce the type-2 covering cycle matroid. Second, some characteristics of
these two types of matroids are formulated by a covering, such as independent sets, bases, circuits, and support sets.Third, a coarse
covering of a covering is defined to study the graphical representation of the type-1 covering cycle matroid. We prove that the type-
1 covering cycle matroid is graphic while the type-2 covering cycle matroid is not always a graphic matroid. Finally, relationships
between these two types of matroids and the function matroid are studied. In a word, borrowing frommatroids, this work presents
an interesting view, graph, to investigate covering-based rough sets.

1. Introduction

Covering is a type of common and important data organi-
zation mode, and it most appears in incomplete informa-
tion/decision systems based on symbolic data [1, 2], numeric
and fuzzy data [3, 4]. Covering-based rough set theory [5, 6]
is an efficient tool to process these types of data. Recently,
this theory has attracted much research interest with fruitful
achievements on both theory and applications. For example,
it has been applied to build axiomatic systems [7, 8] and
establish knowledge reduction approaches [9, 10]. Moreover,
it also has been used to construct covering structures [11,
12] and define minimal covering reducts [13, 14]. However,
this theory has its own limitation in dealing with some
hard problems including knowledge reduction. In order to
improve its ability to process those hard problems, some
other mathematical theories, such as fuzzy set theory [15, 16],
topology [5, 17], Boolean algebra [18, 19], andmatroid [20, 21]
have been combined with covering-based rough set theory.

Matroid theory [22] proposed by Whitney is a general-
ization of linear algebra, graph theory, and transcendence
theory. The original purpose of this theory is to formalize
the similarities between the ideas of independence and

rank in graph theory and those of linear independence and
dimension in the study of vector spaces [23]. Matroids have
been applied to a number of fields, such as combinatorial
optimization [24], algorithm design [25], and information
coding [26]. Matroids can provide well-established platforms
for greedy algorithms, which may help to process those
problems that are difficultly solved by rough sets. Thus,
several matroidal structures of rough sets have been studied
from different viewpoints, such as binary relations [27],
coverings [28, 29], and graphs [30]. Therefore, it makes sense
to study matroidal structures of coverings through graphs.

In this paper, inspired by union of matroids and cycle
matroid, we construct two types of covering cycle matroids
by a covering and then study the graphical representations of
these two types ofmatroids. By defining a cycle graph through
a set, any block of the covering can induce a cycle graph and a
dual graph of the cycle graph, and then some cycle matroids
and their dual matroids are obtained by these cycle graphs
and dual graphs, respectively.Therefore, type-1 covering cycle
matroid is obtained by the union of these cycle matroids, and
type-2 covering cycle matroid is obtained by the union of the
dual matroids of these cycle matroids. The independent sets,
bases, and support sets of these two types of matroids are
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represented by the covering. In particular, the independent
sets of the type-1 covering cycle matroid are equivalently
represented by the lower approximations, and the support
sets of the type-2 covering cycle matroid are equivalently
represented by the upper approximations. We prove that the
type-1 covering cycle matroid induced by a covering is equal
to the one induced by the intersection reduct of the covering.
We also investigate the graphical representations of these two
types of matroids. By redefining a covering into a coarse
covering, the matroid induced by a graph which is generated
by the coarse covering is equal to the type-1 covering cycle
matroid induced by the original covering. As for the type-2
covering cycle matroid, it is not always a graphic matroid.We
also study relationships between these two types of matroids
and the functionmatroid. Results show that these two types of
covering cycle matroids are not always dual, and these three
kinds of matroids are equal when the cardinality of any block
of a covering is equal to 2.

The rest of this paper is organized as follows. Section 2
reviews some fundamental definitions about covering-based
rough sets, matroids, and graphs. In Section 3, we construct
two types of covering cycle matroids by a covering and then
study the graphical representations of these two types of
matroids. Section 4 studies relationships between three kinds
of matroids, which are induced by a covering, respectively.
Finally, this paper is concluded in Section 5.

2. Basic Definitions

This section recalls some fundamental definitions related to
covering-based rough sets, matroids, and graphs.

2.1. Covering-Based Rough Sets. Covering is a common type
of data structure, and it can characterize the practical prob-
lems with extensive coverage.

Definition 1 (covering [31]). Let 𝑈 be a universe of discourse
and C a family of nonempty subsets of 𝑈. If ∪C = 𝑈, then C
is called a covering of 𝑈.

As we know, a partition of 𝑈 is certainly a covering of 𝑈;
so the concept of a covering is an extension to the concept of
a partition.

Neighborhoods are important concepts in rough sets, and
they can describe the maximal dependence to an object.

Definition 2 (indiscernible neighborhood [6]). Let C be a
covering of 𝑈 and 𝑥 ∈ 𝑈. 𝐼C(𝑥) = ∪{𝐾 ∈ C | 𝑥 ∈ 𝐾} is
called the indiscernible neighborhood of 𝑥 with respect to C.
When there is no confusion, we omit the subscript C.

In knowledge discovery, each element in a covering
is called knowledge. As we know, some knowledge may
be redundant. That is to say, removing those redundant
knowledge cannot change the approximation accuracy. To
deal with those redundant knowledge, a notion of reducible
element is proposed and it has many different forms. For
example, the reducible element proposed by Zhu and Wang
[8] is different from the one defined by Y. Yao and B. Yao [12].

Definition 3 (see [12]). Let C be a covering of 𝑈. If 𝐾 is an
intersection of some elements in C − {𝐾}, then 𝐾 is said to
be an intersection reducible element inC, otherwise𝐾 is said
to be an intersection irreducible element. If every element of
C is an intersection irreducible element, then C is said to be
intersection irreducible; otherwiseC is said to be intersection
reducible.

Theorem 4 (see [12]). Let C be a covering of 𝑈. Suppose 𝐾 ∈
C is an intersection reducible element of C, then, for all 𝐾

1
∈

C − {𝐾}, 𝐾
1
is an intersection reducible element of C − {𝐾} if

and only if 𝐾
1
is an intersection reducible element of C.

We can simplify a covering C by iteratively removing
reducible elements to obtain reduced forms of C.

Definition 5 (see [12]). Let C be a covering of 𝑈. If {𝐾
𝑖
} is

the set of all intersection reducible elements of C, the set
C − {𝐾

𝑖
} is called the intersection reduct of C and denoted

by ∩ − reduct(C).

For a covering C of 𝑈, if 𝐾 ∈ C is an intersection
reducible element in C, then C − {𝐾} is still a covering of 𝑈.
Therefore, ∩ − reduct(C) is a covering of 𝑈.

In covering-based rough sets, an object is described by
a pair of approximations. In the following definition, we
introduce a pair of widely used approximations.

Definition 6 (approximations [6]). Let C be a covering of 𝑈.
For all𝑋 ⊆ 𝑈,

𝑋
+
= ∪ {𝐾 ∈ C | 𝐾 ⊆ 𝑋} ,

𝑋
+
= ∪ {𝐾 ∈ C | 𝐾 ∩ 𝑋 ̸= 0}

(1)

are called the lower and upper approximations of 𝑋, respec-
tively.

2.2. Matroids. Matroids are algebraic structures that capture
and generalize linear independence in vector spaces. A
characteristic of matroids is that they are defined in many
different but equivalent ways. In the following, we introduce
one defined by independent sets.

Definition 7 (matroid [22]). A matroid 𝑀 is a pair (𝑈, I)
where 𝑈 is a finite set, and I (independent sets) is a family
of subsets of 𝑈 satisfying the following three conditions:

(𝐼1) 0 ∈ I;
(𝐼2) if 𝐼 ∈ I, and 𝐼

0
⊆ 𝐼, then 𝐼

0
∈ I;

(𝐼3) if 𝐼
1
, 𝐼
2
∈ I, and |𝐼

1
| < |𝐼
2
|, then there exists 𝑒 ∈ 𝐼

2
− 𝐼
1

such that 𝐼
1
∪ {𝑒} ∈ I,

where |𝑋| denotes the cardinality of𝑋.

For a better understanding of the different definitions of a
matroid, some operations will be firstly introduced as follows.

Definition 8 (see [22]). LetA be a family of subsets of𝑈. One
can denote
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Low(A) = {𝑋 ⊆ 𝑈 | ∃𝐴 ∈ A, s.t.𝑋 ⊆ 𝐴},
Max(A) = {𝑋 ⊆ 𝑈 | ∀𝑌 ∈ A,𝑋 ⊆ 𝑌 ⇒ 𝑋 = 𝑌},
Min(A) = {𝑋 ⊆ 𝑈 | ∀𝑌 ∈ A, 𝑌 ⊆ 𝑋 ⇒ 𝑋 = 𝑌},
Opp(A) = {𝑋 ⊆ 𝑈 | 𝑋 ∉ A}.

In order to introduce the dual matroid of a matroid, we
first recall the definition of a base in a matroid. Any base of a
matroid generalizes the maximal linearly independent vector
group of a vector space and the spanning tree of a graph.

Definition 9 (base [22]). Let 𝑀 be a matroid. A maximal
independent set of 𝑀 is called a base of 𝑀, and the set of
all bases of𝑀 is denoted by B(𝑀), that is, B(𝑀) = Max(I).

Clearly, when the set of all independent sets I of amatroid
𝑀 is given, one can determine B(𝑀) and vice versa. By
the bases in matroids, we introduce the concept of the dual
matroid of a matroid, which is an extension of the orthogonal
complement space of a vector space.

Definition 10 (dual matroid [22]). Let 𝑀 be a matroid and
B∗(𝑀) = {𝐵𝑐 | 𝐵 ∈ B(𝑀)}, where𝐵𝑐 denotes the complement
of 𝐵 in 𝑈. Then B∗(𝑀) is the family of all bases of a matroid
which is called the dual matroid of𝑀 and denoted by𝑀∗.

The complement of the independent sets in power sets is
dependent ones. And a minimal set of the dependent sets is
called a circuit of thematroid. Amatroid uniquely determines
its circuits and vice versa.

Definition 11 (circuit [22]). Let𝑀 = (𝑈, I) be a matroid. A
minimal dependent set in 𝑀 is called a circuit of 𝑀, and
we denote the family of all circuits of 𝑀 by C(𝑀), that is,
C(𝑀) = Min(Opp(I)).

Matroids have many equivalent definitions. Support sets
can uniquely determine onematroid. Support sets are defined
as follows.

Definition 12 (support set [22]). Let𝑀 = (𝑈, I) be a matroid.
For all𝑋 ⊆ 𝑈, if there exists a base𝐵 ∈ B(𝑀) such that𝐵 ⊆ 𝑋,
then𝑋 is called a support set of𝑀, and we denote the family
of all support sets of𝑀 by S(𝑀).

From the viewpoint of circuits, matroids are viewed as a
generalization of graphs. In the following, we will recall the
definition of cycle matroid.

Proposition 13 (cycle matroid [22]). Let 𝐺 = (𝑉, 𝐸) be a
graph. Denote I = {𝐼 ⊆ 𝐸 | 𝐼 (as a subgraph) does not
contain cycles}.Then (𝐸, I) is amatroid, and it is called the cycle
matroid of 𝐺 and denoted as𝑀(𝐺).

Union of matroids was introduced by Nash-Williams in
1966. In the following, we will recall the definition of union
of matroids on the same universe.

Definition 14 (union of matroids [22]). Let 𝑀
1
= (𝑈, I

1
),

𝑀
2
= (𝑈, I

2
), . . ., and𝑀

𝑚
= (𝑈, I

𝑚
) be a group of matroids

on the universe 𝑈. Then 𝑀 = (𝑈, I) is a matroid, where
I = {𝐼
1
∪ 𝐼
2
∪ ⋅ ⋅ ⋅ ∪ 𝐼

𝑚
| 𝐼
𝑖
∈ I
𝑖
, 1 ≤ 𝑖 ≤ 𝑚}, which is called the

union of𝑀
1
,𝑀
2
, . . ., and𝑀

𝑚
and denoted by𝑀 = ∨

𝑚

𝑖=1
𝑀
𝑖
.

The graphical representation of matroids is an important
content inmatroids. For amatroid𝑀,𝑀 is a graphicmatroid
[22] if there exists a graph 𝐺 such that 𝑀 ≅ 𝑀(𝐺). An
equivalent characterization of a graphic matroid is given in
the following.

Theorem 15 (see [22]). A matroid is graphic if and only if it
has no minor which is one of the 𝑈

2,4
, 𝐹
7
, 𝐹∗
7
, 𝑀∗(𝐾

5
), and

𝑀
∗
(𝐾
3,3
).

A minor of a matroid 𝑀 is another matroid 𝑁 that is
obtained from𝑀 by a sequence of restriction and contraction
operations. We will introduce two special matroids in the
following two definitions.

Definition 16 (restriction matroid [22]). Let𝑀 = (𝑈, I) be a
matroid. For any𝑋 ⊆ 𝑈, we define I

𝑋
= {𝐼 ⊆ 𝑋 | 𝐼 ∈ I}.Then

there exists a matroid𝑀 | 𝑋 on𝑋 with I
𝑋
as its independent

sets, and𝑀 | 𝑋 is called the restriction matroid of𝑀 on𝑋.

Definition 17 (uniform matroid [22]). Let |𝑈| = 𝑛. For an
integer 𝑘 ≤ 𝑛, we define I = {𝑋 ⊆ 𝑈 | |𝑋| ≤ 𝑘}. Then (𝑈,
I) forms a matroid, and it is called a uniform matroid and
denoted by 𝑈

𝑘,𝑛
.

2.3. Graphs. Graph theory provides an intuitive way to inter-
pret and comprehend a number of practical and theoretical
problems.Theoretically, a graph is an ordered pair consisting
of vertices and edges that connect these vertices.

A graph [32] is a pair 𝐺 = (𝑉, 𝐸) consisting of a set 𝑉 of
vertices and a set 𝐸 of edges such that 𝐸 ⊆ 𝑉×𝑉. A path [32]
is a simple graph whose vertices can be ordered so that two
vertices are adjacent if and only if they are consecutive in the
list. A cycle [32] is a graph with an equal number of vertices
and edges whose vertices can be placed around a circle so that
two vertices are adjacent if and only they appear consecutively
along the circle. A loop [32] is an edge whose endpoints are
equal.

3. Two kinds of Matroids Induced by
a Covering

In this section, we define a cycle graph by a set and then
construct two kinds of matroidal structures by a covering.

3.1. Type-1 Covering Cycle Matroid. In this section, we con-
struct the type-1 covering cycle matroid by a covering and
then study the graphical representation of the matroid. The
relationship between the matroid and a matroid induced by a
graph generated by the covering is also studied.

In order to establish the connection between coverings
and matroids, we first propose a notion as follows.

Definition 18 (cycle graph induced by a set). Let 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
} ⊆ 𝑈 and 𝑚 ≥ 1. We define a graph 𝐺

𝑋
=

(𝑉, 𝐸) induced by𝑋 as follows:



4 ISRN Applied Mathematics

𝑒1 𝑒3

𝑒2

𝑒4

(a) 𝐺𝑋1

𝑒1

𝑒3

𝑒2

𝑒4

(b) 𝐺𝑋2

Figure 1: Two different cycle graphs induced by a set.

(1) |𝑉| = 𝑚;

(2) 𝐸 = 𝑋 where the path 𝑥
1
𝑥
2
. . . 𝑥
𝑚
is a cycle.

As we know, a set is an unordered collection with no
duplicate elements. That is to say a set can induce different
cycle graphs. An example to illustrate this feature is given in
the following.

Example 19. Let 𝑋 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
}, 𝐺
𝑋
1

and 𝐺
𝑋
2

the cycle
graphs induced by 𝑋. As shown in Figure 1, 𝐺

𝑋
1

and 𝐺
𝑋
2

are
represented by (𝑎) and (𝑏), respectively.

Given a set, according to Definition 18, the set can induce
a cycle graph. Given a graph, according to Proposition 13, the
graph can induce a cycle matroid. Although a set can induce
some different cycle graphs, all the cycle matroids induced
by these graphs have only one circuit which is equal to the
set. Hence the cycle matroids induced by these graphs are the
same, and any maximal proper subset of the given set is a
base of the cycle matroid generated by a cycle graph which
is induced by the given set.

Proposition 20. Let𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
} be a subset of 𝑈,𝐺

𝑋

a cycle graph induced by 𝑋, and𝑀(𝐺
𝑋
) = (𝑋, I(𝑋)) the cycle

matroid induced by𝐺
𝑋
.ThereforeB(𝑀(𝐺

𝑋
)) = {𝑋−{𝑥

𝑖
} | 1 ≤

𝑖 ≤ 𝑚}.

Proof. According to Definition 18, the path 𝑥
1
𝑥
2
. . . 𝑥
𝑚
is a

cycle. Hence for any 𝑖 ∈ {1, 2, . . . , 𝑚}, 𝑋 − {𝑥
𝑖
} does not

contain cycles. According to Proposition 13, B(𝑀(𝐺
𝑋
)) =

Max(I(𝑋)) = Max{𝐼 ⊆ 𝑋 | 𝐼 (as a subgraph) does not contain
cycles} = {𝑋 − {𝑥

𝑖
} | 1 ≤ 𝑖 ≤ 𝑚}.

The following example illustrates the uniqueness of the
cycle matroid generated by different cycle graphs induced by
the same set.

Example 21 (continued from Example 19). Let 𝐺
𝑋
1

, 𝐺
𝑋
2

be
two different cycle graphs induced by 𝑋 and 𝑀(𝐺

𝑋
1

) =

(𝑋
1
, I(𝑋
1
)) and 𝑀(𝐺

𝑋
2

) = (𝑋
2
, I(𝑋
2
)) the cycle matroids

induced by𝐺
𝑋
1

and𝐺
𝑋
2

, respectively. By direct computation,
I(𝑋
1
) = 2

𝑋
1 − {𝑋

1
} and I(𝑋

2
) = 2

𝑋
2 − {𝑋

2
}. Moreover,

𝑋
1
= 𝑋
2
. Hence𝑀(𝐺

𝑋
1

) = 𝑀(𝐺
𝑋
2

).

Given a covering of a universe, according toDefinition 18,
every block of the covering can induce a cycle graph. Hence
any block of a covering can induce a matroid. What we
concern about is that if the covering can generate a matroid.
According to Definition 14, we can obtain a matroid by the
union of the matroids, which are induced by a block of the
given covering, respectively.

Proposition 22. Let C = {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a covering of

𝑈, 𝐺
𝐾
𝑖

a cycle graph induced by 𝐾
𝑖
(1 ≤ 𝑖 ≤ 𝑚), and

𝑀(𝐺
𝐾
𝑖

) = (𝐾
𝑖
, I(𝐾
𝑖
)) the cycle matroid induced by 𝐺

𝐾
𝑖

.
Therefore𝑀(C) = (𝑈, I(C)) is a matroid and it is denoted by
𝑀(C) = ∨𝑚

𝑖=1
𝑀(𝐺
𝐾
𝑖

), where I(C) = {𝐼
1
∪ 𝐼
2
∪ ⋅ ⋅ ⋅ ∪ 𝐼

𝑚
| 𝐼
𝑖
∈

I(𝐾
𝑖
), 1 ≤ 𝑖 ≤ 𝑚}.

Proof. For any 𝐾
𝑖
∈ C, we define a matroid on 𝑈 as𝑀

𝐾
𝑖

=

(𝑈, I(𝐾
𝑖
)), where𝑀

𝐾
𝑖

| 𝐾
𝑖
= 𝑀(𝐺

𝐾
𝑖

) and 𝑈 − 𝐾
𝑖
is a circuit

of𝑀
𝐾
𝑖

. According to Definition 14, it is straightforward that
𝑀(C) = ∨𝑚

𝑖=1
𝑀(𝐺
𝐾
𝑖

) = ∨
𝑚

𝑖=1
𝑀
𝐾
𝑖

. So𝑀(C) is a martoid.

Definition 23 (type-1 covering cycle matroid). Let C =

{𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a covering of 𝑈.𝑀(C) = ∨𝑚

𝑖=1
𝑀(𝐺
𝐾
𝑖

) is
called type-1 covering cycle matroid induced by C.

Example 24. Let 𝑈 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
} and C = {𝐾

1
, 𝐾
2
, 𝐾
3
},

where𝐾
1
= {𝑒
3
},𝐾
2
= {𝑒
1
, 𝑒
2
, 𝑒
4
}, and𝐾

3
= {𝑒
2
, 𝑒
3
}. As shown

in Figure 2, three cycle graphs 𝐺
𝐾
1

, 𝐺
𝐾
2

, and 𝐺
𝐾
3

induced
by 𝐾
1
, 𝐾
2
, and 𝐾

3
are represented by Figures 2(a), 2(b), and

2(c), respectively. The cycle matroids induced by 𝐺
𝐾
1

, 𝐺
𝐾
2

,
and 𝐺

𝐾
3

are 𝑀(𝐺
𝐾
1

) = (𝐾
1
, I(𝐾
1
)), 𝑀(𝐺

𝐾
2

) = (𝐾
2
, I(𝐾
2
))

and𝑀(𝐺
𝐾
3

) = (𝐾
3
, I(𝐾
3
)). By direct computation, I(𝐾

1
) =

{0}, I(𝐾
2
) = {0, {𝑒

1
}, {𝑒
2
}, {𝑒
4
}, {𝑒
1
, 𝑒
2
}, {𝑒
1
, 𝑒
4
}, {𝑒
2
, 𝑒
4
}}, and

I(𝐾
3
) = {0, {𝑒

2
}, {𝑒
3
}}. Therefore the type-1 covering cycle

matroid induced by C is 𝑀(C) = (𝑈, I(C)), where I(C) =
2
𝑈
− {𝑈}.

For a set, a maximal independent set of the cycle matroid
generated by a cycle graph induced by the set is a maximal
proper subset of the set. In the following proposition, we use
all the blocks of a covering to represent a base of the type-1
covering cycle matroid induced by the covering.

Proposition 25. Let C = {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a covering of 𝑈

and𝑀(C) the type-1 covering cyclematroid induced byC.Then
B(𝑀(C)) = Max{∪𝑚

𝑖=1
(𝐾
𝑖
− {𝑥
𝐾
𝑖

}) | 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
}.

Proof. According to Definition 9, B(𝑀(C)) = Max(I(C)).
Since 𝐺

𝐾
𝑖

is a cycle graph induced by 𝐾
𝑖
(1 ≤ 𝑖 ≤ 𝑚)

and𝑀(𝐺
𝐾
𝑖

) = (𝐾
𝑖
, I(𝐾
𝑖
)) the cycle matroid induced by 𝐺

𝐾
𝑖

,
according Proposition 20, B(𝑀(𝐺

𝐾
𝑖

)) = {𝐾
𝑖
− {𝑥
𝐾
𝑖

} | 𝑥
𝐾
𝑖

∈

𝐾
𝑖
}. Hence B(𝑀(C)) = Max{∪𝑚

𝑖=1
(𝐾
𝑖
− {𝑥
𝐾
𝑖

}) | 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
}.

In the following proposition, when a covering degener-
ates a partition, we represent the bases of the type-1 covering
cycle matroid induced by the covering.

Proposition 26. Let C = {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a covering of 𝑈

and𝑀(C) the type-1 covering cycle matroid induced by C. If C
is a partition of 𝑈, then B(𝑀(C)) = {∪𝑚

𝑖=1
(𝐾
𝑖
− {𝑥
𝐾
𝑖

}) | 𝑥
𝐾
𝑖

∈

𝐾
𝑖
}.
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𝑒3

(a) 𝐺𝐾1

𝑒1 𝑒2

𝑒4

(b) 𝐺𝐾2

𝑒3

𝑒2

(c) 𝐺𝐾3

Figure 2: Cycle graphs induced by𝐾
1
, 𝐾
2
, and 𝐾

3
, respectively.

Proof. Since C is a partition of 𝑈 and 𝑥
𝐾
𝑡

∈ 𝐾
𝑡
for any 𝑡 ∈

𝐼 = {1, 2, . . . , 𝑚}, (𝐾
𝑖
− {𝑥
𝐾
𝑖

}) ∩ (𝐾
𝑗
− {𝑥
𝐾
𝑗

}) = 0 for any 𝑖, 𝑗 ∈
𝐼. According to Proposition 25, B(𝑀(C)) = Max{∪𝑚

𝑖=1
(𝐾
𝑖
−

{𝑥
𝐾
𝑖

}) | 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
} = {∪

𝑚

𝑖=1
(𝐾
𝑖
− {𝑥
𝐾
𝑖

}) | 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
}.

An equivalent formulation of the independent sets of
the type-1 covering cycle matroid induced by a partition is
provided from the viewpoint of lower approximations. In fact,
a subset of a universe is an independent set if and only if the
lower approximation of the subset is equal to empty set.

Proposition 27. Let C = {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a covering of

𝑈 and 𝑀(C) = (𝑈, I(C)) the type-1 covering cycle matroid
induced by C. If C is a partition of 𝑈, then I(C) = {𝑋 ⊆ 𝑈 |
𝑋
+
= 0}.

Proof. For any 𝑋 ∈ I(C), there exists 𝐵 ∈ B(𝑀(C)) such that
𝑋 ⊆ 𝐵. Since C is a partition of 𝑈, there exists 𝑥

𝐾
𝑖

∈ 𝐾
𝑖
(1 ≤

𝑖 ≤ 𝑚) such that 𝐵 = ∪𝑚
𝑖=1
(𝐾
𝑖
− {𝑥
𝐾
𝑖

}), and (𝐾
𝑖
− {𝑥
𝐾
𝑖

}) ∩ (𝐾
𝑗
−

{𝑥
𝐾
𝑗

}) = 0 for any 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑚}. So𝐾
𝑗
̸⊆ ∪
𝑚

𝑖=1
(𝐾
𝑖
−{𝑥
𝐾
𝑖

})

for any 𝐾
𝑗
∈ C. Therefore, 𝐾

𝑗
̸⊆ 𝑋 for any 𝐾

𝑗
∈ C, that

is, I(C) ⊆ {𝑋 ⊆ 𝑈 | 𝑋
+
= 0}. Conversely, for any 𝑋 ⊆ 𝑈, if

𝑋
+
= 0, then𝐾

𝑖
̸⊆ 𝑋 for all𝐾

𝑖
∈ C. So𝑋∩𝐾

𝑖
⊂ 𝐾
𝑖
. According

to Proposition 20, there exists 𝐵 ∈ B(𝑀(𝐺
𝐾
𝑖

)) such that 𝑋 ∩
𝐾
𝑖
⊆ 𝐵. Hence 𝑋 ∩ 𝐾

𝑖
∈ I(𝐾

𝑖
). Moreover, 𝑋 = 𝑋 ∩ 𝑈 =

𝑋 ∩ (∪
𝑚

𝑖=1
𝐾
𝑖
) = ∪
𝑚

𝑖=1
(𝑋 ∩ 𝐾

𝑖
). So 𝑋 ∈ I(C), that is, {𝑋 ⊆ 𝑈 |

𝑋
+
= 0} ⊆ I(C). To sum up, this completes the proof.

When a covering of a universe is not a partition of
the universe, there exists an independent set whose lower
approximation is not empty. Example 24 can be used to
illustrate this feature. Since I(C) = 2𝑈 − {𝑈}, {2, 3} ∈ I(C).
But {2, 3}

+
= {2, 3} ̸= 0.

A covering can induce the type-1 covering cycle matroid.
We would like to know whether there exist two different cov-
erings such that the type-1 covering cycle matroids induced
by them are equal. As shown in the following proposition, the
type-1 covering cycle matroid induced by any covering C is
equal to the one induced by the covering C − {𝐾}, if 𝐾 is an
intersection reducible element of C.

Proposition 28. Let C = {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a covering of𝑈.

If 𝐾
𝑗
is an intersection reducible element of C, then 𝑀(C) =

𝑀(C − {𝐾
𝑗
}).

Proof. Since 𝐾
𝑗
is an intersection reducible element of C,

there exist some elements 𝐾
𝑗
1

, 𝐾
𝑗
2

, . . . , 𝐾
𝑗
𝑛

in C such that

𝐾
𝑗
= ∩
𝑛

𝑖=1
𝐾
𝑗𝑖
. For any 𝑥

𝐾
𝑗

∈ 𝐾
𝑗
, 𝑥
𝐾
𝑗

∈ 𝐾
𝑗𝑖
(1 ≤ 𝑖 ≤ 𝑛). If

|𝐾
𝑗
| = 1, then I(𝐾

𝑗
) = {0}. Hence B(𝑀(C)) = Max{∪𝑚

𝑖=1
(𝐾
𝑖
−

{𝑥
𝐾
𝑖

}) | 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
} = Max{∪𝑗−1

𝑖=1
(𝐾
𝑖
− {𝑥
𝐾
𝑖

}) ∪ (∪
𝑚

𝑖=𝑗+1
(𝐾
𝑖
−

{𝑥
𝐾
𝑖

})) | 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
} = B(𝑀(C − {𝐾

𝑗
})). If |𝐾

𝑗
| > 1,

then ∪𝑛−1
𝑖=1
(𝐾
𝑗
𝑖

− {𝑥
𝐾
𝑗

}) ∪ (𝐾
𝑗
𝑛

− {𝑥


𝐾
𝑗

}) = ∪
𝑛

𝑖=1
𝐾
𝑗𝑖
for any

𝑥
𝐾
𝑗

, 𝑥


𝐾
𝑗

∈ 𝐾
𝑗
and 𝑥

𝐾
𝑗

̸= 𝑥


𝐾
𝑗

. Since𝐾
𝑗
= ∩
𝑛

𝑖=1
𝐾
𝑗𝑖
,𝐾
𝑗
− {𝑥
𝐾
𝑗

} ⊂

𝐾
𝑗
⊂ ∪
𝑛

𝑖=1
𝐾
𝑗𝑖
. So Max{∪𝑛

𝑖=1
(𝐾
𝑗𝑖
− {𝑥
𝐾
𝑖

}) | 𝑥
𝐾
𝑖

∈ 𝐾
𝑗
} =

{∪
𝑛

𝑖=1
𝐾
𝑗𝑖
} = Max{∪𝑛

𝑖=1
𝐾
𝑗𝑖
∪𝐾
𝑗
} = Max{∪𝑛

𝑖=1
𝐾
𝑗𝑖
∪(𝐾
𝑗
−{𝑥
𝐾
𝑗

}) |

𝑥
𝐾
𝑗

∈ 𝐾
𝑗
}. Hence B(𝑀(C)) = Max{∪𝑚

𝑖=1
(𝐾
𝑖
− {𝑥
𝐾
𝑖

}) | 𝑥
𝐾
𝑖

∈

𝐾
𝑖
} = Max{∪𝑗𝑛

𝑖=𝑗
1

𝐾
𝑖
∪ (∪
𝑚

𝑡=1∧𝑡 ̸= 𝑖
(𝐾
𝑡
− {𝑥
𝐾
𝑡

})) | 𝑥
𝐾
𝑡

∈ 𝐾
𝑡
} =

Max{∪𝑗𝑛
𝑖=𝑗
1

𝐾
𝑖
∪(∪
𝑗−1

𝑡=1∧𝑡 ̸= 𝑖
(𝐾
𝑡
−{𝑥
𝐾
𝑡

}))∪(∪
𝑚

𝑡=𝑗+1∧𝑡 ̸= 𝑖
(𝐾
𝑡
−{𝑥
𝐾
𝑡

})) |

𝑥
𝐾
𝑡

∈ 𝐾
𝑡
} = Max{∪𝑗𝑛

𝑖=𝑗
1

(𝐾
𝑖
− 𝑥
𝐾
𝑖

) ∪ (∪
𝑗−1

𝑡=1∧𝑡 ̸= 𝑖
(𝐾
𝑡
− {𝑥
𝐾
𝑡

})) ∪

(∪
𝑚

𝑡=𝑗+1∧𝑡 ̸= 𝑖
(𝐾
𝑡
− {𝑥
𝐾
𝑡

})) | 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
, 𝑥
𝐾
𝑡

∈ 𝐾
𝑡
} = B(𝑀(C −

{𝐾
𝑗
})). Therefore,𝑀(C) = 𝑀(C − {𝐾

𝑗
}).

The type-1 covering cycle matroid induced by any cover-
ing is equal to the one induced by the intersection reduct of
the covering.

Corollary 29. Let C be a covering of 𝑈. 𝑀(C) = 𝑀(∩ −
reduct(C)).

Proof. Suppose 𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑛
are all intersection reducible

elements of C, then according to Proposition 28, 𝑀(C) =
𝑀(C − {𝐾

1
}). According to Theorem 4, 𝐾

2
is also an

intersection reducible element of the coveringC−{𝐾
1
}. Hence

𝑀(C− {𝐾
1
}) = 𝑀(C− {𝐾

1
, 𝐾
2
}). Similarly, we can prove that

𝑀(C − {𝐾
1
, 𝐾
2
}) = 𝑀(C − {𝐾

1
, 𝐾
2
, 𝐾
3
}) = ⋅ ⋅ ⋅ = 𝑀(∩ −

reduct(C)). Therefore,𝑀(C) = 𝑀(∩ − reduct(C)).

In the rest of this subsection, the main task is to study the
graphical representation of the type-1 covering cycle matroid.
First, we redefine a given covering of a universe into another
covering of the universe.

Definition 30. Let C be a covering of 𝑈. A family of subsets
of 𝑈 is defined as follows:

P = {𝐼𝑡 (𝑥) | 𝐼𝑡 (𝑥) = 𝐼𝑠 (𝑥) for any 𝑥 ∈ 𝑈, 1 ≤ 𝑡 < 𝑠 ≤ |C|} .
(2)

P is then also a covering of 𝑈 and it is called the coarse
covering of C. When 𝑡 ≥ 2, 𝐼𝑡(𝑥) is the indiscernible
neighborhood of 𝑥with respect to covering {𝐼𝑡−1(𝑥) | 𝑥 ∈ 𝑈}.
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Example 31. Let 𝑈 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

9
} and C = {𝐾

1
, 𝐾
2
, 𝐾
3
,

𝐾
4
, 𝐾
5
}, where 𝐾

1
= {𝑒
1
, 𝑒
2
, 𝑒
3
}, 𝐾
2
= {𝑒
2
, 𝑒
3
}, 𝐾
3
= {𝑒
4
, 𝑒
5
},

𝐾
4
= {𝑒
6
, 𝑒
7
}, and 𝐾

5
= {𝑒
6
, 𝑒
8
, 𝑒
9
}. By direct computation

𝐼
2
(𝑒
1
) = 𝐼

2
(𝑒
2
) = 𝐼

2
(𝑒
3
) = 𝐾

1
= 𝐾
1
∪ 𝐾
2
= 𝐼
3
(𝑒
1
) =

𝐼
3
(𝑒
2
) = 𝐼

3
(𝑒
3
), 𝐼2(𝑒

4
) = 𝐼

2
(𝑒
5
) = 𝐾

3
= 𝐼
3
(𝑒
4
) = 𝐼

3
(𝑒
5
),

𝐼
2
(𝑒
6
) = 𝐼

2
(𝑒
7
) = 𝐼

2
(𝑒
8
) = 𝐼

2
(𝑒
9
) = 𝐾

4
∪ 𝐾
5
= 𝐼
3
(𝑒
6
) =

𝐼
3
(𝑒
7
) = 𝐼

3
(𝑒
8
) = 𝐼

3
(𝑒
9
). So P = {𝐼2(𝑒

𝑖
) | 1 ≤ 𝑖 ≤ 9} =

{𝐾
1
∪ 𝐾
2
, 𝐾
3
, 𝐾
4
∪ 𝐾
5
} = {{𝑒

1
, 𝑒
2
, 𝑒
3
}, {𝑒
4
, 𝑒
5
}, {𝑒
6
, 𝑒
7
, 𝑒
8
, 𝑒
9
}}.

Proposition 32. Let C be a covering of 𝑈 and P the coarse
covering of C. P is a partition of 𝑈.

Proof. For any 𝑥, 𝑦 ∈ 𝑈, 𝐼𝑡(𝑥), 𝐼𝑡(𝑦) ∈ P. If 𝐼𝑡(𝑥) ∩ 𝐼𝑡(𝑦) ̸= 0,
then we need to prove that 𝐼𝑡(𝑥) = 𝐼

𝑡
(𝑦). If there exists

𝑧 ∈ 𝐼
𝑡
(𝑥) such that 𝑧 ∉ 𝐼𝑡(𝑦), then for any 𝑧

0
∈ 𝐼
𝑡
(𝑥) ∩

𝐼
𝑡
(𝑦), 𝑥, 𝑧, 𝑧

0
∈ 𝐼
𝑡
(𝑥), 𝑦, 𝑧

0
∈ 𝐼
𝑡
(𝑦) and 𝑥, 𝑦, 𝑧

0
∈ 𝐼
𝑡
(𝑧
0
).

So 𝑥, 𝑦, 𝑧, 𝑧
0
∈ 𝐼
𝑡+1
(𝑧
0
). Therefore, 𝑧 ∈ 𝐼

𝑡+2
(𝑦), that is,

𝐼
𝑡+2
(𝑦) ̸= 𝐼

𝑡
(𝑦), which is contradictory to 𝐼𝑡(𝑥) ∈ P. So

𝐼
𝑡
(𝑥) ⊆ 𝐼

𝑡
(𝑦). Similarly, we can prove that 𝐼𝑡(𝑦) ⊆ 𝐼𝑡(𝑥).

Consequently, 𝐼𝑡(𝑥) = 𝐼𝑡(𝑦), that is, P is a partition of𝑈.

Relationships between those blocks of a covering and any
block in the coarse covering of the covering are shown in the
following two propositions.

Proposition 33. Let C be a covering of 𝑈 and P the coarse
covering of C. For any 𝑋 ∈ P and 𝐾 ∈ C, if 𝑋 ∩ 𝐾 ̸= 0, then
𝐾 ⊆ 𝑋.

Proof. For any 𝑥 ∈ 𝐾 and 𝑦 ∈ 𝑋 ∩ 𝐾, 𝑥 ∈ 𝐼(𝑦) ⊆ 𝐼2(𝑦) ⊆
⋅ ⋅ ⋅ ⊆ 𝐼

𝑡−1
(𝑦) ⊆ 𝐼

𝑡
(𝑦) = 𝑋. So 𝐾 ⊆ 𝑋.

Proposition 34. Let C be a covering of 𝑈 and P the coarse
covering of C. For any𝑋 ∈ P, if𝐾

𝑖
∩𝑋 ̸= 0 and𝐾

𝑗
∩𝑋 = 0 for

any 𝑖 ∈ 𝐼 ⊆ {1, 2, . . . , |C|} and 𝑗 ∈ 𝐼𝑐, then𝑋 = ∪
𝑖∈𝐼
𝐾
𝑖
.

Proof. Since C is a covering of 𝑈 and 𝑋 ⊆ 𝑈, 𝑋 ⊆ ∪
𝑖∈𝐼
𝐾
𝑖
.

According to Proposition 33, ∪
𝑖∈𝐼
𝐾
𝑖
⊆ 𝑋. So𝑋 = ∪

𝑖∈𝐼
𝐾
𝑖
.

As we know, matroids and graphs coincide with each
other when the circuit of amatroid is degenerated to the cycle
of a graph. The following proposition shows relationships
between each block in the coarse covering of a given covering
and circuits of the type-1 covering cycle matroid induced by
the given covering.

Proposition 35. Let C be a covering of 𝑈 and P the coarse
covering of C. For any 𝑋 ∈ P, if 𝑋 ∉ B(𝑀(C) | 𝑋), then
𝑋 ∈ C(𝑀(C)).

Proof. Since 𝑋 ∉ B(𝑀(C) | 𝑋), 𝑋 ∉ I(C). If there exists
𝐾 ∈ C such that 𝑋 = 𝐾, then 𝑌 ∈ I(C) for any 𝑌 ⊂ 𝑋. For
any 𝐾 ∈ C, if 𝐾 ̸=𝑋, then we need to prove that 𝑌 ∈ I(C)
for any 𝑌 ⊂ 𝑋. According to Proposition 34, there exists 𝐼 ⊆
{1, 2, . . . , |C|} such that𝑋 = ∪

𝑖∈𝐼
𝐾
𝑖
. For any 𝑒 ∈ 𝑋, there exists

𝐼
0
⊆ 𝐼 such that 𝑒 ∈ 𝐾

𝑖
(𝑖 ∈ 𝐼

0
) and 𝑒 ∉ 𝐾

𝑖
(𝑖 ∈ 𝐼 − 𝐼

0
). So

𝑋− {𝑒} = ∪
𝑖∈𝐼−𝐼
0

𝐾
𝑖
∪ (∪
𝑖∈𝐼
0

(𝐾
𝑖
− {𝑒})). Since 𝑒 ∈ 𝑋, according

to Proposition 32, 𝑒 ∈ 𝐼𝑡(𝑒) = 𝑋. If for any 𝑖 ∈ 𝐼 − 𝐼
0
and

𝑗 ∈ 𝐼
0
, 𝐾
𝑖
∩ 𝐾
𝑗
= 0, then 𝐼𝑡(𝑒) = ∪

𝑖∈𝐼
0

𝐾
𝑖
⊂ 𝑋, which is

contradictory to 𝐼𝑡(𝑒) = 𝑋. So there exists 𝐼
1
⊆ 𝐼 − 𝐼

0
with

the condition that for any 𝑖
1
∈ 𝐼
1
, 𝑖
2
∈ 𝐼 − 𝐼

0
− 𝐼
1
and 𝑗
2
∈ 𝐼
0
,

there exists 𝑗
1
∈ 𝐼
0
such that 𝐾

𝑖
1

∩ 𝐾
𝑗
1

̸= 0 and 𝐾
𝑖
2

∩ 𝐾
𝑗
2

= 0.
Hence for any 𝑥

𝐾
𝑖

∈ 𝐾
𝑖
∩ 𝐾
𝑗
(𝑖 ∈ 𝐼

1
, 𝑗 ∈ 𝐼

0
), 𝑋 − {𝑒} =

∪
𝑖∈𝐼−𝐼
0
−𝐼
1

𝐾
𝑖
∪ (∪
𝑖∈𝐼
1

(𝐾
𝑖
− {𝑥
𝐾
𝑖

})) ∪ (∪
𝑖∈𝐼
0

(𝐾
𝑖
− {𝑒})). Similarly,

we can prove that there exists 𝐼
2
⊆ 𝐼−𝐼

0
−𝐼
1
with the condition

that, for any 𝑖
1
∈ 𝐼
2
, 𝑖
2
∈ 𝐼 − 𝐼

0
− 𝐼
1
− 𝐼
2
and 𝑗
2
∈ 𝐼
1
, there

exists 𝑗
1
∈ 𝐼
1
such that 𝐾

𝑖
1

∩ 𝐾
𝑗
1

̸= 0 and 𝐾
𝑖
2

∩ 𝐾
𝑗
2

= 0. And
for any 𝑥

𝐾
𝑖

∈ 𝐾
𝑖
∩𝐾
𝑗
(𝑖 ∈ 𝐼
2
, 𝑗 ∈ 𝐼

1
),𝑋−{𝑒} = ∪

𝑖∈𝐼−𝐼
0
−𝐼
1
−𝐼
2

𝐾
𝑖
∪

(∪
𝑖∈𝐼
2

(𝐾
𝑖
−{𝑥
𝐾
𝑖

}))∪(∪
𝑖∈𝐼
1

(𝐾
𝑖
−{𝑥
𝐾
𝑖

}))∪(∪
𝑖∈𝐼
0

(𝐾
𝑖
−{𝑒})). Since

𝐼 is a finite set, there exist a finite set 𝐽 with 𝑗
0
≥ 1 for any

𝑗
0
∈ 𝐽 and an element 𝑥

𝐾
𝑖

∈ 𝐾
𝑖
∩ 𝐾
𝑗
(𝑖 ∈ 𝐼

𝑗
0
(𝑗
0
∈𝐽)
, 𝑗 ∈ 𝐼

𝑗
0
−1
)

such that 𝑋 − {𝑒} = ∪
𝑖∈𝐼
𝑗(𝑗∈𝐽)

(𝐾
𝑖
− {𝑥
𝐾
𝑖

}) ∪ (∪
𝑖∈𝐼
0

(𝐾
𝑖
− {𝑒})).

Therefore, 𝑌 ∈ I(C) for any 𝑌 ⊂ 𝑋. So 𝑋 ∈ Min(Opp(I(C))),
that is,𝑋 ∈ C(𝑀(C)).

In the following proposition, we study relationships
between the coarse covering of a given covering and circuits
of the type-1 covering cycle matroid induced by the given
covering.

Proposition 36. Let C be a covering of 𝑈 and P the coarse
covering ofC. For any𝑋 ∈ P ⊆ P, Y ∈ P−P, if𝑋 ∈ B(𝑀(C) |
𝑋) and 𝑌 ∉ B(𝑀(C) | 𝑌), then P − P = C(𝑀(C)).

Proof. For any 𝑍 ∈ P − P, 𝑍 ∉ B(𝑀(C) | 𝑍), according
to Proposition 35, 𝑍 ∈ C(𝑀(C)). Conversely, for any 𝑍 ∈
C(𝑀(C)), 𝑍 ∈ Min(Opp(I(C))). Hence 𝑍 ∉ I(C), that is,
𝑍 ∉ B(𝑀(C) | 𝑍). There exists an index set 𝐼 ⊆ {1, 2, . . . , |C|}
such that for any 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐼𝑐,𝑍 ∩ 𝐾

𝑖
̸= 0 and𝑍 ∩ 𝐾

𝑗
= 0.

So 𝑍 ⊆ ∪
𝑖∈𝐼
𝐾
𝑖
. Suppose there exists a nonempty index set

𝐼
0
⊂ 𝐼 with the condition that, for any 𝑖 ∈ 𝐼

0
and 𝑗 ∈ 𝐼 − 𝐼

0
,

𝐾
𝑗
⊆ 𝑍 and there exists 𝑥

𝐾
𝑖

∈ 𝐾
𝑖
such that 𝑥

𝐾
𝑖

∉ 𝑍. Since
𝑍 ∈ C(𝑀(C)), 𝐼

0
̸= 𝐼. There exists a finite set 𝐽 with 𝑗 ≥ 1 for

any 𝑗 ∈ 𝐽 such that 𝐾
𝑖
∩ 𝐾
𝑖
1

̸= 0 (𝑖 ∈ 𝐼
𝑗(𝑗∈𝐽)

, 𝑖
1
∈ 𝐼
𝑗−1
) and

for any 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
∩ 𝐾
𝑖
1

, 𝑍 ⊆ ∪
𝑖∈𝐼−𝐼
0
−∪
𝑗∈𝐽
𝐼
𝑗

𝐾
𝑖
∪ (∪
𝑖∈𝐼
𝑗(𝑗∈𝐽)

(𝐾
𝑖
−

𝑥
𝐾
𝑖

)) ∪ (∪
𝑖∈𝐼
0

(𝐾
𝑖
− 𝑥
𝐾
𝑖

)). For any 𝑖, 𝑗 ∈ 𝐼 − 𝐼
0
− ∪
𝑗∈𝐽
𝐼
𝑗
and

𝑡 ∈ 𝐼
𝑐, 𝐾
𝑖
∩ 𝐾
𝑡
= 0 and 𝐾

𝑗
∩ 𝐾
𝑡
= 0. If 𝐼 − 𝐼

0
− ∪
𝑗∈𝐽
𝐼
𝑗
̸= 0,

then ∪
𝑖∈𝐼−𝐼
0
−∪
𝑗∈𝐽
𝐼
𝑗

𝐾
𝑖
∈ C(𝑀(C)), which is contradictory to

𝑍 ∈ C(𝑀(C)). So 𝑍 ⊆ ∪
𝑖∈𝐼
𝑗(𝑗∈𝐽)

(𝐾
𝑖
− 𝑥
𝐾
𝑖

) ∪ (∪
𝑖∈𝐼
0

(𝐾
𝑖
− 𝑥
𝐾
𝑖

)),
that is, 𝑍 ∈ I(C), which is contradictory to 𝑍 ∈ C(𝑀(C)).
Therefore 𝐼

0
= 0, that is,𝑍 = ∪

𝑖∈𝐼
𝐾
𝑖
. Since𝑍 ∩ 𝐾

𝑖
= 0 for any

𝑖 ∈ 𝐼
𝑐, there exists 𝑡 ∈ {1, 2, . . . , |C|} such that 𝐼𝑡(𝑥) = 𝐼𝑠(𝑥) =

𝑍 for any 𝑥 ∈ 𝑍 and 𝑡 < 𝑠 ≤ |C|, that is, 𝑍 ∈ P. Therefore,
𝑍 ∈ P − P.

In the following definition, we introduce a method to get
a connected graph by some disjoint graphs.

Definition 37 (vertex identification [22]). Suppose that the
graph 𝐺 is obtained from the disjoint graphs 𝐺

1
and 𝐺

2
by

identifying the vertices 𝑢
1
of 𝐺
1
and 𝑢

2
of 𝐺
2
as the vertex 𝑢

of 𝐺. This operation is called a vertex identification.

A connected graph is constructed by some disjoint graphs
through vertex identification. These disjoint graphs are,
respectively, induced by a block in the coarse covering of a
covering.
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Definition 38. Let P be the coarse covering of C, 𝐺
𝑋
𝑖

a cycle
graph induced by 𝑋

𝑖
, and 𝐺

𝑋
𝑗

a path induced by 𝑋
𝑗
, where

𝑋
𝑖
, 𝑋
𝑗
∈ P, 𝑋

𝑗
∈ B(𝑀(C) | 𝑋

𝑗
) and 𝑋

𝑖
∉ B(𝑀(C) | 𝑋

𝑖
). We

define a graph by vertex identification of 𝐺
𝑋
1

, 𝐺
𝑋
2

, . . ., and
𝐺
𝑋
|P|
, and this graph is denoted by 𝐺P. We say 𝐺P is a graph

induced by P.

The following example is about the operation of vertex
identification and a graph obtained by the coarse covering of
a covering.

Example 39 (continued from Example 31). P = {{𝑒
1
, 𝑒
2
, 𝑒
3
},

{𝑒
4
, 𝑒
5
}, {𝑒
6
, 𝑒
7
, 𝑒
8
, 𝑒
9
}} = {𝐾

1
∪ 𝐾
2
, 𝐾
3
, 𝐾
4
∪ 𝐾
5
}. Since 𝐾

4
∪

𝐾
5
∉ B(𝑀(C) | (𝐾

4
∪ 𝐾
5
)), 𝐾
3
∉ B(𝑀(C) | 𝐾

3
) and 𝐾

1
∪

𝐾
2
∈ B(𝑀(C) | (𝐾

1
∪ 𝐾
2
)), 𝐺
𝐾
1
∪𝐾
2

is a path and both 𝐺
𝐾
3

and 𝐺
𝐾
4
∪𝐾
5

are cycle graphs. Those three graphs are shown
in Figure 3. If 𝐺P is a graph obtained by vertex identification
of these three graphs, then 𝐺P is a graph induced by P. 𝐺P is
shown in Figure 4.

It is obvious that there are some different graphs which
can be obtained by the coarse covering of a covering through
the operation of vertex identification. Cycles of each graph are
the same despite these graphs are different. And these cycles
are those blocks in the coarse covering which do not belong
to the family of all independent sets of the type-1 covering
cycle matroid induced by the original covering. From the
viewpoint of the circuit of a matroid, a matroid induced by
a connected graph constructed from the coarse covering of a
given covering is equal to the type-1 covering cycle matroid
induced by the given covering.

Theorem 40. Let C be a covering of 𝑈, P the coarse covering
of C, and 𝐺P a graph induced by P. Then𝑀(C) = 𝑀(𝐺P).

Proof. We need to prove only that C(𝑀(C)) = C(𝑀(𝐺P)).
Since 𝐺P is the graph obtained by vertex identification of 𝐺

𝑋
𝑖

(1 ≤ 𝑖 ≤ |P|), then C(𝑀(𝐺P)) = P − P, where P is a family
of subsets of P and it has a property that 𝑋 ∈ B(𝑀(C) | 𝑋)
for any 𝑋 ∈ P. According to Proposition 36, C(𝑀(C)) =
C(𝑀(𝐺P)). Therefore,𝑀(C) = 𝑀(𝐺P).

3.2. Type-2 Covering Cycle Matroid. In this section, type-2
covering cycle matroid is defined, and then the graphical
representation of this type of covering cycle matroid is
studied.

Every connected plane graph 𝐺 has a natural dual graph
𝐺
∗ such that (𝐺∗)∗ = 𝐺. The dual is formed by associating a

vertex of 𝐺∗ with each face of 𝐺 and including a dual edge 𝑒∗
in𝐺∗ for each edge 𝑒 of𝐺, such that the endpoints of the edge
𝑒
∗ are the vertices for the faces on the two sides of 𝑒.

In graph theory, a plane graph is a graph in which no
edges cross each other. For any set 𝑋, a cycle graph 𝐺

𝑋

induced by 𝑋 has no edges cross each other, so the graph
𝐺
𝑋
is a plane graph and has a dual graph. Since 𝐺

𝑋
has two

faces, its dual graph has only two vertices. In order to further
understand the notion about a dual graph of a plane graph,
an example is given in the following.

Example 41 (continued from Example 24). As shown in
Figure 5, the dual graphs of the cycle graphs𝐺

𝐾
1

,𝐺
𝐾
2

, and𝐺
𝐾
3

are represented by Figures 5(a), 5(b), and 5(c), respectively.

Given a set, there are some different cycle graphs induced
by the set, but these cycle graphs have the same dual graph. As
we know that any edge in any cycle graph induced by the set
has two faces, so all the dual graphs of these cycle graphs have
only two vertices and any two edges of each dual graph form
a cycle. That is to say, any two edges of each dual graph are
adjacent. So these dual graphs are the same. When the set is
a singleton, the cycle graph induced by the set is a loop. Since
the edge of a loop has two faces, the dual graph of the loop
has two vertices and an edge.That is to say, a singleton whose
element is the edge of the dual graph of the loop is always
a base of the matroid induced by this dual graph. Therefore,
for a cycle graph, a singleton that consists of any edge of the
dual graph of the cycle graph is a base of the matroid induced
by the dual graph. Then the following proposition can be
obtained.

Proposition 42. Let 𝑋 be a subset of 𝑈, 𝐺∗
𝑋
the dual graph of

a cycle graph induced by𝑋, and𝑀(𝐺∗
𝑋
) = (𝑈, I∗(𝑋)) the cycle

matroid induced by 𝐺∗
𝑋
. Then B(𝑀(𝐺∗

𝑋
)) = {{𝑥} | 𝑥 ∈ 𝑋} =

B∗(𝑀(𝐺
𝑋
)).

Proof. According to Proposition 13, Definitions 18 and 10,
Proposition 20, and the notion of a dual graph of a plane
graph, it is straightforward.

The above proposition shows that a singleton consists of
any element in the given set that is an independent set of
the dual matroid of the cycle matroid, which is induced by a
cycle graph. And this cycle graph is induced by the given set.
According to Definition 14, the following proposition can be
obtained easily.

Proposition 43. Let C = {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a covering of

𝑈, 𝐺∗
𝐾
𝑖

the dual graph of a cycle graph induced by 𝐾
𝑖
(1 ≤ 𝑖 ≤

𝑚), and𝑀(𝐺∗
𝐾
𝑖

) = (𝐾
𝑖
, I∗(𝐾

𝑖
)) the cycle matroid induced by

𝐺
∗

𝐾
𝑖

. Then𝑀(C) = (𝑈, I(C)) is a matroid and it is denoted by
𝑀

(C) = ∨𝑚

𝑖=1
𝑀(𝐺
∗

𝐾
𝑖

), where I(C) = {∪𝑚
𝑖=1
{𝑥
𝐾
𝑖

} | {𝑥
𝐾
𝑖

} ⊆ 𝐾
𝑖
}.

Proof. For any 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
, {𝑥
𝐾
𝑖

} ̸= 0. So according to
Proposition 42, {𝑥

𝐾
𝑖

} ∈ B(𝑀(𝐺∗
𝐾
𝑖

)). Hence 0, {𝑥
𝐾i
} ∈ I∗(𝐾

𝑖
).

For any 𝐾
𝑖
∈ C, we define a matroid on 𝑈 as 𝑀

𝐾
⋆

𝑖

= (𝑈,

I∗(𝐾
𝑖
)), where𝑀

𝐾
⋆

𝑖

| 𝐾
𝑖
= 𝑀(𝐺

∗

𝐾
𝑖

) and 𝑈 − 𝐾
𝑖
is a circuit

of 𝑀
𝐾
⋆

𝑖

. Moreover 0 ⊆ 𝐾
𝑖
(1 ≤ 𝑖 ≤ 𝑚); so, according

to Definition 14, {∪𝑚
𝑖=1
{𝑥
𝐾
𝑖

} | {𝑥
𝐾
𝑖

} ⊆ 𝐾
𝑖
} is the set of all

independent sets of thematroid ∨𝑚
𝑖=1
𝑀
𝐾
⋆

𝑖

.Therefore𝑀(C) =
∨
𝑚

𝑖=1
𝑀(𝐺
∗

𝐾
𝑖

) = ∨
𝑚

𝑖=1
𝑀
𝐾
⋆

𝑖

; that is,𝑀(C) is a matroid.

Definition 44 (type-2 covering cycle matroid). Let C =

{𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a covering of 𝑈. Then 𝑀(C) =

∨
𝑚

𝑖=1
𝑀(𝐺
∗

𝐾
𝑖

) is called type-2 covering cycle matroid inducd by
C.
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𝑒1 𝑒3𝑒2

(a) 𝐺𝐾1∪𝐾2

𝑒4

𝑒5

(b) 𝐺𝐾3

𝑒6 𝑒8

𝑒7

𝑒9

(c) 𝐺𝐾4∪𝐾5

Figure 3: Graphs induced by 𝐾
1
∪ 𝐾
2
, 𝐾
3
, and 𝐾

4
∪ 𝐾
5
, respectively.

𝑒1

𝑒3

𝑒2
𝑒4

𝑒5
𝑒6 𝑒8

𝑒7

𝑒9

Figure 4:Graph𝐺P obtained by vertex identification of𝐺𝐾1∪𝐾2 ,𝐺𝐾3 ,
and 𝐺

𝐾4∪𝐾5
.

Example 45 (continued fromExample 41). The dualmatroids
of three cycle matroids induced by three cycle graphs gen-
erated by 𝐾

1
, 𝐾
2
, and 𝐾

3
are 𝑀(𝐺∗

𝐾
1

) = (𝐾
1
, I∗(𝐾

1
)),

𝑀(𝐺
∗

𝐾
2

) = (𝐾
2
, I∗(𝐾

2
)) and𝑀(𝐺∗

𝐾
3

) = (𝐾
3
, I∗(𝐾

3
)). By direct

computation, I∗(𝐾
1
) = {0, {𝑒

3
}}, I∗(𝐾

2
) = {0, {𝑒

1
}, {𝑒
2
}, {𝑒
4
}},

I∗(𝐾
3
) = {0, {𝑒

2
}, {𝑒
3
}}. If𝑀(C) = (𝑈, I(C)) = ∨𝑚

𝑖=1
𝑀(𝐺
∗

𝐾
𝑖

),
then I(C) = {0, {𝑒

1
}, {𝑒
2
}, {𝑒
3
}, {𝑒
4
}, {𝑒
1
, 𝑒
2
}, {𝑒
1
, 𝑒
3
}, {𝑒
2
, 𝑒
3
},

{𝑒
2
, 𝑒
4
}, {𝑒
3
, 𝑒
4
}, {𝑒
1
, 𝑒
2
, 𝑒
3
}, {𝑒
2
, 𝑒
3
, 𝑒
4
}}.

The following proposition shows relationships between
the set of all bases of the type-2 covering cycle matroid
induced by a covering and those blocks of the covering.

Proposition 46. Let C = {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a covering of

𝑈. If𝑀(C) is the type-2 covering cycle matroid induced by C,
then B(𝑀(C)) = Max{∪𝑚

𝑖=1
{𝑥
𝐾
𝑖

} | 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
}.

Proof. According to Proposition 43, I(C) = {∪
𝑚

𝑖=1
{𝑥
𝐾
𝑖

} |

{𝑥
𝐾
𝑖

} ⊆ 𝐾
𝑖
}. Since B(𝑀(C)) = Max(I(C)), B(𝑀(C)) =

Max{∪𝑚
𝑖=1
{𝑥
𝐾
𝑖

} | {𝑥
𝐾
𝑖

} ⊆ 𝐾
𝑖
} = Max{∪𝑚

𝑖=1
{𝑥
𝐾
𝑖

} | 𝑥
𝐾
𝑖

∈

𝐾
𝑖
}.

When a covering is a partition of the universe, relation-
ships between the set of all bases of the type-2 covering cycle
matroid and those blocks of the covering are investigated in
the following proposition.

Proposition 47. Let C = {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a covering of 𝑈

and𝑀(C) the type-2 covering cycle matroid induced by C. If
C is a partition of 𝑈, then B(𝑀(C)) = {∪𝑚

𝑖=1
{𝑥
𝐾
𝑖

} | 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
}.

Proof. According to Proposition 46, B(𝑀(C)) =

Max{∪𝑚
𝑖=1
{𝑥
𝐾
𝑖

} | 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
}. Since C is a partition of 𝑈,

{𝑥
𝐾
𝑖

} ∩ {𝑥
𝐾
𝑗

} = 0 for any 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
, 𝑥
𝐾
𝑗

∈ 𝐾
𝑗
(𝑖, 𝑗 ∈ {1,

2, . . . , 𝑚} and 𝑖 ̸= 𝑗). Hence B(𝑀(C)) = {∪𝑚
𝑖=1
{𝑥
𝐾
𝑖

} | 𝑥
𝐾
𝑖

∈

𝐾
𝑖
}.

In the following proposition, we connect upper approx-
imations with support sets of the type-2 covering cycle
matroid. In fact, when a covering is a partition of a universe,
a subset of the universe is a support set of the type-2 covering
cycle matroid induced by the covering if and only if the upper
approximation of the subset is equal to the universe.

Proposition 48. Let C = {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a covering of 𝑈

and𝑀(C) the type-2 covering cycle matroid induced by C. If
C is a partition of 𝑈, then S(𝑀(C)) = {𝑋 ⊆ 𝑈 | 𝑋+ = 𝑈}.

Proof. For any 𝑆 ∈ S(𝑀(C)), according to Definition 12,
there exists 𝐵 ∈ B(𝑀(C)) such that 𝐵 ⊆ 𝑆. Since C is
a partition of 𝑈, according to Proposition 47, B(𝑀(C)) =
{∪
𝑚

𝑖=1
{𝑥
𝐾
𝑖

} | 𝑥
𝐾
𝑖

∈ 𝐾
𝑖
}. Hence 𝐵 ∩ 𝐾

𝑖
̸= 0 for all 𝐾

𝑖
∈ C.

Since 𝐵 ⊆ 𝑆, 𝐵 ∩ 𝐾
𝑖
⊆ 𝑆 ∩ 𝐾

𝑖
, that is, 𝑆 ∩ 𝐾

𝑖
̸= 0 for all

𝐾
𝑖
∈ C. Therefore, 𝑆+ = 𝑈, that is, S(𝑀(C)) ⊆ {𝑋 ⊆ 𝑈 |

𝑋
+
= 𝑈}. Conversely, for any 𝑋 ∈ {𝑋 ⊆ 𝑈 | 𝑋

+
= 𝑈},

𝑋
+
= 𝑈. Since C is a partition of 𝑈, 𝑋 ∩ 𝐾

𝑖
̸= 0 for all

𝐾
𝑖
∈ C; that is, there exist 𝑥

𝐾
𝑖

∈ 𝐾
𝑖
(1 ≤ 𝑖 ≤ 𝑚) such

that 𝑥
𝐾
𝑖

∈ 𝑋. Hence ∪𝑚
𝑖=1
{𝑥
𝐾
𝑖

} ⊆ 𝑋. Since C is a partition
of 𝑈, according to Proposition 47, ∪𝑚

𝑖=1
{𝑥
𝐾
𝑖

} ∈ B(𝑀(C)).
According to Definition 12, 𝑋 ∈ S(𝑀(C)), that is, {𝑋 ⊆

𝑈 | 𝑋
+
= 𝑈} ⊆ S(𝑀(C)). To sum up, this completes the

proof.

When a covering C of a universe is not a partition of the
universe, there exists a subset of the universe which is not the
support set of 𝑀(C) such that the upper approximation of
the subset is equal to the universe.

Example 49 (continued from Example 45). Since
B(𝑀(C)) = {{𝑒

1
, 𝑒
2
, 𝑒
3
}, {𝑒
2
, 𝑒
3
, 𝑒
4
}}, there does not

exist 𝐵 ∈ B(𝑀(C)) such that 𝐵 ⊆ {𝑒
1
, 𝑒
3
, 𝑒
4
}. So

{𝑒
1
, 𝑒
3
, 𝑒
4
} ∉ S(𝑀(C)). But {𝑒

1
, 𝑒
3
, 𝑒
4
}
+
= 𝑈.

An equivalent formulation of the family of all circuits of
the type-2 covering cycle matroid induced by a covering is
provided by those blocks of the covering. In fact, when the
covering is a partition of a universe, a subset of the universe is
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𝑒3

(a) 𝐺∗
𝐾1

e1

e2

e4

(b) 𝐺∗
𝐾2

e2

e3

(c) 𝐺∗
𝐾3

Figure 5: Dual graphs of 𝐺
𝐾1
, 𝐺
𝐾2

and 𝐺
𝐾3
.

a circuit if and only if it is contained in a block of the covering
and its cardinality is equal to 2.

Proposition 50. Let C = {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a partition of

𝑈 and 𝑀(C) the type-2 covering cycle matroid induced by
C. Therefore C(𝑀(C)) = {𝑋 ⊆ 𝑈 | |𝑋| = 2 and ∃𝐾

𝑖
∈

C 𝑠.𝑡. 𝑋 ⊆ 𝐾
𝑖
}.

Proof. Since I(C) = {∪𝑚
𝑖=1
{𝑥
𝐾
𝑖

} | {𝑥
𝐾
𝑖

} ⊆ 𝐾
𝑖
}, {𝑥} ∈ I(C) for

any 𝑥 ∈ 𝑈. For any 𝑋 ∈ C(𝑀(C)), 𝑋 ∈ Min(Opp(I(C))). If
there exists𝐾

𝑖
∈ C such that𝑋∩𝐾

𝑖
̸= 0, then |𝑋∩𝐾

𝑖
| ≥ 2 since

C is a partition of 𝑈. If 𝑌 ⊆ 𝑋 ∩ 𝐾
𝑖
and |𝑌| = 2, then 𝑌 ⊆ 𝐾

𝑖

and 𝑌 ∉ I(C). So 𝑌 = 𝑋 = 𝑋 ∩ 𝐾
𝑖
. So there exists 𝐾

𝑖
∈ C

such that 𝑋 ⊆ 𝐾
𝑖
and |𝑋| = 2, that is, 𝑋 ∈ {𝑋 ⊆ 𝑈 | |𝑋| = 2

and ∃𝐾
𝑖
∈ C s.t. 𝑋 ⊆ 𝐾

𝑖
}. Conversely, for any 𝑌 ∈ {𝑋 ⊆ 𝑈 |

|𝑋| = 2 and ∃𝐾
𝑖
∈ C s.t. 𝑋 ⊆ 𝐾

𝑖
}, there exists 𝐾

𝑖
∈ C such

that 𝑌 ⊆ 𝐾
𝑖
. Since C is a partition of𝑈 and |𝑌| = 2, 𝑌 ∉ I(C)

and 𝑍 ∈ I(C) for any 𝑍 ⊂ 𝑌. So 𝑌 ∈ Min(Opp(I(C))), that
is, 𝑌 ∈ C(𝑀(C)). To sum up, this completes the proof.

A connected graph is constructed by the dual graphs of
some cycle graphs through vertex identification. These cycle
graphs are, respectively, induced by an element in a partition
of a universe.

Definition 51. LetC be a partition of 𝑈 and𝐺∗
𝐾
𝑖

the dual graph
of a cycle graph induced by 𝐾

𝑖
(1 ≤ 𝑖 ≤ |C|). We define a

graph by vertex identification of 𝐺∗
𝐾
1

, 𝐺
∗

𝐾
2

, . . ., and 𝐺∗
𝐾
|C|
, and

this graph is denoted by 𝐺C. We say 𝐺C is a graph induced by
C.

An example about the operation of vertex identification
of the dual graphs of the cycle graphs, which are, respectively,
induced by an element of a partition, is shown in the
following.

Example 52. Let 𝑈 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
} and C = {𝐾

1
, 𝐾
2
},

where 𝐾
1
= {𝑒

3
, 𝑒
5
}, 𝐾
2
= {𝑒

1
, 𝑒
2
, 𝑒
4
}. As shown in

Figure 6, the dual graphs of two cycle graphs𝐺
𝐾
1

and𝐺
𝐾
2

are
represented by Figures 6(a) and 6(b), respectively. Figure 7
is the representation of 𝐺C which is obtained by vertex
identification of 𝐺∗

𝐾
1

and 𝐺∗
𝐾
2

.

Theorem 40 shows the type-1 covering cycle matroid
induced by any covering is graphic and a graph correspond-
ing to the matroid is constructed by the covering via an
indirect route. In the following theorem, we will discuss

e3

e5

(a) 𝐺∗
𝐾1

e1

e2

e4

(b) 𝐺∗
𝐾2

Figure 6: Graphs of 𝐺∗
𝐾1

and 𝐺∗
𝐾2
.

e1

e2

e4

e3

e5

Figure 7: Graph 𝐺C obtained by vertex identification of 𝐺∗
𝐾1

and
𝐺
∗

𝐾2
.

the relationship between a connected graph induced by a
partition and the type-2 covering cycle matroid induced by
the partition. It is obvious that there are some different graphs
obtained by the partition through the operation of vertex
identification. The cycles of each graph are the same while
these graphs are different.

Theorem53. LetC be a partition of 𝑈,𝐺C a graph obtained by
vertex identification of𝐺∗

𝐾
𝑖

(1 ≤ 𝑖 ≤ |C|), and𝑀(C) the type-2
covering cycle matroid induced by C. Then𝑀(C) = 𝑀(𝐺C).

Proof. We need to prove only that C(𝑀(C)) = C(𝑀(𝐺C)).
For 𝐾

𝑖
(1 ≤ 𝑖 ≤ 𝑚), if 𝑋

𝑖
⊆ 𝐾
𝑖
and |𝑋

𝑖
| = 2, then for

any 𝑥 ∈ 𝑋
𝑖
, 𝑥 is a edge of 𝐺∗

𝐾
𝑖

and 𝑋
𝑖
is a cycle of 𝐺∗

𝐾
𝑖

.
Therefore 𝑋

𝑖
is a cycle of 𝐺C. If 𝑋𝑖 ⊆ 𝐾𝑖 and |𝑋𝑖| = 1, then

𝑋
𝑖
∈ B(𝑀(𝐺∗

𝐾
𝑖

)). According to Proposition 50, C(𝑀(C)) =
C(𝑀(𝐺C)). Therefore,𝑀(C) = 𝑀(𝐺C).

For any covering C of the universe, we want to know that
whether the type-2 covering cycle matroid𝑀(C) is graphic.
A counterexample is given in the following.

Example 54. Let 𝑈 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
}, C = {𝐾

1
, 𝐾
2
, 𝐾
3
}

and𝑀(C) the type-2 covering cycle matroid induced by C,
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where 𝐾
1
= {𝑒
1
, 𝑒
2
, 𝑒
3
}, 𝐾
2
= {𝑒
2
, 𝑒
3
, 𝑒
4
}, 𝐾
3
= {𝑒
5
}. By direct

computation, I(𝑀(C)) = Low{{𝑒
1
, 𝑒
2
, 𝑒
5
}, {𝑒
1
, 𝑒
3
, 𝑒
5
}, {𝑒
1
, 𝑒
4
,

𝑒
5
}, {𝑒
2
, 𝑒
3
, 𝑒
5
}, {𝑒
2
, 𝑒
4
, 𝑒
5
}, {𝑒
3
, 𝑒
4
, 𝑒
5
}}. If 𝑋 = {𝑒

1
, 𝑒
2
, 𝑒
3
, 𝑒
4
},

then I(𝑀(C) | 𝑋) = Low{{𝑒
1
, 𝑒
2
}, {𝑒
1
, 𝑒
3
}, {𝑒
1
, 𝑒
4
}, {𝑒
2
, 𝑒
3
},

{𝑒
2
, 𝑒
4
}, {𝑒
3
, 𝑒
4
}}. So𝑀(C) | 𝑋 = 𝑈

2,4
. Hence𝑀(C) is not a

graphic matroid.

4. Relationships between Three
Kinds of Matroids

In this section, we study relationships between type-1 cov-
ering cycle matroid, type-2 covering cycle matroid, and
function matroid.

For a covering, we can induce two types of covering cycle
matroids. Naturally, we will consider whether these two types
of covering cycle matroids are equal. The following theorem
shows that the type-1 covering cycle matroid induced by a
covering is equal to the type-2 covering cyclematroid induced
by the covering when the cardinality of every block of the
covering is equal to two.

Theorem 55. Let C = {𝐾
1
, 𝐾
2
. . . , 𝐾

𝑚
} be a covering of 𝑈. If

for all𝐾
𝑖
∈ C, |𝐾

𝑖
| = 2, then𝑀(C) = 𝑀(C).

Proof. Since for all 𝐾
𝑖
∈ C, |𝐾

𝑖
| = 2, then according to

Definition 18 andProposition 13, {𝑥
𝐾
𝑖

} ∈ I(𝐾
𝑖
) for any {𝑥

𝐾
𝑖

} ⊆

𝐾
𝑖
. For any 𝑥

𝐾
𝑖

∈ 𝐾
𝑖
, {𝑥
𝐾
𝑖

} ∈ B(𝑀(𝐺
𝐾
𝑖

)).
According to Proposition 22, I(C) = {∪𝑚

𝑖=1
{𝑥
𝐾
𝑖

} | {𝑥
𝐾
𝑖

} ⊆

𝐾
𝑖
} = I(C). Hence𝑀(C) = 𝑀(C).

The upper approximation number provides a tool to
quantify covering-based rough sets. The upper approxima-
tion number is defined as follows.

Definition 56 (see [28, 29, 33]). Let C be a covering of 𝑈. For
all𝑋 ⊆ 𝑈,

𝑓C (𝑋) = |{𝐾 ∈ C | 𝐾 ∩ 𝑋 ̸= 0}| (3)

is called the upper approximation number of 𝑋 with respect
to C. When there is no confusion, we omit the subscript C.

In the following, a matroid is defined through the upper
approximation number. We say that the matroid is the
function matroid induced by the covering.

Definition 57 (see [28, 29]). LetC be a covering of 𝑈.Thenwe
say𝑀

𝑓
(C) = (𝑈, I

𝑓
(C)) amartoid where I

𝑓
(C) = {𝐼 ⊆ 𝑈 | for

all 𝐼
1
⊆ 𝐼, 𝑓(𝐼

1
) ≥ |𝐼
1
|}, which is called the function matroid

induced by C.

Given a covering, the upper approximation number of
any base of the function matroid induced by the covering is
equal to the cardinality of the covering.

Proposition 58. LetC be a covering of𝑈,𝑀
𝑓
(C) the function

matroid induced by C, and B
𝑓
(C) the family of all the bases of

𝑀
𝑓
(C). For all 𝐵 ∈ B

𝑓
(C), 𝑓(𝐵) = |C|.

Proof. If 𝑓(𝐵) ̸= |C|, that is, there exists 𝐾 ∈ C such that 𝐾 ∩
𝐵 = 0, then for any 𝑥 ∈ 𝐾, 𝑓(𝐵 ∪ {𝑥}) = |{𝐾 ∈ C | 𝐾 ∩ (𝐵 ∪
{𝑥}) ̸= 0}| ≥ 𝑓(𝐵) + 1 ≥ |𝐵| + 1 = |𝐵 ∪ {𝑥}|. Since 𝐵 ∈ B

𝑓
(C),

𝐵 ∈ I
𝑓
(C). Hence 𝑓(𝐼) ≥ |𝐼| for any 𝐼 ⊆ 𝐵. Therefore, for any

𝐼
0
⊆ 𝐵 ∪ {𝑥}, if 𝐼

0
⊆ 𝐵, then 𝑓(𝐼

0
) ≥ |𝐼
0
|. If 𝐼
0
̸⊆ 𝐵, then there

exists 𝐼 ∈ 𝐵 such that 𝐼 ∪ {𝑥} = 𝐼
0
, and 𝑓(𝐼

0
) = |{𝐾 ∈ C |

𝐾 ∩ 𝐼
0
̸= 0}| = |{𝐾 ∈ C | 𝐾 ∩ (𝐼 ∪ {𝑥}) ̸= 0}| ≥ 𝑓(𝐼) + 1 ≥

|𝐼| + 1 = |𝐼
0
|. So 𝐵 ∪ {𝑥} ∈ I

𝑓
(C). Since |𝐵 ∪ {𝑥}| > |𝐵|, 𝐵 is

not a base of𝑀
𝑓
(C), which is contradictory to 𝐵 ∈ B

𝑓
(C).

Therefore, 𝑓(𝐵) = |C| for all 𝐵 ∈ B
𝑓
(C).

The following theorem shows that the function matroid
induced by a covering is equal to the type-2 covering cycle
matroid induced by the covering.

Theorem 59. Let C = {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a covering of 𝑈.

Then𝑀
𝑓
(C) = 𝑀(C).

Proof. We need to prove only I
𝑓
(C) = I(C).

(⇒): Let B
𝑓
(C) be the bases of the function matroid

𝑀
𝑓
(C). For any 𝑋 ∈ I

𝑓
(C), there exists 𝐵 ∈ B

𝑓
(C)

such that 𝑋 ⊆ 𝐵 and 𝐵 ∈ I
𝑓
(C). Hence |{𝐾

𝑖
∈ C |

𝐾
𝑖
∩𝐵 ̸= 0}| = |C| ≥ |𝐵|; that is, there exists {𝑥

𝐾
𝑖

} ⊆ 𝐾
𝑖

(1 ≤ 𝑖 ≤ 𝑚) such that {𝑥
𝐾
𝑖

} ⊆ 𝐵 and 𝐵 = ∪𝑚
𝑖=1
{𝑥
𝐾
𝑖

},
that is, 𝐵 ∈ I(C). According to (𝐼2) in Definition 7,
𝐼 ∈ I(C) for any 𝐼 ⊆ 𝐵. Hence 𝑋 ∈ I(C); that is,
I
𝑓
(C) ⊆ I(C).

(⇐): For any 𝐼 ∈ I(C), I(C) = {∪𝑚
𝑖=1
{𝑥
𝐾
𝑖

} | {𝑥
𝐾
𝑖

} ⊆ 𝐾
𝑖
}. So

𝑓(𝐼) = |{𝐾
𝑖
∈ C | 𝐾

𝑖
∩ 𝐼 ̸= 0}| ≥ |𝐼|. For any 𝐼

1
⊆ 𝐼,

𝐼
1
∈ I(C). Hence 𝑓(𝐼

1
) ≥ |𝐼
1
|. Therefore, 𝐼 ∈ {𝐼 ⊆ 𝑈 |

for all 𝐼
1
⊆ 𝐼, 𝑓(𝐼

1
) ≥ |𝐼
1
|}. So I(C) ⊆ I

𝑓
(C). To sum

up, this completes the proof.

The following corollary shows that the type-1 covering
cycle matroid induced by a covering is equal to the function
matroid induced by the covering when the cardinality of
every block of the covering is equal to two.

Corollary 60. LetC be a covering of 𝑈. If for all𝐾 ∈ C, |𝐾| =
2, then𝑀

𝑓
(C) = 𝑀(C).

Proof. According toTheorems 55 and 59, it is straightforward.

For a covering C, maybe people want to ask a question
about the relationship between𝑀(C) and𝑀(C) as follows:
Could 𝑀(C) and 𝑀(C) be dual matroids? Next, we will
answer this question.

Example 61 (continued fromExamples 24 and45). According
to Examples 24 and 45, B(𝑀(C)) = {{𝑒

1
, 𝑒
2
, 𝑒
3
}, {𝑒
1
, 𝑒
2
, 𝑒
4
},

{𝑒
1
, 𝑒
3
, 𝑒
4
}, {𝑒
2
, 𝑒
3
, 𝑒
4
}} and B(𝑀(C)) = {{𝑒

1
, 𝑒
2
, 𝑒
3
}, {𝑒
2
, 𝑒
3
,

𝑒
4
}}. So 𝐵𝑐 ∉ B(𝑀(C)) for any 𝐵 ∈ B(𝑀(C)). Therefore
𝑀(C) and𝑀(C) are not dual matroids.

Example 61 shows type-1 and type-2 covering cycle
matroids induced by the same covering are not always dual.
The following theorem shows that when a covering of a
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universe is a partition of the universe, these two types of
covering cyclematroids induced by the covering are dual with
each other.

Theorem 62. If C is a partition of 𝑈, then𝑀∗(C) = 𝑀(C).

Proof. According to Propositions 26 and 47 and
Definition 10, it is straightforward.

5. Conclusions

In this paper, we constructed two types of covering cycle
matroids by a covering and studied the graphical representa-
tions of these two types of matriods. Some concepts of these
two types ofmatroids were studied by those blocks of the cov-
ering, such as independent sets, bases, circuits, and support
sets. We proved that the type-1 covering cycle matroid is a
graphic matroid while the type-2 covering cycle matroid is
not always a graphicmatroid.These results provide a platform
for studying covering-based rough sets through matroidal
approaches. With the advantage of matroids, covering cycle
matroid will help to develop some efficient algorithms for
processing the data organized by coverings. In future, we will
use both matroid theory and graph theory simultaneously to
study rough set theory.

Acknowledgments

This work is supported in part by the National Natural
Science Foundation of China under Grant no. 61170128, the
Natural Science Foundation of Fujian Province, China, under
Grant nos. 2011J01374 and 2012J01294, and the Science and
Technology Key Project of Fujian Province, China, under
Grant no. 2012H0043.

References

[1] D. Bianucci, G. Cattaneo, and D. Ciucci, “Entropies and co-
entropies of coverings with application to incomplete informa-
tion systems,” Fundamenta Informaticae, vol. 75, no. 1–4, pp. 77–
105, 2007.

[2] Y. Qian, J. Liang, and C. Dang, “Incomplete multigranulation
rough set,” IEEE Transactions on Systems, Man, and Cybernetics
A, vol. 40, no. 2, pp. 420–431, 2010.

[3] Q. Hu, L. Zhang, D. Zhang, W. Pan, S. An, and W. Pedrycz,
“Measuring relevance between discrete and continuous features
based on neighborhood mutual information,” Expert Systems
with Applications, vol. 38, no. 9, pp. 10737–10750, 2011.

[4] T.-J. Li, Y. Leung, and W.-X. Zhang, “Generalized fuzzy rough
approximation operators based on fuzzy coverings,” Interna-
tional Journal of Approximate Reasoning, vol. 48, no. 3, pp. 836–
856, 2008.

[5] W. Zhu, “Topological approaches to covering rough sets,”
Information Sciences, vol. 177, no. 6, pp. 1499–1508, 2007.

[6] W. Zhu, “Relationship between generalized rough sets based on
binary relation and covering,” Information Sciences, vol. 179, no.
3, pp. 210–225, 2009.

[7] G. Liu and Y. Sai, “Invertible approximation operators of gen-
eralized rough sets and fuzzy rough sets,” Information Sciences,
vol. 180, no. 11, pp. 2221–2229, 2010.

[8] W. Zhu and F.-Y. Wang, “Reduction and axiomization of
covering generalized rough sets,” Information Sciences, vol. 152,
pp. 217–230, 2003.

[9] D. Chen, C. Wang, and Q. Hu, “A new approach to attribute
reduction of consistent and inconsistent covering decision
systemswith covering rough sets,” Information Sciences, vol. 177,
no. 17, pp. 3500–3518, 2007.

[10] Y.Qian, J. Liang,W. Pedrycz, andC.Dang, “Positive approxima-
tion: an accelerator for attribute reduction in rough set theory,”
Artificial Intelligence, vol. 174, no. 9-10, pp. 597–618, 2010.

[11] J. Tang, K. She, and W. Zhu, “Covering-based rough sets based
on the refinement of covering-element,” International Journal of
Computational andMathematical Sciences, vol. 5, no. 4, pp. 198–
208, 2011.

[12] Y. Yao and B. Yao, “Covering based rough set approximations,”
Information Sciences, vol. 200, pp. 91–107, 2012.

[13] F. Li and Y. Yin, “Approaches to knowledge reduction of cover-
ing decision systems based on information theory,” Information
Sciences, vol. 179, no. 11, pp. 1694–1704, 2009.

[14] J. Xu and L. Zhao, “A multi-objective decision-making model
with fuzzy rough coefficients and its application to the inventory
problem,” Information Sciences, vol. 180, no. 5, pp. 679–696,
2010.

[15] T. Deng, Y. Chen,W. Xu, andQ. Dai, “A novel approach to fuzzy
rough sets based on a fuzzy covering,” Information Sciences, vol.
177, no. 11, pp. 2308–2326, 2007.

[16] L. Zhou and W.-Z. Wu, “On generalized intuitionistic fuzzy
rough approximation operators,” Information Sciences, vol. 178,
no. 11, pp. 2448–2465, 2008.

[17] S. Wang, P. Zhu, and W. Zhu, “Structure of covering-based
rough sets,” International Journal of Mathematical and Com-
puter Sciences, vol. 6, pp. 147–150, 2010.

[18] D.Chen,Q.Hu, andY.Yang, “Parameterized attribute reduction
with gaussian kernel based fuzzy rough sets,” Information
Sciences, vol. 181, pp. 5169–5179, 2011.

[19] A.A. Estaji, S. Khodaii, and S. Bahrami, “On rough set and fuzzy
sublattice,” Information Sciences, vol. 181, no. 18, pp. 3981–3994,
2011.

[20] X. Li and S. Liu, “Matroidal approaches to rough sets via closure
operators,” International Journal of Approximate Reasoning, vol.
53, no. 4, pp. 513–527, 2012.

[21] G. Liu and Y. Sai, “A comparison of two types of rough sets
induced by coverings,” International Journal of Approximate
Reasoning, vol. 50, no. 3, pp. 521–528, 2009.

[22] H. J. Lai, Matroid Theory, Higher Education Press, Beijing,
China, 2001.

[23] R. J.Wilson, “An introduction tomatroid theory,”TheAmerican
Mathematical Monthly, vol. 80, pp. 500–525, 1973.

[24] E. Lawler, Combinatorial Optimization: Networks andMatroids,
Dover, New York, NY, USA, 2001.

[25] J. Edmonds, “Matroids and the greedy algorithm,”Mathematical
Programming, vol. 1, pp. 127–136, 1971.

[26] S. El Rouayheb, A. Sprintson, and C. Georghiades, “On the
index coding problem and its relation to network coding and
matroid theory,” IEEE Transactions on Information Theory, vol.
56, no. 7, pp. 3187–3195, 2010.

[27] S. Wang, Q. Zhu, W. Zhu, and F. Min, “Matroidal structure
of rough sets and its characterization to attribute reduction,”
Knowledge-Based Systems, vol. 36, pp. 155–161, 2012.



12 ISRN Applied Mathematics

[28] S. Wang and W. Zhu, “Matroidal structure of covering-based
rough sets through the upper approximation number,” Interna-
tional Journal of Granular Computing, Rough Sets and Intelligent
Systems, vol. 2, pp. 141–148, 2011.

[29] S. Wang, W. Zhu, and F. Min, “Transversal and function
matroidal structures of covering-based rough sets,” in Rough
Sets and Knowledge Technology, pp. 146–155, 2011.

[30] J. Tang, K. She, and W. Zhu, “Matroidal structure of rough
sets from the viewpoint of graph theory,” Journal of Applied
Mathematics, vol. 2012, Article ID 973920, 27 pages, 2012.

[31] Z. Bonikowski, E. Bryniarski, and U. Wybraniec-Skardowska,
“Extensions and intentions in the rough set theory,” Information
Sciences, vol. 107, no. 1–4, pp. 149–167, 1998.

[32] B. Douglas, Introduction to Graph Theory, Pearson Education,
Upper Saddle River, NJ, USA, 2002.

[33] W. Zhu and S. Wang, “Matroidal approaches to generalized
rough sets based on relations,” International Journal of Machine
Learning and Cybernetics, vol. 2, pp. 273–279, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


