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We deal with the problem of estimating the parameters of the generalized Lindley distribution. Besides the classical estimator,
inverse moment and modified inverse estimators are proposed and their properties are investigated. A condition for the existence
and uniqueness of the inverse moment and modified inverse estimators of the parameters is established. Monte Carlo simulations
are conducted to compare the estimators’ performances. Two methods for constructing joint confidence regions for the two
parameters are also proposed and their performances are discussed. A real example is presented to illustrate the proposedmethods.

1. Introduction

Lindley [1] originally introduced the Lindley distribution to
illustrate a difference between fiducial distribution and pos-
terior distribution.This distribution is becoming increasingly
popular for modeling lifetime data and has a wide applicabil-
ity in survival and reliability as closed forms for the survival
and hazard functions and good flexibility of fit. Its density
function is given by

𝑓 (𝑡) =
𝜆2

1 + 𝜆
(1 + 𝑡) 𝑒

−𝜆𝑡, 𝑡, 𝜆 > 0. (1)

We denoted this by writing LD(𝜆). The Lindley distribution
is a mixture of an exponential distribution with scale 𝜆 and a
gamma distribution with shape 2 and scale 𝜆, where the
mixing proportion is 𝑝 = 𝜆/(1 + 𝜆).

Ghitany et al. [2] provided a comprehensive treatment
of the statistical properties of the Lindley distribution.
Mazucheli and Achcar [3] used the Lindley distribution as
a good alternative to analyze lifetime data within the com-
peting risks approach as compared with the use of standard
exponential or even theWeibull distribution commonly used
in this area. Krishna and Kumar [4] considered the reliability
estimation in Lindley distribution with progressively type II
right censored sample. Al-Mutairi et al. [5] dealt with the esti-
mation of the stress-strength parameter when the variables

are independent Lindley random variables with different
shape parameters.

Some researchers have proposed and studied new classes
of distributions based on the Lindley distribution. See, for
example, Sankaran [6], Ghitany et al. [7], Bakouch et al. [8],
Shanker et al. [9], and Ghitany et al. [10]. In this paper, we
focus on the generalized Lindley distribution (GLD) intro-
duced by Nadarajah et al. [11]. It has the attractive feature
of allowing for monotonically decreasing, monotonically
increasing, and bath tub shaped hazard rate functions while
not allowing for constant hazard rate functions. It has better
hazard rate properties than the gamma, lognormal, and the
Weibull distributions.

The cumulative distribution function and the probability
density function are, respectively, given by

𝐹 (𝑥; 𝜆, 𝛼) = [1 −
1 + 𝜆 + 𝜆𝑥

1 + 𝜆
𝑒−𝜆𝑥]
𝛼

, 𝑥 > 0, (2)

𝑓 (𝑥; 𝜆, 𝛼)

=
𝛼𝜆2 (𝑥 + 1) 𝑒−𝜆𝑥

𝜆 + 1
(1 −

𝑒−𝜆𝑥 (𝜆 + 𝜆𝑥 + 1)

𝜆 + 1
)

𝛼−1

,

𝑥 > 0,

(3)

where 𝛼 > 0 and 𝜆 > 0 are two parameters. We denote
this distribution as GLD(𝜆, 𝛼). When 𝛼 = 1, the generalized
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Lindley distribution reduces to the one parameter Lindley
distribution.

Singh et al. [12] developed the Bayesian estimation for
the generalized Lindley distribution under squared error and
general entropy loss functions in case of complete sample
of observations. Singh et al. [13] considered the generalized
Lindley distribution and proposed the progressive type II
censoring scheme which allows the removal of the live units
from a life-test with beta-binomial probability law during the
execution of the experiment.

Nadarajah et al. [11] considered the classical maximum-
likelihood estimation of the parameters of a generalized Lind-
ley distribution. The results showed that the bias is not satis-
fied especially for a small or even moderate sample size. As
for the moment estimates, two nonlinear equations need to
be solved simultaneously and the existence and uniqueness of
the roots are not clear and guaranteed.

In this paper, we consider the problem of estimating
the two parameters of the generalized Lindley distribution.
We propose inverse moment and modified inverse moment
estimators and study their properties. The conditions of the
existence and uniqueness of the estimators are established.
Monte Carlo simulations are used to compare the perfor-
mances of the estimators.We also investigate themethods for
constructing joint confidence regions for the two parameters
and study their performances.

The rest of this paper is organized as follows. In Section 2,
we briefly review the classical maximum-likelihood estima-
tion of the parameters of the generalized Lindley distribution.
In Section 3, the moment estimator is discussed. In Section 4,
we propose two new methods of estimating the parameters
and study their properties. Joint confidence regions for the
two parameters are proposed in Section 5. Section 6 conducts
simulations to assess the methods. Finally, in Section 7, a real
example is presented to illustrate the proposed methods.

2. Maximum-Likelihood Estimation

In this section, we briefly review the MLEs of the parameters
of GLD distribution. Let 𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
be a random sample

from GLD(𝜆, 𝛼) with pdf and cdf as (3) and (2), respectively.
The log-likelihood function is given by

𝐿 (𝜆, 𝛼) = (𝛼 − 1)
𝑛

∑
𝑖=1

log[1 −
𝑒−𝜆𝑥𝑖 (𝜆𝑥

𝑖
+ 𝜆 + 1)

𝜆 + 1
]

− 𝜆
𝑛

∑
𝑖=1

𝑥
𝑖
+
𝑛

∑
𝑖=1

log (𝑥
𝑖
+ 1) + 𝑛 log (𝛼)

+ 2𝑛 log (𝜆) − 𝑛 log (𝜆 + 1) .

(4)

The score equations are thus as follows:
𝜕𝐿 (𝜆, 𝛼)

𝜕𝜆

= − (𝛼 − 1)
𝑛

∑
𝑖=1

𝜆𝑥
𝑖
((𝜆 + 1) 𝑥

𝑖
+ 𝜆 + 2)

(𝜆 + 1) ((𝜆 + 1) (1 − 𝑒𝜆𝑥𝑖) + 𝜆𝑥
𝑖
)

−
𝑛

∑
𝑖=1

𝑥
𝑖
+
𝑛 (𝜆 + 2)

𝜆 (1 + 𝜆)
,

(5)

𝜕𝐿 (𝜆, 𝛼)

𝜕𝛼
=
𝑛

∑
𝑖=1

log[1 −
𝑒−𝜆𝑥𝑖 (𝜆𝑥

𝑖
+ 𝜆 + 1)

𝜆 + 1
] +

𝑛

𝛼
. (6)

From (6) we obtain the MLE of 𝛼 as a function of 𝜆:

�̂� = −
𝑛

∑
𝑛

𝑖=1
log [1 − 𝑒−𝜆𝑥𝑖 (𝜆𝑥

𝑖
+ 𝜆 + 1) / (𝜆 + 1)]

. (7)

The MLE of 𝜆 is the root of the following equation:

𝐺 (𝜆) =
𝑛

∑
𝑛

𝑖=1
log [1 − 𝑒−𝜆𝑥𝑖 (𝜆𝑥

𝑖
+ 𝜆 + 1) / (𝜆 + 1)]

⋅
𝑛

∑
𝑖=1

𝜆𝑥
𝑖
((𝜆 + 1) 𝑥

𝑖
+ 𝜆 + 2)

(𝜆 + 1) ((𝜆 + 1) (1 − 𝑒𝜆𝑥𝑖) + 𝜆𝑥
𝑖
)

+
𝑛

∑
𝑖=1

𝜆𝑥
𝑖
((𝜆 + 1) 𝑥

𝑖
+ 𝜆 + 2)

(𝜆 + 1) ((𝜆 + 1) (1 − 𝑒𝜆𝑥𝑖) + 𝜆𝑥
𝑖
)
−
𝑛

∑
𝑖=1

𝑥
𝑖

+
𝑛 (𝜆 + 2)

𝜆 (1 + 𝜆)
= 0.

(8)

Such nonlinear equation does not have closed form
solution. We can apply numerical method such as Newton-
Raphson method to compute 𝜆.

3. Moment Estimation of Parameters

In this section, we discuss the moment estimation (MOM)
of the parameters of GLD distribution. Let𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
be

a random sample from GLD(𝜆, 𝛼) with pdf and cdf as (3)
and (2), respectively. 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
are the observed values.

Let 𝑚
1

= (1/𝑛)∑
𝑛

𝑖=1
𝑥
𝑖
, 𝑚
2

= (1/𝑛)∑
𝑛

𝑖=1
𝑥2
𝑖
. 𝑚
1
, 𝑚
2
are

sample moments. For the population moments, we need the
following lemma (Nadarajah et al. [11]).

Lemma 1. Let𝐾(𝛼, 𝜆, 𝑛) = ∫
∞

0
𝑥𝑛(𝑥+1)𝑒−𝜆𝑥(1−𝑒−𝜆𝑥(𝜆+𝜆𝑥+

1)/(𝜆 + 1))𝛼−1𝑑𝑥. One has

𝐾 (𝛼, 𝜆, 𝑛) =
∞

∑
𝑖=0

𝑖

∑
𝑗=0

𝑗+1

∑
𝑘=0

(
𝛼 − 1

𝑖
)(

𝑖

𝑗
)(

𝑗 + 1

𝑘
)

⋅
(−1)𝑖 𝜆𝑗Γ (𝑛 + 1 + 𝑘)

(1 + 𝜆)𝑗 (𝜆𝑖 + 𝜆)𝑛+1+𝑘
.

(9)

Let𝑋 denote a GLD random variable. It follows that

E𝑋𝑛 =
𝛼𝜆2

1 + 𝜆
𝐾 (𝛼, 𝜆, 𝑛) . (10)

By equating the population moments with the sample
moments, we obtain

𝛼𝜆2

1 + 𝜆
𝐾 (𝛼, 𝜆, 1) = 𝑚

1
, (11)

𝛼𝜆2

1 + 𝜆
𝐾 (𝛼, 𝜆, 2) = 𝑚

2
. (12)

The method of moments estimators is the roots of the two
equations. Similar to the MLEs, such nonlinear equations
do not have closed form solutions. We can apply numerical
method such as Newton-Raphson method to determine the
roots.
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4. Inverse Moment Estimation of Parameters

Unlike the regularmethod ofmoments, the idea of the inverse
moment estimation (IME) is as follows: for a given random
sample𝑋

1
, . . . , 𝑋

𝑛
from a distribution with unknown param-

eters, first transform the original sample to a quasisample
𝑌
1
, . . . , 𝑌

𝑛
, where 𝑌

𝑖
contains the unknown parameters but its

distribution does not depend on the unknown parameters;
that is, 𝑌

𝑖
is a pivot variable, 𝑖 = 1, . . . , 𝑛. The population

moments of the new sample do not depend on the unknown
parameters while the sample moments do. Let the population
moments of the quasisample equal the sample moments and
solve for the unknown parameters.

Let 𝑋
1
, . . . , 𝑋

𝑛
form a sample from GLD(𝜆, 𝛼) with pdf

given in (3); it is known that 𝐹(𝑋
𝑖
), 𝑖 = 1, . . . , 𝑛, follow

the uniform distribution 𝑈(0, 1), and thus − log𝐹(𝑋
𝑖
), 𝑖 =

1, . . . , 𝑛, follow standard exponential distribution Exp(1). By
the method of inverse moment estimation, we let

1

𝑛

𝑛

∑
𝑖=1

[− log𝐹 (𝑋
𝑖
)] = 1; (13)

that is,

−
𝛼

𝑛

𝑛

∑
𝑖=1

log[1 −
𝑒−𝜆𝑥𝑖 (𝜆𝑥

𝑖
+ 𝜆 + 1)

𝜆 + 1
] = 1. (14)

Thus, the IME of 𝛼 is obtained as a function of 𝜆,

�̂� = −
𝑛

∑
𝑛

𝑖=1
log [1 − 𝑒−𝜆𝑥𝑖 (𝜆𝑥

𝑖
+ 𝜆 + 1) / (𝜆 + 1)]

, (15)

which is identical to the MLE of 𝛼. In the following, we
determine the IME of 𝜆.

Lemma 2. Let 𝑍
(1)

≤ 𝑍
(2)

≤ ⋅ ⋅ ⋅ ≤ 𝑍
(𝑛)

be the order statistics
from the standard exponential distribution. Then, the random
variables𝑊

1
,𝑊
2
, . . . ,𝑊

𝑛
, where

𝑊
𝑖
= (𝑛 − 𝑖 + 1) (𝑍

(𝑖)
− 𝑍
(𝑖−1)

) , 𝑖 = 1, 2, . . . , 𝑛 (16)

with 𝑍
(0)

≡ 0, are independent and follow standard exponen-
tial distributions.

Proof. The proof can be found by Arnold et al. [14].

Lemma 3. Let 𝑊
1
,𝑊
2
, . . . ,𝑊

𝑛
be iid standard exponential

variables, 𝑆
𝑖
= 𝑊
1
+ ⋅ ⋅ ⋅ +𝑊

𝑖
,𝑈
𝑖
= (𝑆
𝑖
/𝑆
𝑖+1
)𝑖, 𝑖 = 1, 2, . . . , 𝑛−1,

𝑈
𝑛
= 𝑊
1
+ ⋅ ⋅ ⋅ + 𝑊

𝑛
; then

(1) 𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑛
are independent;

(2) 𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑛−1
follow the uniform distribution

𝑈(0, 1);

(3) 2𝑈
𝑛
follows 𝜒2(2𝑛).

Proof. The proof can be found by Wang [15].

For the sample 𝑋
1
, . . . , 𝑋

𝑛
from GLD(𝜆, 𝛼), considering

the order statistics𝑋
(1)

≤ ⋅ ⋅ ⋅ ≤ 𝑋
(𝑛)
, we have that

− log𝐹 (𝑋
(𝑛)
) ≤ ⋅ ⋅ ⋅ ≤ − log𝐹 (𝑋

(1)
) (17)

are 𝑛-order statistics from standard exponential distribution.
Let𝑍
(𝑖)
= −𝛼 log[1−𝑒−𝜆𝑋(𝑛−𝑖+1)(𝜆𝑋

(𝑛−𝑖+1)
+𝜆+1)/(𝜆+1)] ≡

−𝛼 log𝐺(𝑋
(𝑛−𝑖+1)

), 𝑖 = 1, . . . , 𝑛, where 𝐺(𝑥) = 1 − 𝑒−𝜆𝑥(𝜆𝑥 +
𝜆 + 1)/(𝜆 + 1). Thus, 𝑍

(1)
≤ 𝑍
(2)

≤ ⋅ ⋅ ⋅ ≤ 𝑍
(𝑛)

are the first
𝑛-order statistics from the standard exponential distribution.
By Lemma 2, 𝑊

𝑖
= (𝑛 − 𝑖 + 1)(𝑍

(𝑖)
− 𝑍
(𝑖−1)

), 𝑖 = 1, 2, . . . , 𝑛,
form a sample from standard exponential distribution.

Let 𝑆
𝑖
= 𝑊
1
+ ⋅ ⋅ ⋅ + 𝑊

𝑖
, 𝑈
𝑖
= (𝑆
𝑖
/𝑆
𝑖+1
)𝑖, 𝑖 = 1, 2, . . . , 𝑛 − 1,

and 𝑈
𝑛
= 𝑊
1
+ ⋅ ⋅ ⋅ + 𝑊

𝑛
; by Lemma 3, we have

−2
𝑛−1

∑
𝑖=1

log𝑈
𝑖
= −2
𝑛−1

∑
𝑖=1

𝑖 log(
𝑆
𝑖

𝑆
𝑖+1

) = 2
𝑛−1

∑
𝑖=1

log(
𝑆
𝑛

𝑆
𝑖

)

∼ 𝜒2 (2𝑛 − 2) ,

(18)

where

𝑆
𝑛

𝑆
𝑖

=
𝑊
1
+ ⋅ ⋅ ⋅ + 𝑊

𝑛

𝑊
1
+ ⋅ ⋅ ⋅ + 𝑊

𝑖

=
𝑍
(1)

+ 𝑍
(2)

+ ⋅ ⋅ ⋅ + 𝑍
(𝑛)

𝑍
(1)

+ 𝑍
(2)

+ ⋅ ⋅ ⋅ + 𝑍
(𝑖−1)

+ (𝑛 − 𝑖 + 1) 𝑍
(𝑖)

=
log𝐺 (𝑋

(𝑛)
) + log𝐺 (𝑋

(𝑛−1)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(1)
)

log𝐺 (𝑋
(𝑛)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(𝑛−𝑖+2)
) + (𝑛 − 𝑖 + 1) log𝐺 (𝑋

(𝑛−𝑖+1)
)
.

(19)

Note that the mean of 𝜒2(2𝑛 − 2) is 2𝑛 − 2. Thus, we obtain
an inverse moment equation for 𝜆 as follows:

𝑛−1

∑
𝑖=1

log[
log𝐺 (𝑋

(𝑛)
) + log𝐺 (𝑋

(𝑛−1)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(1)
)

log𝐺 (𝑋
(𝑛)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(𝑛−𝑖+2)
) + (𝑛 − 𝑖 + 1) log𝐺 (𝑋

(𝑛−𝑖+1)
)
] = 𝑛 − 1. (20)
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Solve the equation and we obtain the inverse estimate �̂�IME
of 𝜆. Plugging �̂�IME into (15), we obtain the inverse estimate

�̂�IME. In addition, considering that the mode of 𝜒2(2𝑛 − 2) is
2𝑛 − 4, we can obtain a modified equation for 𝜆:

𝑛−1

∑
𝑖=1

log[
log𝐺 (𝑋

(𝑛)
) + log𝐺 (𝑋

(𝑛−1)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(1)
)

log𝐺 (𝑋
(𝑛)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(𝑛−𝑖+2)
) + (𝑛 − 𝑖 + 1) log𝐺 (𝑋

(𝑛−𝑖+1)
)
] = 𝑛 − 2. (21)

Solve the equation and we obtain the modified inverse
estimate �̂�MIME of 𝜆. Plugging �̂�MIME into (15), we obtain
the modified inverse estimate �̂�MIME. Unlike the moment
estimation, herewe only need to solve one nonlinear equation
instead of two equations.

In the following, we prove the existence and uniqueness
of the root in (20) and (21).

Lemma 4. The following limits hold:

(1) One has

lim
𝜆→0

log𝐺 (𝑎)

log𝐺 (𝑏)

= lim
𝜆→0

log [1 − 𝑒−𝜆𝑎 (𝜆𝑎 + 𝜆 + 1) / (𝜆 + 1)]
log [1 − 𝑒−𝜆𝑏 (𝜆𝑏 + 𝜆 + 1) / (𝜆 + 1)]

= 1,

𝑓𝑜𝑟 𝑎 > 0, 𝑏 > 0.

(22)

(2) One has

lim
𝜆→∞

log𝐺 (𝑎)

log𝐺 (𝑏)

= lim
𝜆→∞

log [1 − 𝑒−𝜆𝑎 (𝜆𝑎 + 𝜆 + 1) / (𝜆 + 1)]
log [1 − 𝑒−𝜆𝑏 (𝜆𝑏 + 𝜆 + 1) / (𝜆 + 1)]

= 0,

𝑓𝑜𝑟 𝑎 > 𝑏 > 0.

(23)

(3) One has

lim
𝜆→∞

log𝐺 (𝑎)

log𝐺 (𝑏)

= lim
𝜆→∞

log [1 − 𝑒−𝜆𝑎 (𝜆𝑎 + 𝜆 + 1) / (𝜆 + 1)]
log [1 − 𝑒−𝜆𝑏 (𝜆𝑏 + 𝜆 + 1) / (𝜆 + 1)]

= +∞, 𝑓𝑜𝑟 𝑏 > 𝑎 > 0.

(24)

Lemma 5. For 𝑡 > 0, 𝑓(𝑡) = (𝜆 + 𝑡 + 2 − 𝑒𝑡[𝜆 − (𝜆 + 1)𝑡 +
2])/(𝜆 − (𝜆 + 1)𝑒𝑡 + 𝑡 + 1) is a decreasing function of 𝑡.

Theorem 6. Let𝑊
𝑖
= (𝑛 − 𝑖 + 1)(𝑍

(𝑖)
− 𝑍
(𝑖−1)

), 𝑖 = 1, 2, . . . , 𝑛,
form a sample from standard exponential distribution, 𝑆

𝑖
=

𝑊
1
+ ⋅ ⋅ ⋅ + 𝑊

𝑖
; then for 𝑡 > 0, equation ∑

𝑛−1

𝑖=1
log(𝑆
𝑛
/𝑆
𝑖
) = 𝑡

has a unique positive solution.

Proof. By Lemma 4, we obtain

lim
𝜆→0

𝑆
𝑛

𝑆
𝑖

= lim
𝜆→0

𝑊
1
+ ⋅ ⋅ ⋅ + 𝑊

𝑛

𝑊
1
+ ⋅ ⋅ ⋅ + 𝑊

𝑖

= lim
𝜆→0

𝑍
(1)

+ 𝑍
(2)

+ ⋅ ⋅ ⋅ + 𝑍
(𝑛)

𝑍
(1)

+ 𝑍
(2)

+ ⋅ ⋅ ⋅ + 𝑍
(𝑖−1)

+ (𝑛 − 𝑖 + 1) 𝑍
(𝑖)

= lim
𝜆→0

log𝐺 (𝑋
(𝑛)
) + log𝐺 (𝑋

(𝑛−1)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(1)
)

log𝐺 (𝑋
(𝑛)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(𝑛−𝑖+2)
) + (𝑛 − 𝑖 + 1) log𝐺 (𝑋

(𝑛−𝑖+1)
)

= lim
𝜆→0

[log𝐺 (𝑋
(𝑛)
) + log𝐺 (𝑋

(𝑛−1)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(1)
)] / log𝐺 (𝑋

(𝑛)
)

[log𝐺 (𝑋
(𝑛)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(𝑛−𝑖+2)
) + (𝑛 − 𝑖 + 1) log𝐺 (𝑋

(𝑛−𝑖+1)
)] / log𝐺 (𝑋

(𝑛)
)
=
𝑛

𝑛
= 1.

(25)

Thus, lim
𝜆→0

∑
𝑛−1

𝑖=1
log(𝑆
𝑛
/𝑆
𝑖
) = 0. On the other hand,

lim
𝜆→∞

𝑆
𝑛

𝑆
𝑖

= lim
𝜆→∞

log𝐺 (𝑋
(𝑛)
) + log𝐺 (𝑋

(𝑛−1)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(1)
)

log𝐺 (𝑋
(𝑛)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(𝑛−𝑖+2)
) + (𝑛 − 𝑖 + 1) log𝐺 (𝑋

(𝑛−𝑖+1)
)

= 1 + lim
𝜆→∞

log𝐺 (𝑋
(𝑛−𝑖)

) + ⋅ ⋅ ⋅ + log𝐺 (𝑋
(1)
) − (𝑛 − 𝑖) log𝐺 (𝑋

(𝑛−𝑖+1)
)

log𝐺 (𝑋
(𝑛)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(𝑛−𝑖+1)
) + (𝑛 − 𝑖) log𝐺 (𝑋

(𝑛−𝑖+1)
)

= 1 + lim
𝜆→∞

[log𝐺 (𝑋
(𝑛−𝑖)

) + ⋅ ⋅ ⋅ + log𝐺 (𝑋
(1)
) − (𝑛 − 𝑖) log𝐺 (𝑋

(𝑛−𝑖+1)
)] / log𝐺 (𝑋

(𝑛−𝑖+1)
)

[log𝐺 (𝑋
(𝑛)
) + ⋅ ⋅ ⋅ + log𝐺 (𝑋

(𝑛−𝑖+1)
) + (𝑛 − 𝑖) log𝐺 (𝑋

(𝑛−𝑖+1)
)] / log𝐺 (𝑋

(𝑛−𝑖+1)
)
= +∞.

(26)
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Thus, lim
𝜆→∞

∑
𝑛−1

𝑖=1
log(𝑆
𝑛
/𝑆
𝑖
) = ∞. Therefore, for 𝑡 > 0,

equation ∑
𝑛−1

𝑖=1
log(𝑆
𝑛
/𝑆
𝑖
) = 𝑡 has one positive solution. For

the uniqueness of the solution, we consider the derivative of
𝑆
𝑛
/𝑆
𝑖
with respect to 𝜆. Note that, for 𝑖 = 1, . . . , 𝑛,

𝑊
𝑖
= (𝑛 − 𝑖 + 1) 𝛼 [log𝐺 (𝑋

(𝑛−𝑖+2)
) − log𝐺 (𝑋

(𝑛−𝑖+1)
)] ,

𝑑𝑊
𝑖

𝑑𝜆
= (𝑛 − 𝑖 + 1) 𝛼{

𝜆𝑋
(𝑛−𝑖+2)

𝑒−𝜆𝑋(𝑛−𝑖+2) [(𝜆 + 1)𝑋
(𝑛−𝑖+2)

+ 𝜆 + 2]

(𝜆 + 1)2 𝐺 (𝑋
(𝑛−𝑖+2)

)
−
𝜆𝑋
(𝑛−𝑖+1)

𝑒−𝜆𝑋(𝑛−𝑖+1) [(𝜆 + 1)𝑋
(𝑛−𝑖+1)

+ 𝜆 + 2]

(𝜆 + 1)2 𝐺 (𝑋
(𝑛−𝑖+1)

)
} = 𝑊

𝑖

⋅
{𝜆𝑋
(𝑛−𝑖+2)

𝑒−𝜆𝑋(𝑛−𝑖+2) [(𝜆 + 1)𝑋
(𝑛−𝑖+2)

+ 𝜆 + 2] / (𝜆 + 1)2 𝐺 (𝑋
(𝑛−𝑖+2)

) − 𝜆𝑋
(𝑛−𝑖+1)

𝑒−𝜆𝑋(𝑛−𝑖+1) [(𝜆 + 1)𝑋
(𝑛−𝑖+1)

+ 𝜆 + 2] / (𝜆 + 1)2 𝐺 (𝑋
(𝑛−𝑖+1)

)}

log𝐺 (𝑋
(𝑛−𝑖+2)

) − log𝐺 (𝑋
(𝑛−𝑖+1)

)
.

(
𝑆
𝑛

𝑆
𝑖

)


= (1 +
𝑊
𝑖+1

+ ⋅ ⋅ ⋅ + 𝑊
𝑛

𝑊
1
+ ⋅ ⋅ ⋅ + 𝑊

𝑖

)


=
1

(∑
𝑖

𝑘=1
𝑊
𝑘
)
2

𝑛

∑
𝑗=𝑖+1

𝑖

∑
𝑘=1

[𝑊
𝑗
𝑊
𝑘
−𝑊
𝑗
𝑊
𝑘
] =

1

𝜆 (∑
𝑖

𝑘=1
𝑊
𝑘
)
2

𝑛

∑
𝑗=𝑖+1

𝑖

∑
𝑘=1

𝑊
𝑗
𝑊
𝑘 [𝐴 (𝜆) − 𝐵 (𝜆)] ,

(27)

where

𝐴 (𝜆)

=
𝜆𝑋
(𝑛−𝑗+2)

𝑒−𝜆𝑋(𝑛−𝑗+2)𝜆 [(𝜆 + 1)𝑋
(𝑛−𝑗+2)

+ 𝜆 + 2] / (𝜆 + 1)2 𝐺(𝑋
(𝑛−𝑗+2)

) − 𝜆𝑋
(𝑛−𝑗+1)

𝑒−𝜆𝑋(𝑛−𝑗+1)𝜆 [(𝜆 + 1)𝑋
(𝑛−𝑗+1)

+ 𝜆 + 2] / (𝜆 + 1)2 𝐺(𝑋
(𝑛−𝑗+1)

)

log𝐺(𝑋
(𝑛−𝑗+2)

) − log𝐺(𝑋
(𝑛−𝑗+1)

)
,

𝐵 (𝜆)

=
𝜆𝑋
(𝑛−𝑘+2)

𝑒−𝜆𝑋(𝑛−𝑘+2)𝜆 [(𝜆 + 1)𝑋
(𝑛−𝑘+2)

+ 𝜆 + 2] / (𝜆 + 1)2 𝐺 (𝑋
(𝑛−𝑘+2)

) − 𝜆𝑋
(𝑛−𝑘+1)

𝑒−𝜆𝑋(𝑛−𝑘+1)𝜆 [(𝜆 + 1)𝑋
(𝑛−𝑘+1)

+ 𝜆 + 2] / (𝜆 + 1)2 𝐺 (𝑋
(𝑛−𝑘+1)

)

log𝐺 (𝑋
(𝑛−𝑘+2)

) − log𝐺 (𝑋
(𝑛−𝑘+1)

)
.

(28)

By Cauchy’s mean-value theorem, for 𝑗 = 𝑖 + 1, . . . , 𝑛, 𝑘 =
1, . . . , 𝑖, there exist 𝜉

1
∈ (𝜆𝑋

(𝑛−𝑗+1)
, 𝜆𝑋
(𝑛−𝑗+2)

) and 𝜉
2

∈
(𝜆𝑋
(𝑛−𝑘+1)

, 𝜆𝑋
(𝑛−𝑘+2)

) such that

𝐴 (𝜆) =
𝜆 + 𝜉
1
+ 2 − 𝑒𝜉

1
[𝜆 − (𝜆 + 1) 𝜉

1
+ 2]

𝜆 − (𝜆 + 1) 𝑒
𝜉

1
+ 𝜉
1
+ 1

,

𝐵 (𝜆) =
𝜆 + 𝜉
2
+ 2 − 𝑒𝜉

2
[𝜆 − (𝜆 + 1) 𝜉

2
+ 2]

𝜆 − (𝜆 + 1) 𝑒
𝜉

2
+ 𝜉
2
+ 1

.

(29)

Note that 𝜉
1
< 𝜉
2
, by Lemma 5, 𝐴(𝜆) − 𝐵(𝜆) > 0, (𝑆

𝑛
/𝑆
𝑖
) > 0,

thus∑𝑛−1
𝑖=1

log(𝑆
𝑛
/𝑆
𝑖
) is a strictly increasing function of 𝜆, and

equation ∑
𝑛−1

𝑖=1
log(𝑆
𝑛
/𝑆
𝑖
) = 𝑡 has a unique positive solution.

5. Joint Confidence Regions for 𝜆 and 𝛼

Let 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
form a sample from GLD(𝜆, 𝛼), and

𝑋
(1)

≤ 𝑋
(2)

≤ ⋅ ⋅ ⋅ ≤ 𝑋
(𝑛)

are the order statistics. Let
𝑍
(𝑖)

= −𝛼 log[1 − 𝑒−𝜆𝑋(𝑛−𝑖+1)(𝜆𝑋
(𝑛−𝑖+1)

+ 𝜆 + 1)/(𝜆 + 1)] =
−𝛼 log𝐺(𝑋

(𝑛−𝑖+1)
), 𝑖 = 1, . . . , 𝑛.Thus, 𝑍

(1)
≤ 𝑍
(2)

≤ ⋅ ⋅ ⋅ ≤ 𝑍
(𝑛)

are the first 𝑛-order statistics from the standard exponential
distribution. By Lemma 2, 𝑊

𝑖
= (𝑛 − 𝑖 + 1)(𝑍

(𝑖)
− 𝑍
(𝑖−1)

),
𝑖 = 1, 2, . . . , 𝑛, form a sample from standard exponential

distribution. Let 𝑆
𝑖
= 𝑊
1
+ ⋅ ⋅ ⋅ + 𝑊

𝑖
, 𝑈
𝑖
= (𝑆
𝑖
/𝑆
𝑖+1
)𝑖, 𝑖 =

1, 2, . . . , 𝑛 − 1, and 𝑈
𝑛
= 𝑊
1
+ ⋅ ⋅ ⋅ + 𝑊

𝑛
. Hence

𝑉 = 2𝑆
1
= 2𝑊
1
= 2𝑛𝑍

(1)

= −2𝑛𝛼 log[1 −
𝑒−𝜆𝑋(𝑛) (𝜆𝑋

(𝑛)
+ 𝜆 + 1)

𝜆 + 1
]

∼ 𝜒2 (2) ,

𝑈 = 2 (𝑆
𝑛
− 𝑆
1
) = 2

𝑛

∑
𝑖=2

𝑊
𝑖

= 2 [𝑍
(1)

+ ⋅ ⋅ ⋅ + 𝑍
(𝑛)

− 𝑛𝑍
(1)
] ∼ 𝜒2 (2𝑛 − 2) .

(30)

It is obvious that 𝑈 and 𝑉 are independent. Define

𝑇
1
=
𝑈/ (2𝑛 − 2)

𝑉/2
=

𝑆
𝑛
− 𝑆
1

(𝑛 − 1) 𝑆
1

∼ 𝐹 (2𝑛 − 2, 2) ,

𝑇
2
= 𝑈 + 𝑉 = 2𝑆

𝑛
∼ 𝜒2 (2𝑛) .

(31)

We obtain that 𝑇
1
and 𝑇

2
are independent using the known

bank-post office story in statistics.
Let 𝐹
𝛾
(V
1
, V
2
) denote the percentile of 𝐹 distribution with

left-tail probability 𝛾 and V
1
and V

2
degrees of freedom. Let

𝜒2
𝛾
(V) denote the percentile of 𝜒2 distribution with left-tail

probability 𝛾 and V degrees of freedom.
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By using the pivotal variables𝑇
1
and𝑇
2
, a joint confidence

region for the two parameters 𝜆 and 𝛼 can be constructed as
follows.

Theorem 7 (method 1). Let 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
form a sample

from𝐺𝐿𝐷(𝜆, 𝛼); then, based on the pivotal variables𝑇
1
and𝑇
2
,

a 100(1 − 𝛾)% joint confidence region for the two parameters
(𝜆, 𝛼) is determined by the following inequalities:

𝜆
𝐿
≤ 𝜆 ≤ 𝜆

𝑈

𝜒2
(1−√1−𝛾)/2

(2𝑛)

−2∑
𝑛

𝑖=1
log [1 − 𝑒−𝜆𝑋(𝑖) (𝜆𝑋

(𝑖)
+ 𝜆 + 1) / (𝜆 + 1)]

≤ 𝛼

≤
𝜒2
(1+√1−𝛾)/2

(2𝑛)

−2∑
𝑛

𝑖=1
log [1 − 𝑒−𝜆𝑋(𝑖) (𝜆𝑋

(𝑖)
+ 𝜆 + 1) / (𝜆 + 1)]

,

(32)

where 𝜆
𝐿
is the root of 𝜆 for the equation 𝑇

1
= 𝐹
(1−√1−𝛾)/2

(2𝑛−

2, 2) and 𝜆
𝑈

is the root of 𝜆 for the equation 𝑇
1

=
𝐹
(1+√1−𝛾)/2

(2𝑛 − 2, 2).

Proof. 𝑇
1
= (1/(𝑛 − 1)) log[1 − 𝑒−𝜆𝑋(𝑛)(𝜆𝑋

(𝑛)
+ 𝜆 + 1)/(𝜆 +

1)] + ⋅ ⋅ ⋅ + log[1 − 𝑒−𝜆𝑋(1)(𝜆𝑋
(1)

+ 𝜆 + 1)/(𝜆 + 1)] − 𝑛 log[1 −
𝑒−𝜆𝑋(𝑛)(𝜆𝑋

(𝑛)
+ 𝜆 + 1)/(𝜆 + 1)]/𝑛 log[1 − 𝑒−𝜆𝑋(𝑛)(𝜆𝑋

(𝑛)
+ 𝜆 +

1)/(𝜆+1)] is a function of 𝜆 and does not depend on 𝛼. From
Theorem 6, we have lim

𝜆→0
𝑇
1
= (1/(𝑛 − 1))lim

𝜆→0
(𝑆
𝑛
/𝑆
1
−

1) = 0, lim
𝜆→∞

𝑇
1
= (1/(𝑛 − 1))lim

𝜆→∞
(𝑆
𝑛
/𝑆
1
− 1) = ∞,

and 𝑇
1
= (1/(𝑛 − 1))(𝑆

𝑛
/𝑆
𝑖
) > 0. Therefore, for any 𝑡 > 0,

equation 𝑇
1
= 𝑡 has a unique positive root of 𝜆:

1 − 𝛾 = √1 − 𝛾√1 − 𝛾 = 𝑃 (𝐹
(1−√1−𝛾)/2

(2𝑛 − 2, 2)

≤ 𝑇
1
≤ 𝐹
(1+√1−𝛾)/2

(2𝑛 − 2, 2)) 𝑃 (𝜒
2

(1−√1−𝛾)/2
(2𝑛)

≤ 𝑇
2
≤ 𝜒2
(1+√1−𝛾)/2

(2𝑛))

= 𝑃 (𝐹
(1−√1−𝛾)/2

(2𝑛 − 2, 2) ≤ 𝑇
1

≤ 𝐹
(1+√1−𝛾)/2

(2𝑛 − 2, 2) , 𝜒
2

(1−√1−𝛾)/2
(2𝑛) ≤ 𝑇

2

≤ 𝜒2
(1+√1−𝛾)/2

(2𝑛)) = 𝑃(𝜆
𝐿
≤ 𝜆

≤ 𝜆
𝑈
,

𝜒2
(1−√1−𝛾)/2

(2𝑛)

−2∑
𝑛

𝑖=1
log𝐺 (𝑋

(𝑖)
)
≤ 𝛼

≤
𝜒2
(1+√1−𝛾)/2

(2𝑛)

−2∑
𝑛

𝑖=1
log𝐺 (𝑋

(𝑖)
)
) .

(33)

On the other hand, by Lemma 3, we have

𝑇
3
= −2
𝑛−1

∑
𝑖=1

log𝑈
𝑖
= −2
𝑛−1

∑
𝑖=1

𝑖 log(
𝑆
𝑖

𝑆
𝑖+1

)

= 2
𝑛−1

∑
𝑖=1

log(
𝑆
𝑛

𝑆
𝑖

) ∼ 𝜒2 (2𝑛 − 2) .

(34)

𝑇
2
and𝑇

3
are also independent. By using the pivotal variables

𝑇
2
and 𝑇

3
, a joint confidence region for the two parameters 𝜆

and 𝛼 can be constructed as follows.

Theorem 8 (method 2). Let 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
form a sample

from𝐺𝐿𝐷(𝜆, 𝛼); then, based on the pivotal variables𝑇
2
and𝑇
3
,

a 100(1 − 𝛾)% joint confidence region for the two parameters
(𝜆, 𝛼) is determined by the following inequalities:

𝜆∗
𝐿
≤ 𝜆 ≤ 𝜆∗

𝑈

𝜒2
(1−√1−𝛾)/2

(2𝑛)

−2∑
𝑛

𝑖=1
log [1 − 𝑒−𝜆𝑋(𝑖) (𝜆𝑋

(𝑖)
+ 𝜆 + 1) / (𝜆 + 1)]

≤ 𝛼

≤
𝜒2
(1+√1−𝛾)/2

(2𝑛)

−2∑
𝑛

𝑖=1
log [1 − 𝑒−𝜆𝑋(𝑖) (𝜆𝑋

(𝑖)
+ 𝜆 + 1) / (𝜆 + 1)]

,

(35)

where 𝜆∗
𝐿
is the root of 𝜆 for the equation 𝑇

3
= 𝜒2
(1−√1−𝛾)/2

(2𝑛−

2) and 𝜆∗
𝑈
is the root of 𝜆 for the equation𝑇

3
= 𝜒2
(1+√1−𝛾)/2

(2𝑛−

2).

Proof. 𝑇
3
= 2∑

𝑛−1

𝑖=1
log(𝑆
𝑛
/𝑆
𝑖
) is a function of 𝜆 and does not

depend on 𝛼. FromTheorem 6, for any 𝑠 > 0, equation 𝑇
3
= 𝑠

has a unique positive root of 𝜆:

1 − 𝛾 = √1 − 𝛾√1 − 𝛾 = 𝑃 (𝜒2
(1−√1−𝛾)/2

(2𝑛 − 2) ≤ 𝑇
3

≤ 𝜒2
(1+√1−𝛾)/2

(2𝑛 − 2)) 𝑃 (𝜒
2

(1−√1−𝛾)/2
(2𝑛) ≤ 𝑇

2

≤ 𝜒2
(1+√1−𝛾)/2

(2𝑛)) = 𝑃 (𝜒2
(1−√1−𝛾)/2

(2𝑛 − 2) ≤ 𝑇
3

≤ 𝜒2
(1+√1−𝛾)/2

(2𝑛 − 2) , 𝜒
2

(1−√1−𝛾)/2
(2𝑛) ≤ 𝑇

2

≤ 𝜒2
(1+√1−𝛾)/2

(2𝑛)) = 𝑃(𝜆∗
𝐿
≤ 𝜆

≤ 𝜆∗
𝑈
,

𝜒2
(1−√1−𝛾)/2

(2𝑛)

−2∑
𝑛

𝑖=1
log𝐺 (𝑋

(𝑖)
)
≤ 𝛼

≤
𝜒2
(1+√1−𝛾)/2

(2𝑛)

−2∑
𝑛

𝑖=1
log𝐺 (𝑋

(𝑖)
)
) .

(36)

6. Simulation Study

6.1. Comparison of the Four Estimation Methods. In this sec-
tion, we conduct simulations to compare the performances
of the MIMEs, IMEs, MLEs, and MOMs mainly with respect
to their biases and mean squared errors (MSEs), for various
sample sizes and for various true parametric values.

The random data 𝑋 from the GLD(𝜆, 𝛼) distribution can
be generated as follows:

𝑋 =
−𝜆 − 1 −𝑊(𝑒−𝜆−1 (𝜆 + 1) (𝑈1/𝛼 − 1))

𝜆
, (37)
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Table 1: Average relative estimates and MSEs of 𝛼.

𝑛 Methods 𝛼 = 2.0 𝛼 = 2.5 𝛼 = 3.0 𝛼 = 3.5 𝛼 = 4.0

30

MOM 1.2705 (0.4298) 1.2350 (0.3510) 1.2965 (0.5115) 1.2770 (0.4460) 1.3522 (0.6256)
MLE 1.1310 (0.1459) 1.1703 (0.2029) 1.1590 (0.2240) 1.1693 (0.2267) 1.1911 (0.2888)
IME 1.0956 (0.1267) 1.1292 (0.1728) 1.1154 (0.1906) 1.1234 (0.1930) 1.1395 (0.2400)
MIME 1.0482 (0.1063) 1.0755 (0.1420) 1.0590 (0.1570) 1.0635 (0.1572) 1.0754 (0.1939)

40

MOM 1.1791 (0.2212) 1.1954 (0.2262) 1.2046 (0.2693) 1.2299 (0.3163) 1.2536 (0.3961)
MLE 1.0878 (0.0934) 1.1175 (0.1220) 1.1164 (0.1237) 1.1359 (0.1596) 1.1034 (0.1464)
IME 1.0631 (0.0838) 1.0894 (0.1098) 1.0858 (0.1089) 1.1025 (0.1412) 1.0703 (0.1315)
MIME 1.0294 (0.0739) 1.0516 (0.0951) 1.0456 (0.0937) 1.0591 (0.1207) 1.0267 (0.1139)

50

MOM 1.1363 (0.1557) 1.1396 (0.1767) 1.1570 (0.2069) 1.1747 (0.2296) 1.1842 (0.2652)
MLE 1.0746 (0.0701) 1.0971 (0.1027) 1.1064 (0.1102) 1.0979 (0.1059) 1.1064 (0.1289)
IME 1.0553 (0.0648) 1.0747 (0.0922) 1.0823 (0.0994) 1.0726 (0.0960) 1.0783 (0.1145)
MIME 1.0288 (0.0584) 1.0451 (0.0822) 1.0505 (0.0879) 1.0394 (0.0849) 1.0432 (0.1009)

60

MOM 1.1233 (0.1227) 1.1281 (0.1249) 1.1480 (0.1679) 1.1312 (0.1608) 1.1511 (0.1892)
MLE 1.0592 (0.0587) 1.0646 (0.0601) 1.0663 (0.0695) 1.0832 (0.0849) 1.0877 (0.0911)
IME 1.0431 (0.0546) 1.0468 (0.0548) 1.0470 (0.0637) 1.0625 (0.0786) 1.0656 (0.0827)
MIME 1.0214 (0.0502) 1.0232 (0.0499) 1.0218 (0.0580) 1.0354 (0.0709) 1.0371 (0.0743)

80

MOM 1.0954 (0.0843) 1.0836 (0.0856) 1.0984 (0.0974) 1.1136 (0.1105) 1.1220 (0.1224)
MLE 1.0579 (0.0426) 1.0556 (0.0480) 1.0624 (0.0553) 1.0533 (0.0515) 1.0700 (0.0651)
IME 1.0459 (0.0400) 1.0426 (0.0452) 1.0485 (0.0517) 1.0385 (0.0484) 1.0539 (0.0612)
MIME 1.0297 (0.0372) 1.0251 (0.0421) 1.0296 (0.0478) 1.0189 (0.0449) 1.0329 (0.0563)

100

MOM 1.0704 (0.0659) 1.0704 (0.0736) 1.0835 (0.0859) 1.0763 (0.0888) 1.0780 (0.0851)
MLE 1.0332 (0.0299) 1.0383 (0.0344) 1.0504 (0.0428) 1.0344 (0.0370) 1.0478 (0.0482)
IME 1.0244 (0.0288) 1.0286 (0.0330) 1.0393 (0.0407) 1.0230 (0.0356) 1.0353 (0.0459)
MIME 1.0119 (0.0274) 1.0149 (0.0313) 1.0245 (0.0382) 1.0077 (0.0337) 1.0189 (0.0432)

where 𝑈 follows uniform distribution over [0, 1] and 𝑊(𝑎)
giving the principal solution for 𝑤 in 𝑎 = 𝑤𝑒𝑤 is pronounced
as Lambert𝑊 function; see Jodrá [16].

We obtain �̂�MLE by solving (8) and �̂�MLE by (7). �̂�MOM and
�̂�MOM can be obtained by solving (11) and (12) simultaneously.
�̂�IME and �̂�MIME can be obtained by solving (20) and (21),
respectively. �̂�IME and �̂�MIME can be obtained from (15).

We consider sample sizes 𝑛 = 30, 40, 50, 60, 80, 100 and
𝛼 = 2.0, 2.5, 3.0, 3.5, 4.0. We take 𝜆 = 2 in all our computa-
tions. For each combination of sample size 𝑛 and parameter
𝛼, we generate a sample of size 𝑛 from GLD(𝜆 = 2, 𝛼) and
estimate the parameters𝜆 and𝛼 by theMLE,MOM, IME, and
MIMEmethods.The average values of �̂�/𝛼 and �̂�/2 as well as
the correspondingMSEs over 1000 replications are computed
and reported.

Table 1 reports the average values of �̂�/𝛼 and the corre-
sponding MSE is reported within parenthesis. Figures 1(a),
1(b), 1(c), and 1(d) show the relative biases and the MSEs of
the four estimators of 𝛼 for sample sizes 𝑛 = 40 and 𝑛 = 80.
Figures 1(e) and 1(f) show the relative biases and the MSEs
of the four estimators of 𝛼 for 𝛼 = 3.0. The other cases are
similar.

Table 2 reports the average values of �̂�/𝜆 = �̂�/2 and the
corresponding MSE is reported within parenthesis. Figures
2(a), 2(b), 2(c), and 2(d) show the relative biases and theMSEs
of the four estimators of 𝜆 for sample sizes 𝑛 = 40 and 𝑛 = 80.
Figures 2(e) and 2(f) show the relative biases and the MSEs

of the four estimators of 𝜆 for 𝛼 = 3.0. The other cases are
similar.

From Tables 1 and 2, it is observed that for the four
methods the average relative biases and the average relative
MSEs decrease as sample size 𝑛 increases as expected. The
asymptotic unbiasedness of all the estimators is verified. The
averageMSEs of �̂�/𝛼 and �̂�/𝜆 = �̂�/2 depend on the parameter
𝛼. For the four methods, the average relative MSEs of �̂�/2
decrease as 𝛼 goes up. The average relative MSEs of �̂�/𝛼
increase as𝛼 goes up. Considering onlyMSEs, we can observe
that the estimation of 𝛼’s is more accurate for smaller values
while the estimation of 𝜆’s is more accurate for larger values
of 𝛼. MOM, MLE, and IME overestimate both of the two
parameters 𝛼 and 𝜆. MIME overestimates only 𝛼.

As far as the biases and MSEs are concerned, it is clear
that MIME works the best in all the cases considered for
estimating the two parameters. Its performance is followed
by IME, MLE, and MOM, especially for small sample sizes.
The four methods are close for larger sample sizes.

Considering all the points, MIME is recommended for
estimating both parameters of the GLD(𝜆, 𝛼) distribution.
MOM is not suggested.

6.2. Comparison of the Two Joint Confidence Regions. In
Section 5, two methods to construct the confidence regions
of the two parameters 𝜆 and 𝛼 are proposed. In this section,
we conduct simulations to compare the two methods.
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Figure 1: Average relative biases and MSEs of 𝛼.
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Table 2: Average relative estimates and MSEs of 𝜆.

𝑛 Methods 𝛼 = 2.0 𝛼 = 2.5 𝛼 = 3.0 𝛼 = 3.5 𝛼 = 4.0

30

MOM 1.0778 (0.0551) 1.0795 (0.0524) 1.0760 (0.0483) 1.0794 (0.0495) 1.0699 (0.0454)
MLE 1.0596 (0.0381) 1.0516 (0.0357) 1.0449 (0.0315) 1.0529 (0.0335) 1.0460 (0.0315)
IME 1.0356 (0.0343) 1.0276 (0.0323) 1.0218 (0.0286) 1.0302 (0.0308) 1.0233 (0.0288)
MIME 1.0024 (0.0314) 0.9957 (0.0299) 0.9909 (0.0269) 0.9997 (0.0285) 0.9934 (0.0270)

40

MOM 1.0507 (0.0395) 1.0721 (0.0413) 1.0561 (0.0380) 1.0580 (0.0358) 1.0522 (0.0290)
MLE 1.0294 (0.0234) 1.0345 (0.0209) 1.0447 (0.0256) 1.0317 (0.0228) 1.0315 (0.0195)
IME 1.0122 (0.0221) 1.0174 (0.0195) 1.0273 (0.0238) 1.0152 (0.0214) 1.0154 (0.0184)
MIME 0.9880 (0.0213) 0.9939 (0.0185) 1.0042 (0.0222) 0.9928 (0.0205) 0.9934 (0.0176)

50

MOM 1.0546 (0.0319) 1.0427 (0.0288) 1.0400 (0.0266) 1.0412 (0.0249) 1.0424 (0.0254)
MLE 1.0338 (0.0202) 1.0307 (0.0198) 1.0195 (0.0169) 1.0292 (0.0179) 1.0327 (0.0162)
IME 1.0197 (0.0190) 1.0165 (0.0187) 1.0061 (0.0160) 1.0161 (0.0169) 1.0193 (0.0154)
MIME 1.0003 (0.0181) 0.9978 (0.0178) 0.9880 (0.0156) 0.9983 (0.0162) 1.0017 (0.0146)

60

MOM 1.0402 (0.0280) 1.0432 (0.0244) 1.0332 (0.0224) 1.0417 (0.0225) 1.0339 (0.0217)
MLE 1.0230 (0.0159) 1.0181 (0.0151) 1.0304 (0.0146) 1.0226 (0.0140) 1.0247 (0.0129)
IME 1.0109 (0.0152) 1.0067 (0.0145) 1.0190 (0.0139) 1.0113 (0.0134) 1.0132 (0.0122)
MIME 0.9948 (0.0147) 0.9913 (0.0142) 1.0039 (0.0132) 0.9965 (0.0129) 0.9987 (0.0118)

80

MOM 1.0342 (0.0219) 1.0288 (0.0167) 1.0272 (0.0180) 1.0305 (0.0155) 1.0327 (0.0161)
MLE 1.0130 (0.0116) 1.0238 (0.0121) 1.0201 (0.0106) 1.0229 (0.0111) 1.0199 (0.0095)
IME 1.0041 (0.0113) 1.0149 (0.0116) 1.0119 (0.0103) 1.0148 (0.0107) 1.0116 (0.0092)
MIME 0.9922 (0.0111) 1.0034 (0.0112) 1.0007 (0.0100) 1.0037 (0.0103) 1.0008 (0.0089)

100

MOM 1.0269 (0.0154) 1.0255 (0.0153) 1.0210 (0.0125) 1.0144 (0.0120) 1.0236 (0.0117)
MLE 1.0129 (0.0087) 1.0135 (0.0095) 1.0149 (0.0080) 1.0150 (0.0080) 1.0133 (0.0075)
IME 1.0059 (0.0085) 1.0067 (0.0092) 1.0083 (0.0077) 1.0084 (0.0077) 1.0069 (0.0073)
MIME 0.9964 (0.0083) 0.9975 (0.0090) 0.9994 (0.0076) 0.9996 (0.0076) 0.9983 (0.0072)

First, we assess the precisions of the two methods of
interval estimators for the parameter 𝜆. We take sample sizes
𝑛 = 30, 40, 50, 60, 80, 100 and 𝛼 = 2.0, 2.5, 3.0, 3.5, 4.0. We
take 𝜆 = 2 in all our computations. For each combination of
sample size 𝑛 and parameter 𝛼, we generate a sample of size 𝑛
from GLD(𝜆 = 2, 𝛼) and estimate the parameter 𝜆 by the two
proposed methods (32) and (35).

The mean widths as well as the coverage rates over 1000
replications are computed and reported. Here the coverage
rate is defined as the rate of the confidence intervals that
contain the true value 𝜆 = 2 among these 1,000 confidence
intervals. The results are reported in Table 3.

It is observed that the mean widths of the intervals
decrease as sample sizes 𝑛 increase as expected. The mean
widths of the intervals decrease as the parameter 𝛼 increases.
The coverage rates of the two methods are close to the
nominal level 0.95. Considering themeanwidths, the interval
estimate of 𝜆 obtained in method 2 performs better than that
obtained in method 1. Method 2 for constructing the interval
estimate of 𝜆 is recommended.

Next we consider the two joint confidence regions and the
empirical coverage rates and expected areas.The results of the
methods for constructing joint confidence regions for (𝜆, 𝛼)
with confidence level 𝛾 = 0.95 are reported in Table 4.

We can find that the mean areas of the joint regions
decrease as sample sizes 𝑛 increase as expected. The mean

areas of the joint regions increase as the parameter 𝛼
increases. The coverage rates of the two methods are close to
the nominal level 0.95. Considering the mean areas, the joint
region of (𝜆, 𝛼) obtained in method 2 performs better than
that obtained in method 1. Method 2 is recommended.

7. Real Illustrative Example

In this section, we consider a real lifetime data set (Gross and
Clark [17]) and it shows the relief times of twenty patients
receiving an analgesic. The dataset has been previously ana-
lyzed by Bain and Engelhardt [18], Kumar andDharmaja [19],
Nadarajah et al. [11], and so forth. The relief times in hours
are shown as follows:

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3,

1.7, 2.3, 1.6, 2.
(38)

Nadarajah et al. [11] fit the data with generalized Lindley
distribution and showed that it can be a better model than
those based on the gamma, lognormal, and the Weibull
distributions.TheMLEs of the parameters are �̂�MLE = 2.5395
and �̂�MLE = 27.8766 with log-likelihood value −16.4044. The
Kolmogorov-Smirnov distance and its corresponding𝑝 value
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Table 3: Results of the methods for constructing intervals for 𝜆 with confidence level 0.95.

𝑛 Methods 𝛼 = 2.0 𝛼 = 2.5 𝛼 = 3.0 𝛼 = 3.5 𝛼 = 4.0

30

(1)
Mean width 2.4282 2.4056 2.3482 2.3093 2.2885
Coverage rate 0.947 0.947 0.941 0.944 0.951

(2)
Mean width 1.3872 1.3424 1.2958 1.2705 1.2539
Coverage rate 0.948 0.942 0.955 0.943 0.952

40
(1)

Mean width 2.2463 2.2405 2.2048 2.1733 2.1644
Coverage rate 0.945 0.95 0.947 0.957 0.958

(2)
Mean width 1.1937 1.1545 1.1209 1.0939 1.0828
Coverage rate 0.947 0.938 0.938 0.958 0.948

50
(1)

Mean width 2.1506 2.107 2.0635 2.0356 2.0293
Coverage rate 0.953 0.945 0.936 0.954 0.949

(2)
Mean width 1.0566 1.0174 0.9953 0.9732 0.9563
Coverage rate 0.953 0.945 0.943 0.947 0.95

60
(1)

Mean width 2.0555 2.0197 1.98 1.9502 1.9397
Coverage rate 0.953 0.952 0.955 0.948 0.951

(2)
Mean width 0.9627 0.9331 0.9021 0.8856 0.8692
Coverage rate 0.94 0.957 0.952 0.942 0.952

80

(1)
Mean width 1.9277 1.8859 1.8485 1.8418 1.8412
Coverage rate 0.958 0.959 0.956 0.961 0.941

(2)
Mean width 0.831 0.7995 0.777 0.7599 0.7521
Coverage rate 0.952 0.947 0.942 0.951 0.951

100

(1)
Mean width 1.8251 1.7883 1.7849 1.7729 1.7633
Coverage rate 0.954 0.948 0.951 0.946 0.956

(2)
Mean width 0.7423 0.7119 0.6947 0.6804 0.6684
Coverage rate 0.937 0.961 0.946 0.948 0.947
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Figure 3: The 95% joint confidence region of (𝜆, 𝛼).

are 𝐷 = 0.1377 and 𝑝 = 0.7941, respectively. The MOMs of
the parameters are �̂�MOM = 2.1042 and �̂�MOM = 13.1280.

Using the methods proposed in Section 3, we obtain the
following estimates:

�̂�IME = 2.3687,

�̂�IME = 21.7428,

�̂�MIME = 2.2671,

�̂�MIME = 18.7269.

(39)
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Table 4: Results of the methods for constructing joint confidence regions for (𝜆, 𝛼) with confidence level 𝛾 = 0.95.

𝑛 Methods 𝛼 = 2.0 𝛼 = 2.5 𝛼 = 3.0 𝛼 = 3.5 𝛼 = 4.0

30

(1)
Mean area 8.0701 10.5512 15.5331 17.6929 21.8188

Coverage rate 0.96 0.949 0.949 0.952 0.959

(2)
Mean area 3.0543 3.7328 4.7094 5.2673 6.1423

Coverage rate 0.964 0.956 0.95 0.949 0.952

40
(1)

Mean area 6.2578 8.0063 10.1501 12.8546 15.722
Coverage rate 0.942 0.963 0.962 0.942 0.942

(2)
Mean area 2.211 2.6583 3.1734 3.6342 4.174

Coverage rate 0.949 0.951 0.956 0.948 0.953

50

(1)
Mean area 4.7221 6.71 8.016 10.0739 12.373

Coverage rate 0.951 0.935 0.958 0.944 0.955

(2)
Mean area 1.6762 2.0329 2.404 2.798 3.201

Coverage rate 0.95 0.931 0.956 0.959 0.947

60

(1)
Mean area 4.3159 5.4371 7.1443 8.3226 10.2957

Coverage rate 0.954 0.939 0.953 0.94 0.951

(2)
Mean area 1.4017 1.6443 1.9985 2.2489 2.5635

Coverage rate 0.954 0.943 0.952 0.944 0.96

80

(1)
Mean area 3.1997 4.2806 5.3322 6.392 7.7788

Coverage rate 0.951 0.956 0.951 0.957 0.948

(2)
Mean area 1.0114 1.2325 1.4396 1.6863 1.8538

Coverage rate 0.947 0.956 0.955 0.951 0.942

100

(1)
Mean area 2.6803 3.4994 4.418 5.4509 6.3339

Coverage rate 0.951 0.947 0.965 0.947 0.951

(2)
Mean area 0.7938 0.9673 1.1306 1.3265 1.4548

Coverage rate 0.947 0.945 0.962 0.943 0.964

In addition, based on method 1, the 95% joint confidence
region for the parameters (𝜆, 𝛼) is given by the following
inequalities:

0.7736 ≤ 𝜆 ≤ 3.1505

−11.3532

∑
𝑛

𝑖=1
log [1 − 𝑒−𝜆𝑋(𝑖) (𝜆𝑋

(𝑖)
+ 𝜆 + 1) / (𝜆 + 1)]

≤ 𝛼

≤
−31.3028

∑
𝑛

𝑖=1
log [1 − 𝑒−𝜆𝑋(𝑖) (𝜆𝑋

(𝑖)
+ 𝜆 + 1) / (𝜆 + 1)]

.

(40)

Based on method 2, the 95% joint confidence region for
the parameters (𝜆, 𝛼) is given by the following inequalities:

1.4503 ≤ 𝜆 ≤ 3.4078

−11.3532

∑
𝑛

𝑖=1
log [1 − 𝑒−𝜆𝑋(𝑖) (𝜆𝑋

(𝑖)
+ 𝜆 + 1) / (𝜆 + 1)]

≤ 𝛼

≤
−31.3028

∑
𝑛

𝑖=1
log [1 − 𝑒−𝜆𝑋(𝑖) (𝜆𝑋

(𝑖)
+ 𝜆 + 1) / (𝜆 + 1)]

.

(41)

Figures 3(a) and 3(b) show the 95% joint confidence regions
of (𝜆, 𝛼).

Considering the widths of 𝜆, method 2 is suggested.

8. Conclusion

In this paper, we study the problem of estimating the two
parameters of the generalized Lindley distribution intro-
duced by Nadarajah et al. [11]. We propose the inverse
moment estimator and modified inverse moment estimator
and study their statistical properties. The existence and
uniqueness of inversemoment andmodified inversemoment
estimates of the parameters are proved. Monte Carlo simula-
tions are used to compare their performances. We also inves-
tigate the methods for constructing joint confidence regions
for the two parameters and study their performances.
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