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We examine the impact of three forecasting methods on the bullwhip effect in a two-stage supply chain with one supplier and two
retailers. A first ordermixed autoregressive-moving averagemodel (ARMA(1, 1)) performs the demand forecast and an order-up-to
inventory policy characterizes the inventory decision. The bullwhip effect is measured, respectively, under the minimum mean-
squared error (MMSE), moving average (MA), and exponential smoothing (ES) forecasting techniques. The effect of parameters
on the bullwhip effect under three forecasting methods is analyzed and the bullwhip effect under three forecasting methods is
compared. Conclusions indicate that different forecastingmethods lead to different bullwhip effects caused by lead time, underlying
parameters of the demand process, market competition, and the consistency of demand volatility between two retailers. Moreover,
some suggestions are present to help managers to select the forecasting method that yields the lowest bullwhip effect.

1. Introduction

In a supply chain, as moving backward from a downstream
member to an upstream member, the variance of order
quantities of orders placed by the downstream member to
its (immediate) upstreammember tends to be amplified. The
discovery of the phenomenon can be dated back to Forrester
[1, 2] who discussed its causes and possible remediation in
the context of industrial dynamics. After that, more andmore
researchers recognized the existence of this phenomenon in
supply chains. At MIT, the well known “beer game” which
was widely used in teaching inventory management was
developed by Sterman [3]. The above phenomenon was first
called as “bullwhip effect” by Lee et al. [4, 5]. In works of Lee
et al. [4, 5], demand signal processing, nonzero lead-time,
order batching, supply shortages, and price fluctuation were
recognized as five important sources which might lead to the
emergence of the bullwhip effect in supply chains. In order to
avoid the bullwhip effect, many managerial approaches have
been done, that is, lead-time reduction, information sharing,
or applying different replenishment rules for the inventory
system.

Among the most important issues that need to be
addressed in dealing with the bullwhip effect, quantifying the

bullwhip effect is a challenge. In the following papers, the
supply chain might employ different demand processes and
different forecasting methods. Using a first-order autoregres-
sive (AR(1)) demand process, Chen et al. [6, 7] investigated
the impact of the MA and ES forecasting methods on the
bullwhip effect for a simple, two-stage supply chain with one
supplier and one retailer. Likewise, Xu et al. [8] conducted a
similar research for the lead-time demand that is forecasted
with the ES method. Luong [9] measured the bullwhip effect
for a simple two-stage supply chain that includes only one
retailer and one supplier in the environment where the
retailer employs the order-up-to inventory policy for their
inventory and demand forecast is performed through the
AR(1) model, and the effect of autoregressive coefficient
and lead time on this measure was investigated. For the
same two-stage supply chain, Duc et al. [10] investigated
effects of the autoregressive coefficient, the moving average
parameter, and the lead time on the bullwhip effect when
the retailer performed through the ARMA(1, 1) model. Duc
et al. [11] examined the impact of a third-party warehouse
on the bullwhip effect in a three-stage supply chain with one
supplier, one third-party warehouse and two retailers. Then,
they found that the existence of the third-party warehouse
has no influence on the bullwhip effect when the lead times
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of the third-party warehouse, and the two retailers are equal.
Zhang [12]measured the bullwhip effect for the simple supply
chain with AR(1) demand process under various forecasting
methods, and considered the impact of forecasting methods
on the bullwhip effect. Feng and Ma [13] compared the
MMSE, MA, and ES forecasting methods for the simple
supply chain with ARMA(1, 1) demand process by using the
dynamic simulation.

Ferrara et al. [14] examined how performances and
characteristics of innovation poles and science park affect
various aspects of Italian regional economies at NUTS 2
level. In particular, they found that impacts are different
by geographic location but the effects are still evident even
in the aggregate model. The number of IP/SP per region
seems to display a positive role in sustaining the economic
growth of corresponding regions. In addition, the patenting
activity and the creation of research centers foster the growth
of affiliated firms, which in turn affects regional economy’s
parameters. To the contrary, the distance between the IP/SP
and affiliated firms reduces the growing potential of the latter.
Moreover, firms within an IP/SP turn out to outperforms
(largely) the regional average. Finally, they found that more
recent structures tend to be more prone to both patenting
activity and high-level growth.

The supply chain model usually has only one retailer in
the previous researches which study on the bullwhip effect,
but the new supply chain we will build has two retailers. This
supply chain is more in line with the structure of market.
Pindyck and Rubinfeld [15] thought that the ARMA model
often fits the time series of the demand process better than the
ARmodel because the demand process usually has character-
istics of both moving average and autoregressive process.The
two retailers both employ the ARMA(1, 1) demand process,
and both use the MMSE, MA, and ES method to forecast
the lead-time demand, respectively. Our research not only
determines an exact measure of the bullwhip effect but also
analyzes the impact of parameters on the bullwhip effect
under various forecasting methods and compare the impact
of three forecasting method on the bullwhip effect.

The rest of this paper is organized as follow. Section 2
presents a new supply chain model containing two retailers
which both follow the ARMA(1, 1) demand process and
employ the order-up-to stock policy. In Section 3, the bull-
whip effect measure for MMSE, MA, and ES forecasting
method is derived. In Section 4, we analyze the effects of
parameters on the bullwhip effect under different forecasting
methods and compare the impact of three forecasting meth-
ods on the bullwhip effect. At last, some concluding remarks
are discussed in Section 5.

2. Supply Chain Model

2.1. Demand Process. In this research, a two-stage supply
chain with one supplier and two retailers is developed. Two
retailers face customer demands and place orders to the
supplier, respectively. We consider that retailer 1 faces an
ARMA(1, 1) demand model as follows:
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Similarly, retailer 2 also faces an ARMA(1, 1) demand
model as follows:
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here, 𝜙
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2.2. Inventory Policy. Assumption of the order-up-to inven-
tory policy is used in this supply chain system for its inventory
management. Two retailers both employ the order-up-to
inventory policy. Retailer 1 places an order of quantity 𝑞

1,𝑡

to the supplier at the beginning of period 𝑡. And the order
quantity 𝑞

1,𝑡
can be given as

𝑞
1,𝑡
= 𝑆
1,𝑡
− 𝑆
1,𝑡−1

+ 𝐷
1,𝑡−1

, (5)

where 𝑆
1,𝑡

is the order-up-to lever of retailer 1 at period 𝑡, and
it can be determined by the lead-time demand as

𝑆
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= 𝐷
𝐿
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where𝐷𝐿1
1,𝑡
is the forecast for the lead-time demand of retailer

1which is depend on the forecastingmethod and𝐿
1
, �̂�𝐿1
1,𝑡

is the
standard deviation of lead-time demand forecast error, and
𝑧 is the normal 𝑧-score that can be determined based on a
given service level. Duc et al. [10] has proofed that �̂�𝐿1

1,𝑡
does

not depend on 𝑡 and has no influence on the bullwhip effect.
For retailer 2, the order quantity 𝑞

2,𝑡
also can be given as
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The order-up-to level of retailer 2 at period 𝑡 is

𝑆
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= 𝐷
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Equations (7)-(8) have the same meaning with (5)-(6).

2.3. Forecasting Technique. In this paper, we assume that two
retailers both use the same forecasting technique to forecast
the lead-time demand. In Section 3, the bullwhip effect will
be measured, respectively, under the MMES, MA, and ES
forecastingmethods.Those three forecastingmethods will be
introduced in this section firstly.
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2.3.1. TheMMSE Forecasting Method. In theMMSE forecast-
ing method, the forecast for the lead-time demand can be
given as

𝐷
𝐿

𝑡
= 𝐷
𝑡
+ 𝐷
𝑡+1
+ ⋅ ⋅ ⋅ + 𝐷

𝑡+𝐿−1
=

𝐿−1

∑
𝑖=0

𝐷
𝑡+𝑖
, (9)

where 𝐷
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be determined as
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2.3.2.TheMA ForecastingMethod. Using theMA forecasting
method, the forecast for the lead-time demand can be given
as
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where 𝑘 is the span (number of date points) for the MA
forecasting method.

2.3.3.The ES Forecasting Method. TheES forecasting method
is an adaptive algorithm in which one-period-ahead forecast
is adjusted with a fraction of the forecasting error, and can be
written as

𝐷
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where 𝛼 (0 < 𝛼 < 1) denotes the fraction used in the method,
also called the smoothing exponent.

3. The Measure of the Bullwhip Effect under
Various Forecasting Techniques

In this section, the measure of the bullwhip effect under the
MMSE, MA, and ES forecasting methods will be derived,
respectively.

Total demand which two retailers face is
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Two retailers face the same perfectly competitive market,
and their demands present a negative correlation.We assume
that the correlation coefficient is 𝜓 (−1 ≤ 𝜓 ≤ 0), we can get
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Using (15) in (14), we can get
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3.1. The Measure of the Bullwhip Effect under the MMSE
Forecasting Method. According to Duc et al. [10], for the
MMSE forecastingmethod, the order quantity of retailer 1 can
be determined as
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Proposition 1. The variance of the total order quantity of
period 𝑡 under the MMSE forecasting method can be given as
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Proof. See the Appendix

For simplicity, (20) can be written as
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From (16) and (21), the measure of the bullwhip effect

under the MMSE forecasting method, denoted as BWEMMSE
here, can be determined as
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sistency of demand volatility between two retailers.

3.2. The Measure of the Bullwhip Effect under the MA Fore-
casting Method. According to (5)-(6) and (11), we can get the
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where 𝑘 is the span of the MA forecasting method for retailer
1. Retailer 2 has the same span 𝑘, so the order quantity of
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Proposition 2. The variance of the total order quantity at
period 𝑡 under the MA forecasting method can be given as
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Proof. See the Appendix.

For simplicity, (27) can be written as

Var (𝑞
𝑡
) = 𝐽
1
Var (𝐷

1,𝑡
) + 𝐽
2
Var (𝐷

2,𝑡
)

+ 𝐽
3
𝜓√Var (𝐷

1,𝑡
)Var (𝐷

2,𝑡
),

(28)

where 𝐽
1
is the coefficient of Var(𝐷

1
), 𝐽
2
is the coefficient of

Var(𝐷
2,𝑡
), and 𝐽

3
is the coefficient of𝜓√Var(𝐷

1,𝑡
)Var(𝐷

2,𝑡
) in

(27).
From (16) and (28), the measure of the bullwhip under

the MA forecasting method, denoted as BWEMA here, can be
determined as

BWEMA =
𝐽
1
+ 𝐽
2
𝛾2 + 𝐽

3
𝜓𝛾

1 + 𝛾2 + 2𝜓𝛾
, (29)

the same, where 𝛾 = √(Var(𝐷
2,𝑡
))/(Var(𝐷

1,𝑡
)).

3.3. The Measure of the Bullwhip Effect under the ES Fore-
casting Method. According to Zhang [12], we know that the
order quantity of retailer 1 at period 𝑡 under the ES forecasting
method is

𝑞
1,𝑡
= 𝐷
1,𝑡
+ 𝛼
1
𝐿
1
(𝐷
1,𝑡
− 𝐷
1,𝑡
) , (30)
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where 𝛼
1
is the smoothing exponent of retailer 1 and 𝐷

1,𝑡
is

the forecast of the demand at period 𝑡 for retailer 1.
The same, the order quantity of retailer 2 at period 𝑡 under

the ES forecasting method is

𝑞
2,𝑡
= 𝐷
2,𝑡
+ 𝛼
2
𝐿
2
(𝐷
2,𝑡
− 𝐷
2,𝑡
) , (31)

where 𝛼
2
is the smoothing exponent of retailer 2 and 𝐷

2,𝑡
is

the forecast of the demand at period 𝑡 for retailer 2.
Hence, total order quantity of two retailers at period 𝑡 is

𝑞
𝑡
= (1 + 𝛼

1
𝐿
1
)𝐷
1,𝑡
− 𝛼
1
𝐿
1
𝐷
1,𝑡

+ (1 + 𝛼
2
𝐿
2
) 𝐷
2,𝑡
− 𝛼
2
𝐿
2
𝐷
2,𝑡
.

(32)

Proposition 3. The variance of the total order quantity at
period 𝑡 under the ES forecasting method can be given as

Var (𝑞
𝑡
)

= ((1 + 𝛼
1
𝐿
1
)
2

+
(𝛼
1
𝐿
1
)
2

(1 + (1 − 𝛼
1
) 𝜙
1
)

𝛼
1
(2 − 𝛼

1
) (1 − (1 − 𝛼

1
) 𝜙
1
)

−
2𝛼2
1
𝐿
1
(1 + 𝛼

1
𝐿
1
) (𝜙
1
− 𝜃
1
) (1 − 𝜙

1
𝜃
1
)

(1 − 𝜙
1
(1 − 𝛼

1
)) (1 + 𝜃2

1
− 2𝜙
1
𝜃
1
)
)

× Var (𝐷
1,𝑡
)

+ ((1 + 𝛼
2
𝐿
2
)
2

+
(𝛼
2
𝐿
2
)
2

(1 + (1 − 𝛼
2
) 𝜙
2
)

𝛼
2
(2 − 𝛼

2
) (1 − (1 − 𝛼

2
) 𝜙
2
)

−
2𝛼2
2
𝐿
2
(1 + 𝛼

2
𝐿
2
) (𝜙
2
− 𝜃
2
) (1 − 𝜙

2
𝜃
2
)

(1 − 𝜙
2
(1 − 𝛼

2
)) (1 + 𝜃2

2
− 2𝜙
2
𝜃
2
)
)

× Var (𝐷
2,𝑡
)

+ (2 (1 + 𝛼
1
𝐿
1
) (1 + 𝛼

2
𝐿
2
) +

2𝛼2
2
𝜙
1
𝐿
2
(1 + 𝛼

1
𝐿
1
)

1 − 𝜙
1
(1 − 𝛼

2
)

−
2𝛼2
1
𝐿
1
(1 + 𝛼

2
𝐿
2
) 𝜙
2

1 − 𝜙
2
(1 − 𝛼

1
)

+
2𝛼
1
𝛼
2
𝐿
1
𝐿
2
𝜙
2
(1 − 𝛼

2
)

(1 − (1 − 𝛼
1
) (1 − 𝛼

2
)) (1 − 𝜙

2
(1 − 𝛼

2
))
)

× 𝜓√Var (𝐷
1,𝑡
)Var (𝐷

2,𝑡
).

(33)

Proof. See the Appendix.

For simplicity, (33) can be written as

Var (𝑞
𝑡
) = 𝑅
1
Var (𝐷

1,𝑡
) + 𝑅
2
Var (𝐷

2,𝑡
)

+ 𝑅
3
𝜓√Var (𝐷

1,𝑡
)Var (𝐷

2,𝑡
),

(34)

where 𝑅
1
is the coefficient of Var(𝐷

1
), 𝑅
2
is the coefficient of

Var(𝐷
2,𝑡
), and 𝑅

3
is the coefficient of 𝜓√Var(𝐷

1,𝑡
)Var(𝐷

2,𝑡
)

in (33).
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Figure 1: Impact of 𝜙
1
on bullwhip effect for different 𝐿

1
under the

MMSE.

From (16) and (34), the measure of the bullwhip under
the ES forecasting method, denoted as BWEES here, can be
determined as

BWEES =
𝑅
1
+ 𝑅
2
𝛾2 + 𝑅

3
𝜓𝛾

1 + 𝛾2 + 2𝜓𝛾
, (35)

the same, where 𝛾 = √(Var(𝐷
2,𝑡
))/(Var(𝐷

1,𝑡
)).

4. Analysis and Comparison for Various
Forecasting Methods

In this section, impacts of demand process, inventory policy,
forecasting methods, and other parameters on the bullwhip
effect will be analyzed and illustrated by using numerical
experiments. Results of these numerical experiments high-
light the economic and managerial application of our model
and findings.

4.1. The Effect of Parameters on the Bullwhip Effect under the
MMSE. Figures 1–3 simulate the expression of the bullwhip
effect under the MMSE forecasting method to illustrate the
impact of parameters on the bullwhip effect. Luong [9] has
indicated that the bullwhip effect occurs only when the
autoregressive coefficient is positive in the demand process
underMMSE forecastingmethod. So, we vary the autoregres-
sive coefficient of retailer 1 𝜙

1
from 0 to 1 and set 𝜃

2
= 0.5,

𝐿
2
= 3, 𝜙

1
= 0.8, 𝜙

2
= 0.8, 𝜓 = −0.5, and 𝛾 = 1 in Figure 1

to reveal the impact of 𝜙
1
on the bullwhip effect. We observe

that the bullwhip effect increases slowly with the increase of
𝜙
1
, and the bullwhip effect begins to decrease rapidly when

it reaches the maximum value. The bullwhip effect does not
occur only when 𝜙

1
increases to a certain value, and those

values are different for the different 𝐿
1
. For 𝐿

1
, when 𝜙

1
is
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Figure 3: Impact of 𝛾 on bullwhip effect for different 𝜓 under the
MMSE.

smaller than a certain value, the smaller it is the larger the
bullwhip effect is; when 𝜙

1
is larger than that certain value

and smaller than another certain value, then the larger it is
the larger the bullwhip effect is; and when 𝜙

1
is larger than

another certain value, the smaller it is the larger the bullwhip
effect is.

Figure 2 shows the impact of 𝜃
1
on the bullwhip effect

when we set 𝜃
2
= 0.5, 𝐿

2
= 3, 𝜙

1
= 0.8, 𝜙

2
= 0.8, 𝜓 = −0.5,

and 𝛾 = 1. The bullwhip effect increases slowly firstly, and
then decreases slowly with the increase of 𝜃

1
.

Figure 3 investigates how parameters 𝛾 and 𝜓 affect the
bullwhip effect when we set 𝜃

1
= 0.5, 𝜃

2
= 0.5, 𝐿

1
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Figure 4: Impact of 𝜙
1
on bullwhip effect for different 𝐿

1
under the

MA.

𝐿
2
= 3, 𝜙

1
= 0.8, and 𝜙

2
= 0.8. The bullwhip effect decreases

firstly, and it reaches the minimum value when 𝛾 = 1, then
increases with the increase of 𝛾. The phenomenon illustrates
that the bullwhip effect is smaller when the volatility of
demand between two retailers is more consistent. Specially,
the bullwhip effect attains a minimum when two retailers
have the same volatility of demand. For the correlative
coefficient of demand between two retailers, the larger it is
the larger the bullwhip effect is. This phenomenon indicates
that the intense competition between two retailers can reduce
the bullwhip effect.

4.2. The Effect of Parameters on the Bullwhip Effect under the
MA. Figures 4–7 simulate the expression of the bullwhip
effect under the MA forecasting method to illustrate the
impact of parameters on the bullwhip effect.We vary 𝜙

1
from

−1 to 1, shift 𝐿
1
, and fix values for all other parameters in

Figure 4. It shows that the bullwhip effect decreases slowly
firstly when −1 ≤ 𝜙

1
≤ 0, then increases slowly and decreases

rapidly when 0 < 𝜙
1
≤ 1. We also observe that the greater the

lead-time of retailer 1 is the greater the bullwhip effect when
𝜙
1
is less than a certain number, and the greater the lead-time

of retailer 1 is the less the bullwhip effect when 𝜙
1
is greater

than that certain number.
Figure 5 shows the impact of 𝜃

1
on the bullwhip effect

when we set 𝜃
2
= 0.5, 𝐿

2
= 3, 𝜙

1
= 0.5, 𝜙

2
= 0.5, 𝜓 = −0.5,

𝛾 = 1. The bullwhip effect increases slowly all the time with
the increase of 𝜃

1
. And, in this situation, we shift the lead-time

of retailer 1, and then the bullwhip effect becomes greaterwith
the increase of 𝐿

1
.

We shift the span for the MA forecasting method to
examine how the parameter affects the bullwhip effect in
Figure 6.We can observe that 𝑘 is an important factor to affect
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Figure 6: Impact of 𝜙
1
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the MA.

the bullwhip effect, the greater 𝑘 can lead to the less bullwhip
effect.

Figure 7 investigates how parameters 𝛾 and 𝜓 affect the
bullwhip effect when we set 𝜃

1
= 0.5, 𝜃

2
= 0.5, 𝐿

1
= 2,

𝐿
2
= 2, 𝜙

1
= 0.5, 𝜙

2
= 0.5, and 𝑘 = 3. The bullwhip

effect increases firstly, and it reaches the maximum number
when 𝛾 = 1, then decreases with the increase of 𝛾. The
phenomenon illustrates that the bullwhip effect is stronger
when the volatility of demand between two retailers is more
consistent. Specially, the bullwhip effect attains a maximum
when two retailers have the same volatility of demand. For the
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MA.
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under

the ES.

correlative coefficient of demand between two retailers, the
larger it is the stronger the bullwhip effect is. The conclusion
is different from the conclusion under the MMSE forecasting
method. In proportion, this phenomenon indicates that the
intense competition between two retailers can increase the
bullwhip effect.

4.3. The Effect of Parameters on the Bullwhip Effect under
the ES. Figures 8–11 simulate the expression of the bullwhip
effect under ES forecasting method to illustrate the impact
of parameters on the bullwhip effect. For the ES forecasting
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ES.

method, we add the analysis for smoothing exponents. In
Figure 8, we set 𝜃

1
= 𝜃
2
= 0.5, 𝐿

2
= 3, 𝜙

2
= 0.5, 𝜓 = −0.5,

𝛾 = 1,𝛼
1
= 𝛼
2
= 0.1, and vary𝜙

1
from−1 to 1 for different 𝐿

1
.

The bullwhip effect increases firstly to the maximum value,
and then decreases with the increase of 𝜙

1
. We observe that

the greater 𝐿
1
is, the less the bullwhip effect whenwe fix other

parameters, this result is different from cases underMMSE or
MA forecasting method.

Figure 9 shows the impact of 𝜃
1
on the bullwhip effect

when we set 𝜃
2
= 0.5, 𝐿

2
= 3, 𝜙

1
= 𝜙
2
= 0.5, 𝜓 = −0.5,

𝛾 = 1, and 𝛼
1
= 𝛼
2
= 0.1. The bullwhip effect increases slowly

all the time with the increase of 𝜃
1
. And in this situation, we

shift the lead-time of retailer 1, and then the bullwhip effect
becomes great with the increase of 𝐿

1
. This result is the same

as the situation under the MA forecasting method.
We shift the smoothing exponent of retailer 1 to indicate

its impact on the bullwhip effect in Figure 10, and we observe
the bullwhip effect as it grows to be greater with the increase
of 𝛼
1
.
Figure 11 investigates how parameters 𝛾 and 𝜓 affect the

bullwhip affect under the ES forecasting method when we set
𝜃
1
= 𝜃
2
= 0.5, 𝐿

1
= 𝐿
2
= 3, 𝜙

1
= 𝜙
2
= 0.5, 𝛼

1
= 𝛼
2
= 0.1. The

bullwhip effect increases firstly, and it reaches the maximum
number when 𝛾 = 1, then decreases with the increase of
𝛾. The phenomenon illustrates that the bullwhip effect is
stronger when the volatility of demand between two retailers
is more consistent. Specially, the bullwhip effect attains a
maximum when two retailers have the same volatility of
demand. For the correlative coefficient of demand between
two retailers, the larger it is, the stronger the bullwhip effect
is. The conclusion is the same as the conclusion under the
MMSE forecasting method.

4.4. The Comparison of Three Forecasting Methods. To com-
pare bullwhip effects under three forecasting methods, we
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Figure 11: Impact of 𝛾 on bullwhip effect for different 𝜓 under the
ES.

have to select appropriate 𝑘, 𝛼
1
, and 𝛼

2
. According to Zhang

[12], the MA and ES forecasting methods have the same
average date age ((𝑘 + 1)/2), when we set 𝛼

1
= 𝛼
2
= 2/(𝑘 + 1)

Figures 12–17 depict the comparison of the bullwhip effect
among the MMSE, MA, and ES forecasting methods with
different date ages, respectively. Then those figures illustrate
which one is the best forecasting method for decreasing the
bullwhip effect in different conditions.

FromFigures 12–14, we observe that BWEES will always be
higher than BWEMA whatever𝜓 is as long as 𝛼

1
= 𝛼
2
= 2/(𝑘+

1). BWEMA and BWEES get lower gradually with the increase
of 𝑘 or with the decrease of 𝛼

1
and 𝛼

2
. We set 𝑘 = 4, and
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Figure 13: Comparison of three forecasting methods by varying 𝜓
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𝛼
1
= 𝛼
2
= 0.4 and fix other parameters in Figure 12, and

BWEMMSE is lower than BWEMA and BWEES whatever 𝜓
is. It means that the MMSE forecasting method is the best
to forecast lead-time demand in this situation. In Figure 13,
let 𝑘 = 9, 𝛼

1
= 𝛼
2
= 0.2, BWEMMSE is lower than

BWEMA when 𝜓 is smaller than a certain value, BWEMMSE
is higher than BWEMA when 𝜓 is larger than that certain
value, and BWEMMSE is lower than BWEES whatever𝜓 is.The
conclusion means that the MMES method is the best when
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Figure 14: Comparison of three forecasting methods by varying 𝜓
(𝑘 = 19).

the market has fierce competition, and the MAmethod is the
best when the market competition is not hot. In Figure 14,
let 𝑘 = 19, 𝛼

1
= 𝛼
2
= 0.1, BWEMMSE is lower than

BWEMA when 𝜓 is smaller than a certain value, BWEMMSE is
higher than BWEMA when 𝜓 is larger than that certain value.
And BWEMMSE is higher than BWEES when 𝜓 is larger than
another certain value. It reveals that the MMES method is
the best when the market has fierce competition, and theMA
method is the best when themarket competition is not so hot,
and theMMSEmethod is the worst when themarket has little
competition.

From Figures 15–17, we observe that BWEMA is always
higher than BWEES whatever 𝛾 is as long as 𝛼1 = 𝛼2 = 2/(𝑘 +
1). BWEMA and BWEES get lower gradually with the increase
of 𝑘 or with the decrease of 𝛼

1
and 𝛼

2
. We set 𝑘 = 4, 𝛼

1
=

𝛼
2
= 0.4 and fix other parameters in Figure 15, and BWEMMSE

is lower than BWEMA and BWEES whatever 𝛾 is. It means that
the MMSE forecasting method is the best to forecast lead-
time demand whatever the consistency of demand volatility
between two retailers is.

In Figure 16, let 𝑘 = 9, 𝛼
1
= 𝛼
2
= 0.2, BWEMMSE is

lower than BWEMA when 𝛾 is smaller than a certain value,
BWEMMSE is higher than BWEMA when 𝛾 is larger than that
certain value, and BWEMMSE is lower than BWEES whatever
𝛾 is. The conclusion means that the MMES method is the
best when the volatility of demand between two retailers
is more consistent, and the MA, method is the best when
the consistency of demand volatility between two retailers is
weaker. In Figure 17, let 𝑘 = 19, 𝛼

1
= 𝛼
2
= 0.1, BWEMMSE

is lower than BWEES when 𝛾 is smaller than a certain value,
BWEMMSE is higher than BWEES when 𝛾 is larger than that
certain value, and BWEMMSE is higher than BWEMA whatever
𝛾 is. This phenomenon reveals that the MA method is the
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Figure 15: Comparison of three forecasting methods by varying 𝛾
(𝑘 = 4).
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Figure 16: Comparison of three forecasting methods by varying 𝛾
(𝑘 = 9).

best whatever the consistency of demand volatility between
two retailers is, and the MMSE method is the worst when
the consistency of demand volatility between two retailers is
weaker.

5. Conclusions

In this research, a new supply chain model containing
two retailers which both followed the ARMA(1, 1) demand
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Figure 17: Comparison of three forecasting methods by varying 𝛾
(𝑘 = 19).

process and employed the order-up-to stock policy was
established. The bullwhip effect was measured under the
MMSE, MA, and ES forecasting methods respectively. For
three bullwhip effect expressions, we investigated the effect
of lead-times, autoregressive coefficients, moving average
parameters, and the correlation coefficients between two
retailers on the bullwhip effect.

Besides those important sources which are pointed out
by Lee et al. [4, 5], market competition and the consistency of
demand volatility between two retailers are also two impor-
tant factors leading to the bullwhip effect. The results show
that the forecasting methods play an important role in deter-
mining the impact of those factors on the bullwhip effect.
If the MMSE or MA forecasting method is used, shortening
lead-time does not always reduce the bullwhip effect when
the demand autocorrelation is varying. But, shortening lead-
timehas themost significant impact on reducing the bullwhip
effect when the ESmethod is used to forecast demand. Under
the MA or ES method, average date age has the significant
impact on the bullwhip effect, the greater it is the weaker
the bullwhip is. Market competition is proportional to the
bullwhip effect when the MA or ES method is used, and it is
inversely proportional to the bullwhip effect when theMMSE
method is used.The consistency of demand volatility between
two retailers is inversely proportional to the bullwhip effect
when the MA or ES method is used, and it is proportional to
the bullwhip effect when the MMSE method is used.

From a managerial perspective, the findings suggest that
managers cannot reduce the bullwhip effect by shortening the
lead-time blindly. So, managers should learn more knowl-
edge of the basic demand models and different forecasting
methods. The MMSE method is always the best among three
methods if only the MA and ES method have the shorter
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average date age. The MA method is always better than
the ES method whatever the average date age is. But, the
bullwhip effect under theMAandESmethodswill be receded
with the increase of average date age. Also, we know that
the MA or ES method may perform better than the MMSE
method because they are more flexible and adapt better to
the changing structures of the demand when the demand
structure is not well specified or shifts over time. Then, the
MA or ES method may be better than the MMSE method.

Quantifying the bullwhip effect and investigating its
behavior are helpful in the allocation of efforts for mitigating
the influence of the bullwhip effect in supply chains. This
paper can be continuous in several directions that are likely
to enhance our understanding of how demand signals are
transmitted along the supply chain system. First, more
general inventory policies can be studied. The simple order-
up-to inventory policy can be misleading when an obvious
fixed ordering cost exists. So, the study on the bullwhip
effect for the general (𝑠, 𝑆) policy would have more practical
significance. Second, more factors can be used for evaluating
three forecastingmethods. In this paper, the bullwhip effect as
the only factor is the standard to estimate various forecasting
methods. Managers may pay more attention to the inventory
cost in practice, so researches on the impact of parameters for
the inventory cost should be interesting.
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After iteration computation, we have
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According to Duc et al. [10], we have
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so, we also have
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Proof of Proposition 1. Total order quantity of period 𝑡 under
the MMSE forecasting method is
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Taking the variance for (A.12), we get
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Bring (A.1)–(A.12) into (A.14) and take the simplification,
then we can get
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This completes the Proof for Proposition 1.

Proof of Proposition 2. Total order quantity of period 𝑡 under
the MA forecasting method is
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Taking the variance for (A.16), we get
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Bring (A.1)-(A.2) and (A.5)–(A.9) into (A.17), then take
the simplification, and we can get
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This completes the Proof for Proposition 2.

Proof of Proposition 3. Total order quantity of period 𝑡 under
the MA forecasting method is
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Taking the variance for (A.19), we get
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) + (𝛼
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𝐿
1
)
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1,𝑡
)

+ (1 + 𝛼
2
𝐿
2
)
2 Var (𝐷

2,𝑡
) + (𝛼

2
𝐿
2
)
2 Var (𝐷

2,𝑡
)

− 2𝛼
1
𝐿
1
(1 + 𝛼

1
𝐿
1
)Cov (𝐷

1,𝑡
, 𝐷
1,𝑡
) + 2 (1 + 𝛼

1
𝐿
1
)

× (1 + 𝛼
2
𝐿
2
)Cov (𝐷

1,𝑡
, 𝐷
2,𝑡
) − 2𝛼

2
𝐿
2
(1 + 𝛼

1
𝐿
1
)

× Cov(𝐷
1,𝑡
, 𝐷
2,𝑡
)

− 2𝛼
1
𝐿
1
(1 + 𝛼

2
𝐿
2
)Cov (𝐷

1,𝑡
, 𝐷
2,𝑡
)

+ 2𝛼
1
𝐿
1
𝛼
2
𝐿
2
Cov (𝐷

1,𝑡
, 𝐷
2,𝑡
) − 2𝛼

2
𝐿
2
(1 + 𝛼

2
𝐿
2
)

× Cov (𝐷
2,𝑡
, 𝐷
2,𝑡
) .

(A.20)

From Zhang [12], we have

𝐷
1,𝑡
=

∞

∑
𝑖=0

𝛼
1
(1 − 𝛼

1
)
𝑖

𝐷
1,𝑡−𝑖−1

, (A.21)

Var (𝐷
1,𝑡
) =

1 + (1 − 𝛼
1
) 𝜙
1

𝛼
1
(2 − 𝛼

1
) (1 − (1 − 𝛼

1
) 𝜙
1
)
Var (𝐷

1,𝑡
) ,

(A.22)

Var (𝐷
2,𝑡
) =

1 + (1 − 𝛼
2
) 𝜙
2

𝛼
2
(2 − 𝛼

2
) (1 − (1 − 𝛼

2
) 𝜙
2
)
Var (𝐷

2,𝑡
) .

(A.23)

According to (A.21), we can get

Cov (𝐷
1,𝑡
, 𝐷
1,𝑡
)

= Cov(𝐷
1,𝑡
,

∞

∑
𝑖=0

𝛼
1
(1 − 𝛼

1
)
𝑖

𝐷
1,𝑡−𝑖−1

)

= 𝛼
1

∞

∑
𝑖=0

(1 − 𝛼
1
)
𝑖Cov (𝐷

1,𝑡
, 𝐷
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) ,

(A.24)

and according to (A.5), (A.24) equals to

Cov (𝐷
1,𝑡
, 𝐷
1,𝑡
)

= 𝛼
1

∞

∑
𝑖=0
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1
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𝑖
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1
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)Var (𝐷
1,𝑡
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𝛼
1
(𝜙
1
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1
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1
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𝜃
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Var (𝐷

1,𝑡
) .

(A.25)

The same, we also have

Cov (𝐷
2,𝑡
, 𝐷
2,𝑡
)

=
𝛼
2
(𝜙
2
− 𝜃
2
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2
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2
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(A.26)

According to (A.21), we can get

Cov (𝐷
1,𝑡
, 𝐷
2,𝑡
)

= Cov(𝐷
1,𝑡
,

∞

∑
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) ,

(A.27)

and according to (A.9), (A.27) equals to

Cov (𝐷
1,𝑡
, 𝐷
2,𝑡
)

= 𝛼
2

∞

∑
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(A.28)

The same, we also have

Cov (𝐷
2,𝑡
, 𝐷
1,𝑡
) =

𝛼
1
𝜙
2
𝜓
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1
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(A.29)

From (A.21), we also get

𝐷
1,𝑡
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∞

∑
𝑖=0

𝛼
1
(1 − 𝛼

1
)
𝑖

𝐷
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. (A.30)

So, we can get
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= 𝛼
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(A.31)

Bing (A.1)-(A.2), (A.22)-(A.23), (A.28)-(A.29), and (A.31)
into (A.20), then take the simplification, and we can get
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(A.32)

This completes the Proof for Proposition 3.
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