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This paper deals with the stability problem for a class of impulsive neural networks. Some sufficient conditions which can guarantee
the globally exponential stability of the addressed models with given convergence rate are derived by using Lyapunov function and
impulsive analysis techniques. Finally, an example is given to show the effectiveness of the obtained results.

1. Introduction

Recently, special interest has been devoted to the dynamics
analysis of neural networks due to their potential applications
in different areas of science. Particularly, there has been a
significant development in the theory of neural networks
with impulsive effects [1–9], since such neural networks with
impulsive effect can be used as an appropriate description
of the phenomena of abrupt qualitative dynamical changes
of essential continuous time systems. Based on the theory of
impulsive differential equations [10–17], some sufficient con-
ditions guaranteeing the exponential stability are derived [18–
24]. For example, in [8], the author has obtained a criterion
of exponential stability for a Hopfield neural network with
periodic coefficients; in [18], by constructing the extended
impulsive delayed Halanay inequality and Lyapunov func-
tional methods, authors have got some sufficient conditions
ensuring exponential stability of the unique equilibrium
point of impulsiveHopfield neural networkswith time delays.
They all have obtained exponential stability for some kinds
of neural networks through different methods. However,
most of the existing results about the exponential stability of
impulsive neural networks have a common feature that the
exponential convergence rate cannot be derived, or derived
but not the given one [8, 18, 23, 24].The purpose of this paper
is to establish some criteria which can guarantee the globally
exponential stability of impulsive neural networks with the
given convergence rate by using Lyapunov function and

impulsive analysis techniques. This work is organized as
follows. In Section 2, we introduce some basic definitions and
notations. In Section 3, the main results are presented. In
Section 4, an example is discussed to illustrate the results.

2. Preliminaries

Let R denote the set of real numbers, R
+
denote the set of

nonnegative real numbers,Z
+
denote the set of positive inte-

gers and R𝑛 denote the 𝑛-dimensional real space equipped
with the Euclidean norm ‖ ⋅ ‖.

Consider the following impulsive neural networks:

�̇�
𝑖
(𝑡) = −𝑎

𝑖
(𝑡) 𝑥
𝑖
(𝑡)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡)) + 𝐼

𝑖
(𝑡) , 𝑡 ≥ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥
𝑖
|
𝑡=𝑡𝑘

= 𝑥
𝑖
(𝑡
𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
) , 𝑘 ∈ Z

+
, 𝑖 ∈ Λ,

(1)

where Λ = {1, 2, . . . , 𝑛}. 𝑛 ≥ 2 corresponds to the number of
units in a neural network; the impulse times 𝑡

𝑘
satisfy 0 ≤ 𝑡

0
<

𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ , lim

𝑘→∞
𝑡
𝑘
= ∞; 𝑥

𝑖
corresponds to the

state of the neurons,𝑓
𝑗
denotes themeasures of response to its

incoming potentials of the unit 𝑗 at time 𝑡; 𝐼
𝑖
(𝑡) is the input of

the unit 𝑖 at time 𝑡. 𝑃𝐶[𝐼,R] ≜ {𝜑 : 𝐼 → R | 𝜑(𝑡
+
) = 𝜑(𝑡) for

𝑡 ∈ 𝐼, 𝜑(𝑡−) exists for 𝑡 ∈ 𝐼, 𝜑(𝑡−) = 𝜑(𝑡) for all but points 𝑡
𝑘
∈

𝐼}, where 𝐼 ⊂ R is an interval, 𝜑(𝑡+) and 𝜑(𝑡−) denote the left
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limit and right limit of function 𝜑(𝑡), respectively. 𝑎
𝑖
(𝑡) > 0,

𝑏
𝑖𝑗
(𝑡), 𝐼
𝑖
(𝑡) ∈ 𝑃𝐶[[𝑡

0
, +∞),R]. For given 𝑡

0
, 𝑥(𝑡
0
) = 𝑥
0
= (𝑥
0

1
,

𝑥
0

2
, . . . , 𝑥

0

𝑛
) ∈ R𝑛, we denote by 𝑥(𝑡) the solution of system (1)

with initial value (𝑡
0
, 𝑥(𝑡
0
)).

In this paper, we assume that some conditions are satisfied
so that the equilibrium point of system (1) does exist, see
[16, 17]. Assume that 𝑥⋆ = (𝑥⋆

1
, 𝑥
⋆

2
, . . . , 𝑥

⋆

𝑛
)
𝑇 is an equilibrium

point of system (1). Impulsive operator is viewed as perturba-
tion of the point 𝑥⋆ of such system without impulsive effects.
We assume that the following impulsive condition holds.

(H
0
) Δ𝑥
𝑖
|
𝑡=𝑡𝑘

= 𝑥
𝑖
(𝑡
𝑘
)−𝑥
𝑖
(𝑡
−

𝑘
) = 𝜎
𝑖𝑘
(𝑥
𝑖
(𝑡
−

𝑘
)−𝑥
⋆

𝑖
), 𝜎
𝑖𝑘
∈

R, 𝑖 ∈ Λ, 𝑘 ∈ Z
+
.

Furthermore, we will assume that the response function
𝑓
𝑖
satisfies the following condition.

(H
1
)𝑓
𝑖
is globally Lipschizian with Lipschitz constant

𝑙
𝑖
> 0, that is, |𝑓

𝑖
(𝑠
1
)−𝑓
𝑖
(𝑠
2
)| ≤ 𝑙
𝑖
|𝑠
1
−𝑠
2
|, for all 𝑠

1
, 𝑠
2
∈

R, 𝑖 ∈ Λ.
Note that 𝑥⋆ is an equilibriumpoint of system (1), one can

derive from system (1) that the transformation 𝑧
𝑖
= 𝑥
𝑖
− 𝑥
⋆

𝑖
,

𝑖 ∈ Λ transforms such system into the following system:
�̇�
𝑖
(𝑡) = −𝑎i (𝑡) 𝑧𝑖 (𝑡)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝐹
𝑗
(𝑧
𝑗
(𝑡)) , 𝑡 ≥ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘
,

𝑧
𝑖
(𝑡
𝑘
) = (1 + 𝜎

𝑖𝑘
) 𝑧
𝑖
(𝑡
−

𝑘
) , 𝑖 ∈ Λ, 𝑘 ∈ Z

+
,

(2)

where 𝐹
𝑗
(𝑧
𝑗
(𝑡)) = 𝑓

𝑗
(𝑥
⋆

𝑗
+𝑧
𝑗
(𝑡))−𝑓

𝑗
(𝑥
⋆

𝑗
), and from the condi-

tion (H
1
), it holds that ‖𝐹

𝑗
(𝑧
𝑗
(𝑡))‖ ≤ 𝑙

𝑗
‖𝑧
𝑗
(𝑡)‖, 𝑗 ∈ Λ.

Furthermore, let 𝑦
𝑖
(𝑡) = 𝑧

𝑖
(𝑡)𝑒
𝛼(𝑡−𝑡0), 𝑖 ∈ Λ, then system

(2) becomes as follows:
̇𝑦
𝑖
(𝑡) = (𝛼 − 𝑎

𝑖
(𝑡)) 𝑦
𝑖
(𝑡)

+𝑒
𝛼(𝑡−𝑡0)

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝐹
𝑗
(𝑦
𝑗
(𝑡) 𝑒
−𝛼(𝑡−𝑡0)

) , 𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

𝑦
𝑖
(𝑡
𝑘
) = (1 + 𝜎

𝑖𝑘
) 𝑦
𝑖
(𝑡
−

𝑘
) , 𝑖 ∈ Λ, 𝑘 ∈ Z

+
.

(3)

To prove the stability of 𝑥⋆ of system (1), it is equal to
prove the stability of the zero solution of system (2), and also
equal to the boundedness of system (3).

In the following, the notion 𝐴𝑇 means the transpose of a
square matrix 𝐴. We will use the notation 𝐴 > 0 (or 𝐴 < 0,
𝐴 ≥ 0, 𝐴 ≤ 0) to denote that the matrix 𝐴 is a positive
definite (negtive definite, positive semidefinite, an negative
semidefinite) marix.

Let 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇, 𝐴(𝑡) = diag[𝑎

1
(𝑡),

𝑎
2
(𝑡), . . . , 𝑎

𝑛
(𝑡)], 𝐵(𝑡) = (𝑏

𝑖𝑗
(𝑡))
𝑛×𝑛

, 𝐿 = diag[𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛
],

𝐼 = diag[1, 1, . . . , 1], 𝐷
𝑘
= diag[1 + 𝜎

1𝑘
, 1 + 𝜎

2𝑘
, . . . , 1 + 𝜎

𝑛𝑘
],

𝐹(𝑦) = (𝐹
1
(𝑦
1
), 𝐹
2
(𝑦
2
), . . . , and𝐹

𝑛
(𝑦
𝑛
))
𝑇 then system (3) with

initial condition becomes as follows:
̇𝑦 (𝑡) = (𝛼𝐼 − 𝐴 (𝑡)) 𝑦 (𝑡)

+ 𝑒
−𝛼(𝑡−𝑡0)

𝐵 (𝑡) 𝐹 (𝑦 (𝑡) 𝑒
−𝛼(𝑡−𝑡0)

) , 𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

𝑦 (𝑡
𝑘
) = 𝐷

𝑘
𝑦 (𝑡
−

𝑘
) , 𝑖 ∈ Λ, 𝑘 ∈ Z

+
.

(4)

We introduce a definition as follows.

Definition 1. Assume 𝑥⋆ = (𝑥⋆
1
, 𝑥
⋆

2
, . . . , 𝑥

⋆

𝑛
)
𝑇

∈ R𝑛 is the equi-
librium point of system (1), then the equilibrium point 𝑥⋆ of
system (1) is said to be globally exponential stable with given
convergence rate 𝛼 > 0. If for any initial data 𝑥(𝑡

0
) = 𝑥
0
∈ R,

there exists a constant𝑀 ⩾ 1, such that




𝑥 (𝑡, 𝑡
0
, 𝑥
0
) − 𝑥
⋆


⩽




𝑥
0
− 𝑥
⋆


𝑀𝑒
−𝛼(𝑡−𝑡0)

, 𝑡 ⩾ 𝑡
0
.

(5)

From the transformation 𝑧
𝑖
= 𝑥
𝑖
− 𝑥
⋆

𝑖
, 𝑖 ∈ Λ, and 𝑧(𝑡

0
) =

𝑧
0
= 𝑥
0
− 𝑥
⋆, the globally exponential stability of the equi-

librium point 𝑥⋆ of system (1) can be transformed into the
globally exponential stability of trivial solution of system (2),
so (5) can be rewritten as follows:





𝑧 (𝑡, 𝑡
0
, 𝑧
0
)




≤




𝑧 (𝑡
0
)




𝑀𝑒
−𝛼(𝑡−𝑡0)

, 𝑡 ⩾ 𝑡
0
. (6)

Furthermore, form the transformation 𝑦(𝑡) = 𝑧(𝑡, 𝑡
0
,

𝑧
0
)𝑒
𝛼(𝑡−𝑡0), 𝑖 ∈ Λ, the globally exponential stability of trivial

solution of system (2) can be transformed into the bounded-
ness of the solution of system (4) and it can be rewritten as
follows:





𝑦 (𝑡)





≤




𝑦 (𝑡
0
)




𝑀, 𝑡 ⩾ 𝑡

0
. (7)

3. Main Results

Theorem 2. Given constant 𝛼 > 0. The equilibrium point of
the system (1) is globally exponentially stable with the given
convergence rate 𝛼, if the conditions (H

0
) and (H

1
) are fulfilled;

moreover, suppose that

(i) 𝛼𝐼 − 𝐴(𝑡) + 𝐵(𝑡)𝐿 ≤ 0, for all 𝑡 > 𝑡
0
,

(ii) ∏∞
𝑘=1

max
𝑖∈Λ
(1+𝜎
𝑖𝑘
) < ∞, and 𝜎

𝑖𝑘
≥ 0, 𝑖 ∈ Λ, 𝑘 ∈ Z

+
.

Proof. We only need to prove 𝑦(𝑡) = 𝑧(𝑡)𝑒
𝛼(𝑡−𝑡0) is bounded

when 𝑡 ≥ 𝑡
0
, where 𝑧(𝑡) = 𝑧(𝑡, 𝑡

0
, 𝑧
0
) is a solution of (3)

through (𝑡
0
, 𝑧
0
).

Consider the Lyapunov function as follows:

𝑉 (𝑡) = 𝑦(𝑡)
𝑇

𝑦 (𝑡) =

𝑛

∑

𝑖=1

𝑦
2

𝑖
(𝑡) . (8)

Particularly, 𝑉(𝑡
0
) = ∑

𝑛

𝑖=1
𝑦
2

𝑖
(𝑡
0
).

Then from conditions (H
0
)-(H
1
) and (i), we get the upper

right-hand derivative of 𝑉(𝑡) along the solutions of system
(3), for 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

), 𝑘 ∈ Z
+

𝐷
+

𝑉 (𝑡) = 2

𝑛

∑

𝑖=1

𝑦
𝑖
(𝑡) ̇𝑦
𝑖
(𝑡)

= 2

𝑛

∑

𝑖=1

𝑧
𝑖
(𝑡) 𝑒
2𝛼(𝑡−𝑡0)

[�̇�
𝑖
(𝑡) + 𝛼𝑧

𝑖
(𝑡)]

= 2

𝑛

∑

𝑖=1

𝑧
𝑖
(𝑡) 𝑒
2𝛼(𝑡−𝑡0)

×
[

[

−𝑎
𝑖
(𝑡) 𝑧
𝑖
(𝑡)+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝐹
𝑗
(𝑧
𝑗
(𝑡))+𝛼𝑧

𝑖
(𝑡)
]

]
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𝑛

∑

𝑖=1

𝑒
2𝛼(𝑡−𝑡0)

×
[

[

(𝛼 − 𝑎
𝑖
(𝑡)) 𝑧
2

𝑖
(𝑡)+𝑧
𝑖
(𝑡)

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝐹
𝑗
(𝑧
𝑗
(𝑡))

]

]

≤ 2

𝑛

∑

𝑖=1

𝑒
2𝛼(𝑡−𝑡0)

×
[

[

(𝛼 − 𝑎
𝑖
(𝑡)) 𝑧
𝑖
(𝑡)
2

+𝑧
𝑖
(𝑡)

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑙
𝑗






𝑧
𝑗
(𝑡)







]

]

= 2

𝑛

∑

𝑖=1

𝑒
2𝛼(𝑡−𝑡0)

𝑧
2

𝑖
(𝑡) (𝛼 − 𝑎

𝑖
(𝑡))

+ 2

𝑛

∑

𝑖=1

𝑒
2𝛼(𝑡−𝑡0)

𝑧
𝑖
(𝑡)

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑙
𝑗






𝑧
𝑗
(𝑡)







= 2𝑦(𝑡)
𝑇

[𝛼𝐼 − 𝐴 (𝑡) + 𝐵 (𝑡) 𝐿] 𝑦 (𝑡)

≤ 0,

(9)

which implies the functional 𝑉(𝑡) is nonincreasing for 𝑡 ∈

[𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 ∈ Z
+
. By condition (ii), it holds that

𝑉 (𝑡
𝑘
) =

𝑛

∑

𝑖=1

𝑦
2

𝑖
(𝑡
𝑘
) =

𝑛

∑

𝑖=1

𝑧
2

𝑖
(𝑡
𝑘
) 𝑒
2𝛼(𝑡𝑘−𝑡0)

=

𝑛

∑

𝑖=1

𝑒
2𝛼(𝑡−𝑡0)

[𝑧
𝑖
(𝑡
−

𝑘
) + 𝐽
𝑖
(𝑧
𝑖
(𝑡
−

𝑘
))]

2

=

𝑛

∑

𝑖=1

𝑒
2𝛼(𝑡−𝑡0)

(1 + 𝜎
𝑖𝑘
)
2

𝑧
2

𝑖
(𝑡
−

𝑘
)

≤ max
𝑖∈Λ

(1 + 𝜎
𝑖𝑘
)
2

𝑉 (𝑡
−

𝑘
) .

(10)

For any 𝑡 ∈ [𝑡
0
, 𝑡
1
), since 𝑉(𝑡) is nonincreasing, it holds that

𝑉(𝑡) ≤ 𝑉(𝑡
0
); moreover,

𝑉 (𝑡
1
) ≤ max
𝑖∈Λ

(1 + 𝜎
𝑖1
)
2

𝑉 (𝑡
−

1
) ≤ max
𝑖∈Λ

(1 + 𝜎
𝑖1
)
2

𝑉 (𝑡
0
) .

(11)

Similarly, for any 𝑡 ∈ [𝑡
1
, 𝑡
2
), it holds that 𝑉(𝑡) ≤ 𝑉(𝑡

1
) ≤

max
𝑖∈Λ
(1 + 𝜎

𝑖1
)
2

𝑉(𝑡
0
), and

𝑉 (𝑡
2
) ≤ max
𝑖∈Λ

(1 + 𝜎
𝑖2
)
2

𝑉 (𝑡
−

2
)

≤ max
𝑖∈Λ

(1 + 𝜎
𝑖2
)
2max
𝑖∈Λ

(1 + 𝜎
𝑖1
)
2

𝑉 (𝑡
0
) .

(12)

Thus, it can be deduced that for 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 ∈ Z
+
,

𝑉 (𝑡) ≤

𝑘

∏

𝑗=1

max
𝑖∈Λ

(1 + 𝜎
𝑖𝑗
)

2

𝑉 (𝑡
0
) . (13)

Hence, we obtain that for any 𝑡 ≥ 𝑡
0
,

𝑉 (𝑡) ≤

∞

∏

𝑗=1

max
𝑖∈Λ

(1 + 𝜎
𝑖𝑗
)

2

𝑉 (𝑡
0
) , (14)

which implies that




𝑦 (𝑡)





≤ 𝑀





𝑦 (𝑡
0
)




, 𝑡 ≥ 𝑡

0
, (15)

where𝑀 = ∏
∞

𝑘=1
max
𝑖∈Λ
(1 + 𝜎

𝑖𝑘
) < ∞.

The proof of Theorem 2 is complete.

Remark 3. Most of the existing results about the expo-
nential stability of impulsive neural networks cannot effec-
tively control the convergence rate. It is interesting to see
thatTheorem 2 can guarantee the globally exponential stabil-
ity of impulsive neural networks with the given convergence
rate.

Remark 4. In particular, if 𝐴(𝑡) ≡ 𝐴, 𝐵(𝑡) ≡ 𝐵 in Theorem 2,
where𝐴,𝐵 are constantmatrices, then condition𝛼𝐼−𝐴+𝐵𝐿 <
0 can be easily checked via Matlab.

Theorem 5. Given constant 𝛼 > 0. The equilibrium point of
the system (1) is globally exponentially stable with the given
convergence rate 𝛼, if the conditions (H

0
)-(H
1
) are fulfilled;

moreover, suppose that

(i) there exists a constant 𝜆 > 0, such that (𝛼+𝜆)𝐼−𝐴(𝑡)+
𝐵(𝑡)𝐿 < 0, for all 𝑡 > 𝑡

0
,

(ii) 𝜏 ≜ min
𝑘∈Z+

{𝑡
𝑘+1

− 𝑡
𝑘
}, max

𝑖∈Λ
(1 + 𝜎

𝑖𝑘
) ≤ 𝑀

𝑘
𝑒
𝜆𝜏,

where 1 ≤ 𝑀
𝑘
< ∞ and∏∞

𝑘=1
𝑀
𝑘
< ∞, 𝑖 ∈ Λ, 𝑘 ∈ Z

+
.

Proof. Weonly need to prove that𝑦(𝑡) = 𝑧(𝑡)𝑒𝛼(𝑡−𝑡0) is bound-
ed when 𝑡 ≥ 𝑡

0
, where 𝑧(𝑡) = 𝑧(𝑡, 𝑡

0
, 𝑧
0
) is a solution of (3)

through (𝑡
0
, 𝑧
0
).

Consider the Lyapunov function as follows:

𝑉 (𝑡) = 𝑦(𝑡)
𝑇

𝑦 (𝑡) =

𝑛

∑

𝑖=1

𝑦
2

𝑖
(𝑡) . (16)

In particular, 𝑉(𝑡
0
) = ∑
𝑛

𝑖=1
𝑦
2

𝑖
(𝑡
0
).

Then from conditions (H
0
)-(H
1
) and (i), we get the upper

right-hand derivative of 𝑉(𝑡) along the solutions of system
(3), for 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

), 𝑘 ∈ Z
+

𝐷
+

𝑉 (𝑡) = 2

𝑛

∑

𝑖=1

𝑦
𝑖
(𝑡) ̇𝑦
𝑖
(𝑡)

≤ 2𝑦(𝑡)
𝑇

(𝛼𝐼 − 𝐴 (𝑡) + 𝐵 (𝑡) 𝐿) 𝑦 (𝑡) < −2𝜆𝑉 (𝑡) .

(17)

Thus,

𝑉 (𝑡) <𝑉 (𝑡
𝑘
) 𝑒
−2𝜆(𝑡−𝑡𝑘)

<𝑉 (𝑡
𝑘
) 𝑒
−2𝜆𝜏

, 𝑡 ∈[𝑡
𝑘
, 𝑡
𝑘+1

) ,

𝑘 ∈ Z
+
.

(18)
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By condition (ii), it holds that

𝑉 (𝑡
𝑘
) =

𝑛

∑

𝑖=1

𝑦
2

𝑖
(𝑡
𝑘
) =

𝑛

∑

𝑖=1

𝑒
2𝛼(𝑡−𝑡0)

(1 + 𝜎
𝑖𝑘
)
2

𝑧
2

𝑖
(𝑡
−

𝑘
)

≤ 𝑀
2

𝑘
𝑒
2𝜆𝜏

𝑛

∑

𝑖=1

𝑒
2𝛼(𝑡−𝑡0)

𝑧
2

𝑖
(𝑡
−

𝑘
)

≤ 𝑀
2

𝑘
𝑒
2𝜆𝜏

𝑉 (𝑡
−

𝑘
) .

(19)

For any 𝑡 ∈ [𝑡
0
, 𝑡
1
), it holds that 𝑉(𝑡) ≤ 𝑉(𝑡

0
)𝑒
−2𝜆𝜏, moreover

𝑉 (𝑡
1
) ≤ 𝑀

2

1
𝑒
2𝜆𝜏

𝑉 (𝑡
−

1
) ≤ 𝑀

2

1
𝑉 (𝑡
0
) . (20)

Similarly, for any 𝑡 ∈ [𝑡
1
, 𝑡
2
), it holds that𝑉(𝑡) ≤ 𝑉(𝑡

1
)𝑒
−2𝜆𝜏

≤

𝑀
2

1
𝑉(𝑡
0
)𝑒
−2𝜆𝜏, and

𝑉 (𝑡
2
) ≤ 𝑀

2
𝑒
2𝜆𝜏

𝑉 (𝑡
−

2
) ≤ 𝑀

2

2
𝑀
2

1
𝑉 (𝑡
0
) . (21)

Without loss of generality, when 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 ∈ Z
+
, it can

be deduced that

𝑉 (𝑡) ≤

𝑘

∏

𝑗=1

𝑀
2

𝑗
𝑒
−2𝜆𝜏

𝑉 (𝑡
0
) . (22)

Hence, we obtain that for any 𝑡 ≥ 𝑡
0
,

𝑉 (𝑡) ≤

∞

∏

𝑗=1

𝑀
2

𝑗
𝑉 (𝑡
0
) , (23)

which implies that




𝑦 (𝑡)





≤ 𝑀





𝑦 (𝑡
0
)




, 𝑡 ≥ 𝑡

0
, (24)

where𝑀 = (∏
∞

𝑗=1
𝑀
𝑗
) < ∞.

The proof of Theorem 5 is complete.

Remark 6. Although Theorem 5 enhances the restriction on
condition (i), the impulsive restriction in (ii) is weaker; that
is, 𝜎
𝑖𝑘
is not necessary to converge to 0 as 𝑘 is large enough,

provided that the impulsive intervals are not too small.

Theorem 7. Given constant 𝛼 > 0. The equilibrium point of
the system (1) is globally exponentially stable with the given
exponential convergence rate 𝛼, if the conditions (H

0
)-(H
1
) are

fulfilled; moreover, suppose that

(i) there exists a constant 𝜆 > 0, such that (𝛼−𝜆)𝐼−𝐴(𝑡)+
𝐵(𝑡)𝐿 < 0, for all 𝑡 > 𝑡

0
,

(ii) 𝜏 ≜ max
𝑘∈Z+

{𝑡
𝑘+1

− 𝑡
𝑘
} and 𝛽

𝑘
𝑒
𝜆𝜏

≤ 1, where 𝛽
𝑘
=

max
𝑖∈Λ
(1 + 𝜎

𝑖𝑘
), −1 ≤ 𝜎

𝑖𝑘
≤ 0, 𝑖 ∈ Λ, 𝑘 ∈ Z

+
.

Proof. Weonly need to prove that𝑦(𝑡) = 𝑧(𝑡)𝑒𝛼(𝑡−𝑡0) is bound-
ed when 𝑡 ≥ 𝑡

0
, where 𝑧(𝑡) = 𝑧(𝑡, 𝑡

0
, 𝑧
0
) is a solution of (3)

through (𝑡
0
, 𝑧
0
).

Consider the Lyapunov functional as follows:

𝑉 (𝑡) = 𝑦(𝑡)
𝑇

𝑦 (𝑡) =

𝑛

∑

𝑖=1

𝑦
2

𝑖
(𝑡) . (25)

Particularly, 𝑉(𝑡
0
) = ∑
𝑛

𝑖=1
𝑦
2

𝑖
(𝑡
0
).

Then from conditions (H
0
)-(H
1
) and (i), we get the upper

right-hand derivative of𝑉(𝑡) along the solutions of system (1),
for 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

), 𝑘 ∈ Z
+

𝐷
+

𝑉 (𝑡) = 2

𝑛

∑

𝑖=1

𝑦
𝑖
(𝑡) ̇𝑦
𝑖
(𝑡)

= 2𝑦(𝑡)
𝑇

(𝛼𝐼 − 𝐴 (𝑡) + 𝐵 (𝑡) 𝐿) 𝑦 (𝑡) < 2𝜆𝑉 (𝑡) .

(26)

Thus,

𝑉 (𝑡) < 𝑉 (𝑡
𝑘
) 𝑒
2𝜆(𝑡−𝑡𝑘)

< 𝑉 (𝑡
𝑘
) 𝑒
2𝜆𝜏

, 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 ∈ Z
+
.

(27)

By condition (ii), it holds that

𝑉 (t
𝑘
) =

𝑛

∑

𝑖=1

𝑦
2

𝑖
(𝑡
𝑘
) ≤ max
𝑖∈Λ

(1 + 𝜎
𝑖𝑘
)
2

𝑉 (𝑡
−

𝑘
)

= 𝛽
2

𝑘
𝑉 (𝑡
−

𝑘
) , 𝑘 ∈ Z

+
.

(28)

By simple induction, we can prove that for any 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

),
𝑘 ∈ Z

+
,

𝑉 (𝑡) ≤

𝑘

∏

𝑗=1

𝛽
2

𝑗
𝑒
2(𝑘+1)𝜆𝜏

𝑉 (𝑡
0
) ≤ 𝑒
2𝜆𝜏

𝑉 (𝑡
0
) , (29)

which implies that




𝑦 (𝑡)





≤ 𝑀





𝑦 (𝑡
0
)




, 𝑡 ≥ 𝑡

0
, (30)

where𝑀 = 𝑒
𝜆𝜏.

The proof of Theorem 7 is complete.

4. Applications

The following illustrative example will demonstrate the effec-
tiveness of our results.

Example 8. Consider the following impulsive neural net-
works:

�̇�
1
(𝑡) = −𝑎

1
(𝑡) 𝑥
1
(𝑡) + 𝑏

11
(𝑡) 𝑓
1
(𝑥
1
(𝑡))

+ 𝑏
12
(𝑡) 𝑓
2
(𝑥
2
(𝑡)) + 𝐼

1
(𝑡) ,

�̇�
2
(𝑡) = −𝑎

2
(𝑡) 𝑥
2
(𝑡) + 𝑏

21
(𝑡) 𝑓
1
(𝑥
1
(𝑡))

+ 𝑏
22
(𝑡) 𝑓
2
(𝑥
2
(𝑡)) + 𝐼

2
(𝑡) ,

𝑥
1
(𝑡
𝑘
) = (1 + 𝜎

1𝑘
) 𝑥
1
(𝑡
−

𝑘
) − 𝜎
1𝑘
, 𝑘 ∈ Z

+
,

𝑥
2
(𝑡
𝑘
) = (1 + 𝜎

2𝑘
) 𝑥
2
(𝑡
−

𝑘
) − 𝜎
2𝑘
, 𝑘 ∈ Z

+
,

(31)

where 𝑓
1
(𝑢) = 𝑓

2
(𝑢) = (|𝑢 + 1| − |𝑢 − 1|)/2.

It is easy to see that 𝑓
𝑗
, 𝑗 = 1, 2 satisfying hypothesis (H

1
)

with 𝑙
𝑖
= 𝑙
2
= 1. We have 𝑎

1
(𝑡) = 3, 𝑎

2
(𝑡) = 2 − (3/2) cos(2𝑡),

𝑏
11
(𝑡) = | sin 𝑡|/2, 𝑏

12
(𝑡) = 1/2, 𝑏

21
(𝑡) = 2, 𝑏

22
(𝑡) = −1 −

(cos(2𝑡)/2), 𝐼
1
= (5/2) − (| sin 𝑡|/2), 𝐼

2
= 1 − cos(2𝑡), 𝜎

1𝑘
=

√1 + (1/5𝑘
2
) − 1, 𝜎

2𝑘
= √1 + (1/6𝑘

2
) − 1.
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Let 𝛼 = 3. It can be deduced that 𝛼𝐼 − 𝐴(𝑡) + 𝐵(𝑡)𝐿 ≤

0 and ∏∞
𝑘=1

max
𝑖=1,2

|1 + 𝜎
𝑖𝑘
| < ∞. Hence, all the conditions

of Theorem 2 are satisfied; then the equilibrium point 𝑥⋆ =
(1, 1) of the above system (31) is globally exponentially stable
with the given convergence rate 𝛼 = 3.
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