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We consider an anisotropically two-dimensional diffusion of a chargedmolecule (particle) through a large biological channel under
an external voltage. The channel is modeled as a cylinder of three structure parameters: radius, length, and surface density of
negative charges located at the channel interior-lining. These charges induce inside the channel a potential that plays a key role
in controlling the particle current through the channel. It was shown that to facilitate the transmembrane particle movement the
channel should be reasonably self-optimized so that its potential coincides with the resonant one, resulting in a large particle current
across the channel. Observed facilitation appears to be an intrinsic property of biological channels, regardless of the external voltage
or the particle concentration gradient. This facilitation is very selective in the sense that a channel of definite structure parameters
can facilitate the transmembrane movement of only particles of proper valence at corresponding temperatures. Calculations also
show that the modeled channel is nonohmic with the ion conductance which exhibits a resonance at the same channel potential as
that identified in the current.

1. Introduction

Biological channels are responsible for regulating the fluxes
of ions and molecules (hereafter referred to as particles for
short) across membranes and, therefore, are critically impor-
tant for the cell functioning [1]. As well-known, these protein
channels are very efficient in the sense that they support a
very fast, selective, and robust across membrane transport,
regardless of environment fluctuations [2]. Surprisingly, such
privileged properties have been observed even in the case of
large water-filled channels, where the particle transport does
not involve the use of metabolic energy or conformational
changes and was assumed to be simply diffusive [3]. Under-
standing the nature of this channel-facilitated particle move-
ment (CFPM) is crucially important from the fundamental
molecular biology as well as the application point of view
(many modern drugs are developed in the way of using the
ion-channels to enhance their efficiency; see, e.g., [4–6]).

Experimentally, there are accumulative data showing that
the observed CFPM really resulted from some interaction

between the moving particle and the channel interior-lin-
ing [7, 8]. Recent advancements of high-resolution current
recording enable single-channel measurements that provide
directly a living picture of how an individual channel func-
tions and, therefore, shed light on the characteristics of
channel current in dependence on different (channel and
environment) parameters [7–9]. However, revealing exactly
the nature of channel-particle interaction as well as themech-
anism of CFPM is still very experimentally problematic due
to the puzzled complexities related to both the channel struc-
ture and the measurement systems.

Theoretically, to describe the CFPM several models have
been suggested. Considering the one-dimensional (1D) dif-
fusionmodel with a position-dependent diffusion coefficient,
Berezhkovskii et al. supposedly introduced a square potential
well, spanning the whole channel length, that brings about
a channel-particle interaction [10–13]. It was then shown
that at a given solute concentration difference there exists an
optimum potential well depth that can maximize the particle
current, facilitating the channel function. In thismodel (i) the
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channel is assumed to be large enough so that all the effects
related to the particle size can be omitted, (ii) a single-particle
diffusion is considered, neglecting all many particle correla-
tions, and, particularly, (iii) no realistic potential was assigned
as the source for the square potential well introduced. Bauer
and Nadler considered a similar 1D diffusion model with a
square potential well that is however associated locally with
only the particle bound temporarily inside the channel [14].
Using the macroscopic version of Fick’s equation, it was then
demonstrated that a transport increase always occurs for
any square potential wells. However, as already noted by the
authors, the square potential well exploited in this model
is also rather crude and a more realistic potential should
be found [14]. From the very other point of view, Kolome-
isky models the channel as a set of discrete binding sites
arranged stochastically [15]. In such the discrete-state model
the particles are assumed to hop along the binding sites in
translocations across the channel and the optimum current
may be achieved depending on the spatial distribution of
binding-sites and the site-particle interactions [15, 16]. This
model is so simple that the main dynamic properties of the
problem can be calculated exactly. It was also demonstrated
that the discrete-statemodel [15] and the continuumdiffusion
model [10] are closely related and can be effectively mapped
into each other [17]. Nevertheless, like the square potential
well in the continuum models [10, 14], the nature of the
binding sites (a kind of channel-particle interaction) and the
hopping mechanism of particles in the discrete-state model
[15] still need to be identified.

Importantly, in all the models mentioned [10, 14, 15]
the channel-particle interaction (which was expressed by a
square potential well or a binding site) is generally viewed
as the crucial condition for the transmembrane transport to
be facilitated (see also [18]). Note again that in these models
the particle motion is merely considered one-dimensional.
Recently, Dettmer et al. have measured the diffusivity of
spherical particles in closely confining, finite length channels
[19]. Measurements demonstrated a strongly anisotropic dif-
fusion in the channel interior: while the diffusion coefficient
parallel to the channel axis remained constant throughout
the entire channel interior, the perpendicular diffusion coeffi-
cient showed an almost linear decrease from the axis towards
the channel wall. These observations put forward a need
for the two-dimensional (2D) description with direction-
dependent diffusion coefficients when studying the move-
ment of particles inside a large channel. Furthermore, exper-
imentally, the single-channel kinetics was extensively studied
at different external voltages [20, 21]. And, the experimental
sublinear current-voltage (𝐼-𝑉) characteristics reported in
[22, 23] is often used as one of the basic requirements for
theoretical models [24].

In the present paperwe consider a 2Ddiffusivemovement
of particles through a large water-filled channel, taking into
account an anisotropy of diffusion coefficients as observed in
[19] and an influence of external voltage as discussed in [20,
24]. The channel is modeled as a cylinder characterized by
three structure parameters: radius, length, and surface den-
sity of negative charges of channel interior-lining.The poten-
tial created by this charged interior-lining inside the channel

is exactly calculated. It causes the “channel-particle interac-
tion” that plays a key role in facilitating the transmembrane
particle movement. Solving the 2D stochastic Langevin
equation for the model suggested we systematically analyze
the typically dynamical characteristics of particles such as
the translocation probabilities, the translocation times, the
currents, and the channel ion conductance under the influ-
ence of various factors: the channel-induced potential, the
external voltage, or the difference in reservoir particle con-
centrations. It was particularly shown that to facilitate the
transmembrane particle movement the channel should be
reasonably self-optimized with appropriate structure param-
eters so that its potential coincides with the resonant one. In
addition, this facilitation is very selective in the sense that
a channel of definite structure parameters can facilitate the
transmembranemovement of only particles of proper valence
at corresponding temperatures. So, the model suggests that
facilitating the transmembrane particle movement is an
intrinsic property of biological channels. This property is
independent of the external factors such as the external
voltage or the bulk particle concentration gradient, though
these factorsmay strongly influence themagnitude of various
particle dynamical characteristics.

The paper is organized as follows. Section 2 introduces
the 2D diffusion model for the problem under study, includ-
ing the motion equation with an exact expression of the
channel-induced potential, and describes the calculating
method. Section 3 presents the main numerical results
obtained. These results are discussed in great detail, showing
the influence of various factors on the particle dynamical
characteristics. A particular attention is given to the self-
optimized property of the channels in facilitating the trans-
membrane particle movement. The paper concludes with a
brief summary in Section 4.

2. Model and Calculating Method

We consider a cylindrical channel of length 𝐿 and radius 𝑅
that connects the two reservoirs with particle concentrations
𝑛
𝐿
and 𝑛
𝑅
as schematically drawn in Figure 1(a). The channel

interior-lining carries negative charges which are for sim-
plicity assumed to be continuously and regularly distributed
with a surface density 𝜎. (The cation channels are believed
to contain a net negative charge in the pore lining region
of the protein [25]. In the case of potassium and gramicidin
channels this is due to the partially charged carbonyl oxygens
[1, 25].) These negative surface charges create an electrostatic
potential 𝑈 which affects the movement of particles inside
the channel. Particles are assumed to diffuse independently,
neglecting any many-particle correlation. In addition, the
diffusivity of a particle inside the channel is assumed to be
anisotropic with the two different diffusion coefficients, 𝐷

𝑧

(parallel with) and 𝐷
𝑥
(perpendicular to the channel axis).

Following [19], we assume that (i) 𝐷
𝑧
is constant throughout

the channel cylinder [0 ≤ |𝑥| < 𝑅 and 0 ≤ 𝑧 ≤ 𝐿] and
somewhat smaller than the diffusion coefficient 𝐷

0
in the

bulk, 𝐷
𝑧
= 𝛼𝐷

0
with 0 < 𝛼 < 1 (we choose in the present

work𝛼 = 0.5 for definition) and (ii)𝐷
𝑥
linearly decreases as 𝑥
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Figure 1: (a) Model of the cylindrical channel under study. (b) Channel-induced potential 𝑈(𝑥, 𝑧) of (3) is plotted for the channel with
𝑅 = 0.2 nm, 𝐿 = 5 nm, and 𝜎 = −0.1C/m2 (note:𝑈(𝑥, 𝑧) is symmetrical with respect to the sign of 𝑥); (c) the𝑈(0, 𝑧) potential well (red-solid
line, see the left and bottom axes) and the 𝑈(𝑥, 𝐿/2) potential barrier (green-dashed line, see the right and top axes) for the potential 𝑈(𝑥, 𝑧)
in (b). The potential 𝑈

0
≡ 𝑈(0, 𝐿/2) ≈ −90.6mV in this case.

going from the channel axis (where the diffusion is isotropic)
to the channel wall,𝐷

𝑥
= [1 − (|𝑥|/𝑅)]𝐷

𝑧
.

The model also involves a longitudinal voltage 𝑉, that is,
the difference in electrical potential between the two channel
ends, that may include the intrinsic membrane potential [1]
and/or some externally applied voltage [20]. This voltage
drives the particles moving along the channel. For definition,
we assumed that the voltage 𝑉 is directed from the left to the
right (in Figure 1(a)) and the charge 𝑞 carried by a particle is
positive.

Actually, due to the cylindrical symmetry of the channel
model suggested, the motion of a particle inside a channel
can be effectively described by the 2D stochastic differential
equation (Langevin equation for overdamped motion):

(

𝛾
𝑧𝑧

0

0 𝛾
𝑥𝑥

)(

�̇� (𝑡)

�̇� (𝑡)
) = −𝑞(

𝜕
𝑧
𝑈 (𝑥, 𝑧)

𝜕
𝑥
𝑈 (𝑥, 𝑧)

) +(

𝑞𝑉

𝐿

0

)

+ (

𝜉
𝑧 (𝑡)

𝜉
𝑥 (𝑡)

) ,

(1)

where −𝑅 < 𝑥(𝑡) < 𝑅 and 0 ≤ 𝑧(𝑡) ≤ 𝐿 are the 2D coor-
dinates of the particle at 𝑡 time, �̇� ≡ 𝑑𝑥/𝑑𝑡, 𝛾

𝑥𝑥
(𝛾
𝑧𝑧
) is the

drag coefficient in the 𝑥(𝑧) direction, 𝑈(𝑥, 𝑧) is the potential
created by the charged channel lining, 𝑞𝑉/𝐿 is the voltage-
induced force acting on a particle of charge 𝑞 in the 𝑧-
direction, and 𝜉

𝑥
(𝑡)(𝜉
𝑧
(𝑡)) is the random force in the 𝑥(𝑧)

direction which is as usual assumed to have a zero mean and
a white noise correlation:

⟨𝜉] (𝑡)⟩ = 0,

⟨𝜉] (𝑡) 𝜉] (𝑡

)⟩ = 2𝐷]𝛿 (𝑡 − 𝑡


) ,

] = 𝑥, 𝑧.

(2)

It is here worth mentioning the Stokes-Einstein relation
between the diffusion coefficient𝐷, the drag coefficient 𝛾, and
the absolute temperature 𝑇 of a medium, 𝐷𝛾 = 𝑘

𝐵
𝑇, where

𝑘
𝐵
is the Boltzmann constant.
In (1) we need to identify the potential 𝑈(𝑥, 𝑧) inside

the channel. Within the model considered, as mentioned
above, 𝑈 is the electrostatic potential created by the charged
lining of a cylindrical channel. By solving the fundamental
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electrostatic problem for a charged cylinder of finite sizes, we
can exactly derive an analytical expression of 𝑈 as a function
the (𝑥, 𝑧)-coordinates [0 ≤ 𝑥 < 𝑅 and 0 < 𝑧 < 𝐿]:

𝑈 (𝑥, 𝑧) =
𝑅𝜎

𝜋𝜖
0
𝜖

{{

{{

{

(1 +
𝜋

2
)

⋅ ln[[

[

𝑧 + √(𝑥 − 𝑅)
2
+ 𝑧2

𝑧 − 𝐿 + √(𝑥 − 𝑅)
2
+ (𝑧 − 𝐿)

2

]
]

]

− ln[[

[

𝑧 + √(𝑥 + 𝑅)
2
+ 𝑧2

𝑧 − 𝐿 + √(𝑥 + 𝑅)
2
+ (𝑧 − 𝐿)

2

]
]

]

}}

}}

}

,

(3)

where 𝑅, 𝐿, and 𝜎 are the channel structure parameters
defined above, 𝜖

0
is the vacuum permittivity, and 𝜖 is the

dielectric constant of the water in the interior of the channel
(whereas the dielectric constant of the water in the channel
interior is often assumed to be lower than the bulk value,
generally, it is still remains an issue due to the lack of
experimentally solid data [24]. Ignoring all of these unsolved
complications, for definition, we choose for 𝜖 the same value
of the dielectric constant of the bulk water, 𝜖 ≈ 80. It is
important to note that though the magnitude of the potential
𝑈 in (3) does depend on 𝜖, the 𝑈(𝑥, 𝑧) behavior does not,
and, therefore, all qualitative conclusions of this work are
unaffected by a choice of 𝜖-value). Note that the potential
𝑈(𝑥, 𝑧) is symmetrical with respect to the sign of 𝑥.

As an example, Figure 1(b) shows the potential 𝑈(𝑥, 𝑧)
of (3) for the channel with 𝑅 = 0.2 nm, 𝐿 = 5 nm, and
𝜎 = −0.1C/m2. At a given 𝑥-coordinate, 𝑈(𝑧) behaves as a
symmetrical potential well with the absolute minimum at 𝑧 =
𝐿/2. On the contrary, given a 𝑧-coordinate, the 𝑈(𝑥)-curve
describes a symmetrical potential barrier with the absolute
maximum at 𝑥 = 0 (see, e.g., 𝑈(0, 𝑧) as a function of 𝑧
(bottom and left axes) and 𝑈(𝑥, 𝐿/2) as a function of 𝑥 (top
and right axes) in Figure 1(c)). While the well shape of the
channel potential 𝑈(𝑥, 𝑧) in the 𝑧-direction directly affects
the movement of particles across the channel (as will be seen
below), its barrier shape in the 𝑥-direction demonstrates a
noticeable role of the transversemotion in the anisotropic 2D
diffusion model considered.

As a consequence of the observed symmetrical shape,
the potential 𝑈(𝑥, 𝑧) can be characterized by its value at the
center of the channel, (𝑥 = 0, 𝑧 = 𝐿/2), where

𝑈(0,
𝐿

2
) =

𝑅𝜎

2𝜖
0
𝜖
ln[

√4𝑅2 + 𝐿2 + 𝐿

√4𝑅2 + 𝐿2 − 𝐿

] ≡ 𝑈
0
. (4)

This potential value𝑈
0
is uniquely determined by the channel

structure parameters (𝐿, 𝑅, and 𝜎) and can be used to
characterize the potential𝑈(𝑥, 𝑧) on the whole: each channel
creates unique 𝑈(𝑥, 𝑧) and each 𝑈(𝑥, 𝑧) has a unique 𝑈

0
. As

an intrinsic characteristic of the channel, the quantity𝑈
0
will

be used below as a typical measure of the channel potential

𝑈(𝑥, 𝑧). Figure 1(c) indicates the potential𝑈
0
≈ −90.6mV for

the channel potential 𝑈(𝑥, 𝑧) examined in this figure.
Thus, as an extension of the model suggested by

Berezhkovskii et al. [10–13], the present model is distin-
guished by the main factors as follows: (i) the diffusion is
anisotropically two-dimensional (see (1)), (ii) the negatively
charged channel interior-lining creates inside the channel
a potential that leads to the first term in the right hand
of (1) and that can be exactly identified as a function of
only channel structure parameters (see (3)), and (iii) the
external voltage causes a driving force expressed by the
second term in the right hand of (1). Further, the study will
be focused on showing how these factors affect the dynamical
characteristics of particles moving through the channel. The
dynamical characteristics we are here interested in include
the translocation probabilities, the translocation times, the
particle current, and the ion conductance. To calculate these
quantities we have to solve (1). Reasonably, this stochastic
equation can be solved numerically by using the molecular
dynamics method [26].

A particle enters the channel from either the left (𝑧 = 0)
or the right (𝑧 = 𝐿) at random with the probabilities pro-
portional to the reservoir particle concentration 𝑛

𝐿
or 𝑛
𝑅
,

respectively (Figure 1(a)). The initial 𝑥-coordinate (−𝑅 <

𝑥(𝑡 = 0) < 𝑅) and the initial velocity components (�̇�(0) and
�̇�(0)) are randomly given, following the standard molecular
dynamics simulation procedure [26]. Started from the given
initial conditions, a discrete trajectory of the particle is step
by step constructed. Given the channel potential 𝑈(𝑥, 𝑧) and
the external voltage 𝑉, in each time step (Δ𝑡) the random
forces, 𝜉

𝑥(𝑧)
, are independently generated and then the final

coordinates and velocity of the particle are determined from
(1) using the well-known Euler scheme [27, 28]. In the 𝑥-
direction the full reflection condition is applied every time
when a particle runs into the channel wall, 𝑥 = ±𝑅. In the
other direction, once the 𝑧-coordinate is out of the range
[0, 𝐿], the data for the simulated particle is fixed and this
particle is no longer followed. The next particle enters the
channel and undergoes a diffusion process in the sameway as
described above. The number of particles involved in getting
each of the average values of studied dynamical quantities is
so large that for all the data points presented below the error
bar nowhere exceeds the symbol size [≈105 to 107 particles
depending on the quantity and the direction of movement
investigated]. The time step is taken to be Δ𝑡 = 0.0005𝜏

0
,

which is believed to be small enough. The dynamical quan-
tities we are interested in, as mentioned above, include the
translocation probabilities, the average translocation times,
the net particle current, and the ion conductance.

Actually, the calculating method we exploit in this study
is the Brownian dynamics. By solving the Langevin equation,
this method is rather appropriate for the problem of interest.
A systematical classification of computational approaches
proposed and employed for studies of ion-channels can be
found in the review paper [29]. Here, in solving numerically
(1), for convenience we choose 𝐿 as the unit of length, 𝜏

0
=

𝐿
2
/𝐷
0
as the unit of time, and 𝑘

𝐵
𝑇 as the unit of energy. So,

for example, if𝐿 = 5 nmand𝐷
0
= 3⋅10

−10m2/s [17], then 𝜏
0
≈

8.3 ⋅ 10
−8 s. We recall that 𝑘

𝐵
𝑇 ≈ 8.617 ⋅ 10

−5 eV for 𝑇 = 1
∘K.
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Figure 2: Translocation probabilities 𝑃
𝐿
(blue dash-dotted lines)

and 𝑃
𝑅
(red dashed lines) are plotted against 𝑢

0
≡ 𝑞𝑈

0
/𝑘
𝐵
𝑇 for

the channels of the same 𝑅, 𝑛
𝐿
, and 𝑛

𝑅
, but at different voltages

V ≡ 𝑞𝑉/𝑘
𝐵
𝑇: 0(×), 2(∘ and ⬦), and 4(∙ and ∗). The points are

the simulation results, whereas the lines are drawn as a guide for
the eyes. Inset: 𝑃

𝐿(𝑅)
becomes saturated at larger 𝑢

0
[𝑅 = 0.2 nm,

𝐿 = 5 nm, 𝑛
𝐿
= 145mM, 𝑛

𝑅
= 15mM].

3. Numerical Results and Discussions

In presenting simulation results we introduce for short the
symbols 𝑢

0
≡ 𝑞𝑈
0
/𝑘
𝐵
𝑇 (referred to as the effective channel

potential) and V ≡ 𝑞𝑉/𝑘
𝐵
𝑇 (referred to as the effective

external voltage). So, the defined parameters 𝑢
0
and V also

contain the particle charge 𝑞 and the medium temperature
𝑇. We should keep this in mind when discussing the role
of the channel potential in facilitating the transmembrane
particle movement. Additionally, for definition, in all the
figures relating to the translocation probabilities and the
average translocation times the parameters 𝑅 and 𝑛

𝐿(𝑅)
are

kept constant:𝑅 = 0.04 (in unit of𝐿) and 𝑛
𝐿(𝑅)

= 145(15)mM
[1]. Influences of these parameters will be later discussed
when analyzing the net current (Figure 6).

Let us first examine obtained results for the translocation
probabilities which are separately calculated for the particles
moving through the channel from the left to the right (𝑃

𝐿
)

and for those moving in the opposite direction (𝑃
𝑅
) (see

Figure 1 with the 𝑉-direction indicated). In simulations, the
probability𝑃

𝐿
(or𝑃
𝑅
) is determined as the ratio of the number

of particles that passed through the channel to the total
number of particles that entered the channel from the left (or
right).

Figure 2 shows 𝑃
𝐿
(blue dash-dotted lines) and 𝑃

𝑅
(red

dashed lines) plotted against 𝑢
0
for the channels at different

effective voltages V: 0(×), 2(∘ and ⬦), and 4(∙ and ∗).
Generally, this figure demonstrates that with increasing 𝑢

0

both the translocation probabilities, 𝑃
𝐿
and 𝑃

𝑅
, increase

steadily first (see main figure) and then become saturated
(see the inset). Such the 𝑃

𝐿(𝑅)
-versus-𝑢

0
behavior is observed

at any voltage V. In the case of zero V, due to the left-right
symmetry of the potential 𝑈(𝑥, 𝑧) of (3) the two curves,
𝑃
𝐿
and 𝑃

𝑅
, are totally coincidental and the common curve
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(red dashed lines) are plotted against V for the channels with

different effective potentials 𝑢
0
: 1(× and +), 2(∘ and ⬦), and 4(∙ and

∗). Other parameters and symbols are the same as in Figure 2.

may be in a qualitative comparison with Figure 3 in [10]
(where the considered diffusion is one-dimensional and the
potential well is square). Note that with the chosen direction
of 𝑉 (Figure 1; 𝑞 is positive) the external voltage raises 𝑃

𝐿

(two higher curves) while suppressing 𝑃
𝑅
(two lower curves),

compared to the case of V = 0 (the middle curve).
The external voltage effects can more clearly be seen

in Figure 3 where the probabilities 𝑃
𝐿(𝑅)

are presented as
the functions of V for the channels with different 𝑢

0
: 1(×

and +); 2(∘ and ⬦); and 4(∙ and ∗). At zero V the two
probabilities𝑃

𝐿(𝑅)
associated to the same 𝑢

0
are of equal value

(two corresponding curves are started from the same point).
With increasing V the probability 𝑃

𝐿
smoothly rises, while the

probability𝑃
𝑅
strongly descends. At V ≥ 5 the probabilities𝑃

𝑅

become practically vanished for all the channels under study
(no particle can move through the channel in the right-to-
left direction). The probability 𝑃

𝐿
, on the contrary, continues

to growwith the tempo that gradually slows down at higher V.
Calculations reveal that even at V = 100 the channels are still
not perfectly transparent for the positively charged particles
moving along the external voltage direction [𝑃

𝐿
= 0.98 or 0.95

for 𝑢
0
= 4 or 1, resp.].

Next, we consider another fundamental characteristic,
the average translocation time. In accordance with the prob-
abilities 𝑃

𝐿(𝑅)
studied in Figures 2 and 3, we separately cal-

culated the average translocation times for the particles
moving through the channel from the left to the right (𝜏

𝐿
)

and for those moving in the opposite direction (𝜏
𝑅
). In

simulations, we count the time each of the simulated particles
spends inside the channel. The average translocation time 𝜏

𝐿

(or 𝜏
𝑅
) is then obtained by averaging these spending times

over all the particles that passed through the channel from
the left to the right (or from the right to the left).

Figure 4 shows how obtained translocation times 𝜏
𝐿(𝑅)

vary with the effective potential 𝑢
0
(Figure 4(a)) or the

effective voltage V (Figure 4(b)). Interestingly, in all the cases
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Figure 4: Translocation times 𝜏
𝐿
(blue dash-dotted lines) and 𝜏

𝑅
(red dashed lines) are plotted against 𝑢

0
at different V: 0(× and +), 2(∘ and⬦),

and 4(∙ and ∗) (a) and 𝜏
𝐿(𝑅)

versus V at different 𝑢
0
: 1(× and +), 2(∘ and ⬦), and 4(∙ and ∗) (b). Other parameters are the same as in Figure 2.

studied in both the figures, Figures 4(a) and 4(b), the two
points, corresponding to 𝜏

𝐿
and 𝜏
𝑅
, are practically coincided.

So, our 2D simulations suggest a general equality, 𝜏
𝐿
(𝑢
0
, V) =

𝜏
𝑅
(𝑢
0
, V), that should be always valid in the model studied

regardless of the shape of the channel potential 𝑈(𝑥, 𝑧) as
well as the presence of the external voltage 𝑉. This really
causes some surprise, noting the directed influence of the
voltage 𝑉. Actually, a similar equality of the two average
translocation times has been previously suggested in [11], but
it was there relating to the 1D diffusion model without any
external voltage. Figure 4 thus allows us to deal with the two
times 𝜏

𝐿
and 𝜏
𝑅
as a single average translocation time that will

be below denoted simply by 𝜏.
The fact that the channel potential 𝑢

0
raises the transloca-

tion time 𝜏 in Figure 4(a), while also raising the translocation
probabilities in Figure 2, might cause some surprise. Actually,
as will be seen below, it turns out that a competition between
these two seemingly contrary effects of the potential 𝑢

0

leads to the most important phenomenon in the ion-channel
physics, the CFPM. Comparing the points from three curves
with different voltages V, we learn that in the region of large
𝑢
0
(𝑢
0
≥ 6 in Figure 4(a)) the time 𝜏 decreases almost linearly

as V increases from 0 to 4. In a wider range of V, Figure 4(b)
shows that the larger the effective potential 𝑢

0
, the stronger

the relative effect of V on 𝜏. In the limit of high external voltage
when the V-induced driving force becomes to dominate all
other terms in the right hand in (1), the translocation time
should depend on V as 𝜏 ∝ 1/√V.

While the question of the particular time that most
relevantly describes the transmembrane transport and that
can be directly measured is still under discussion [14], the
net current has always served as the most important quantity
that should be determined theoretically in close comparison
with experimental measurements. For the problem under
study, the net particle current is determined as the average
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Figure 5: 3D plot of the current 𝐼 as a function of 𝑢
0
and V. Note on

the resonant behavior of the 𝐼 versus 𝑢
0
curves at different voltages

V. Other parameters are the same as in Figure 2.

number of particles the two reservoirs actually exchanged via
the channel in a unit of time (𝜏

0
).

Figure 5 presents a 3D plot of the current 𝐼 in dependence
on the effective channel potential 𝑢

0
and the effective external

voltage V. Remarkably, contrary to the monotonic behaviors
of𝑃
𝐿(𝑅)

and 𝜏 in Figures 2–4, Figure 5 shows clearly a resonant
behavior of the current 𝐼: for a given voltage V in the 𝐼 versus
𝑢
0
curve there always has an impressively absolute maximum

at some resonant channel potential, 𝑢
0

= 𝑢
𝑚
. We recall

that 𝑢
0
≡ 𝑞𝑈

0
/𝑘
𝐵
𝑇 with 𝑈

0
uniquely determined by the

channel structure parameters (𝐿,𝑅, and 𝜎). So, themaximum
observed in Figure 5 implies that for given 𝑞 and 𝑇 to suc-
cessfully facilitate the transmembrane particle movement the
channel has to be optimized with the appropriate structure
parameters so that its potential 𝑈(𝑥, 𝑧) coincides with the
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Figure 6: Resonant channel potential 𝑢
0
= 𝑢
𝑚
is an intrinsic characteristic of the channel. (a) 𝐼 versus 𝑢

0
curves extracted from Figure 5

for some values of V (from bottom: V = 0, 1, 2, 3, 4, and 5). All these curves show their maximum at the same resonant potential, 𝑢
0
= 𝑢
𝑚

(indicated by the arrow). (b) 𝐼 as a function of 𝑢
0
at V = 2 for various values of the ratio 𝑛

𝐿
/𝑛
𝑅
(from top: 𝑛

𝐿
/𝑛
𝑅
= 145/5, 145/10, 145/15, and

5/140). The resonant potential 𝑢
0
= 𝑢
𝑚
(indicated by the arrow) is independent of reservoirs particle concentration ratio and coincides with

𝑢
𝑚
determined in Figure 6(a). Note: in the case of 𝑛

𝐿
/𝑛
𝑅
= 5/140 the current is negative (flowing from right to left in Figure 1(a)) and reaches

the largest magnitude at the same 𝑢
0
= 𝑢
𝑚
.

resonant one. For example, for 𝑞 = 1 and 𝑇 = 300K, to own
the resonant potential of 𝑢

𝑚
= 3.5 as seen in Figure 5, the

channel should be self-optimizedwith the following structure
parameters: 𝐿 = 5 nm,𝑅 = 0.2 nm, and 𝜎 = −0.1C/m2 (given
𝜖 = 80 as stated above).

To see whether the resonant potential 𝑢
𝑚

depends on
the external voltage V, we depict in Figure 6(a) some 𝐼(𝑢

0
)-

curves extracted from Figure 5 at various V. Surprisingly, the
resonant channel potential 𝑢

𝑚
(indicated by the arrow) is

practically the same for all the curves at different voltages
V. Actually, the fact that 𝑢

𝑚
is independent of V can be seen

right in Figure 5 for all the values of V under study. Further,
we check if the resonant potential 𝑢

𝑚
depends on another

important external parameter, the difference in particle con-
centration between the two reservoirs. Figure 6(b) presents
the 𝐼(𝑢

0
)-dependence for several values of the ratio 𝑛

𝐿
/𝑛
𝑅
. In

the cases of 𝑛
𝐿
/𝑛
𝑅
= 145/5, 145/10, and 145/15 (taken from

Table 12.1 in [1]), all the particle concentration gradients are
directed along the external voltage 𝑉, that is, from the left to
the right in Figure 1(a), and, therefore, the currents are always
positive (see the higher three curves). On the contrary, in the
case of the lowest curve in Figure 6(b) for 𝑛

𝐿
/𝑛
𝑅
= 5/140

(e.g., for𝐾+-channels [1]), the particle concentration gradient
is directed from the right to the left in Figure 1(a) and,
consequently, the current becomes negative (note that in this
case the concentration gradient is strong while the external
voltage is relatively small, V = 2). Importantly, all the curves
for various 𝑛

𝐿
/𝑛
𝑅
in Figure 6(b) show the maximums in

magnitude at the same value of 𝑢
0
that exactly coincides with

the resonant potential𝑢
𝑚
determined in Figure 6(a).Thus, we

arrive at an important remark: at given 𝑞 and 𝑇, the resonant
potential is entirely determined by the channel structure

parameters. It is an intrinsic property of the channels and can
not be affected by the external factors such as the external
voltage or the particle concentration gradient.

Thus, in the present model, CFPM appears to be a self-
optimized property of biological channels: to facilitate the
transmembrane particle movement, the channels should be
intrinsically optimized with appropriate structure parame-
ters. Additionally, facilitating the transmembrane transport is
very selective in the sense that a channel of definite structure
parameters can facilitate the transmembrane transport of
only particles of proper valence at corresponding tempera-
tures.

Furthermore, we demonstrate in Figure 7(a) the current-
versus-voltage curves, 𝐼(V) (𝐼-𝑉) characteristics, extracted
from Figure 5 for several channels of different 𝑢

0
.The highest

curve describes the 𝐼-𝑉 characteristics of the resonantly self-
optimized channel with 𝑢

0
= 𝑢
𝑚
. It is clear that all the

𝐼(V)-curves presented in this figure are nonlinear, indicating
the nonohmic property of the channel model studied. In
this case, the channel ion conductance, defined as the ratio
of 𝐼 to V [30], becomes dependent on the applied voltage.
The 𝐼(V)-curves in Figure 7(a) reveal that as V increases the
conductance 𝑔 = 𝐼/V decreases fast first at small V, reaches a
minimum at V ≈ 2.5–3, and then slightly increases at higher
V (see, e.g., the inset in Figure 7(b) for the case 𝑢

0
= 𝑢
𝑚
). The

voltage, where the conductance gets minimal, depends on the
potential 𝑢

0
and the reservoir particle concentrations. To look

for a possible relation between the channel ion conductance
and the resonant channel potential 𝑢

𝑚
associated with the

current (Figure 6), we present in Figure 7(b) the conductance
𝑔 calculated for channels of different potentials 𝑢

0
at the same

voltage V. Remarkably, at any V the conductance 𝑔 always
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Figure 7: (a) The current 𝐼 is plotted against the voltage V [𝐼-𝑉 characteristics] for channels with different potentials 𝑢
0
(indicated in the

figure). All 𝐼-𝑉 curves show a sublinear behavior. (b) The channel ion conductance 𝑔 as a function of the channel potential 𝑢
0
at various

voltages V (given in the figure). At any V the conductance always has the maximum at the same 𝑢
0
= 𝑢
𝑚
≈ 3.5. Inset: 𝑔 versus V for the channel

with resonant potential 𝑢
0
= 𝑢
𝑚
.

has the maximum at the same 𝑢
0
= 𝑢
𝑚
as that identified

in Figure 6 for the current. So, Figure 7(b) gives one more
demonstration for the resonantly self-organized property of
channels in facilitating the transmembrane particle move-
ment. The V-dependence of 𝑔 in this figure is related to
the sublinear behavior of the 𝐼-𝑉 curves in Figure 7(a) as
just discussed above (see the inset in Figure 7(b)). Note that
such the sublinearity of calculated 𝐼-𝑉 curves qualitatively
resembles experimental data reported [22, 23].

Finally, Figure 8 compares the 𝐼(𝑢
0
)-curves obtained for

different 𝐷
𝑥
in showing the role of the transverse diffusion

in the 2D diffusion model under study. Four cases presented
are (1) 𝐷

𝑥
= 0, implying the 1D diffusion, (2) 𝐷

𝑥
= 0.5𝐷

𝑧
,

implying an anisotropically 2D diffusion with 𝐷
𝑥
constant

and smaller than 𝐷
𝑧
, (3) 𝐷

𝑥
= 𝐷
𝑧
, implying an isotropically

2D diffusion, and (4)𝐷
𝑥
= [1 − (|𝑥|/𝑅)]𝐷

𝑧
used in this work

(see corresponding symbols given in the figure). Obviously,
the curve in the case of 1D diffusion is largely separated
from the rest, showing an essential role of the transverse
diffusion. In this limiting case there is also the maximum in
the 𝐼(𝑢

0
)-curve; however, the current peak is lower and the

resonant potential is much larger (≈8), compared to those for
2D diffusion models. Interestingly, all the three 2D diffusion
𝐼(𝑢
0
) curves with 𝐷

𝑥
different on the behavior or the value

show very similar forms with the same resonant potential
𝑢
𝑚

= 3.5. In addition, the isotropic 2D diffusion model,
𝐷
𝑥
= 𝐷
𝑧
, provides the highest current peak.

4. Conclusions

We have considered an anisotropic 2D diffusion of a charged
molecule (particle) through a large biological channel under

×104

0

2

4

6

8

10

12

Cu
rr

en
tI
(𝜏

0
−
1
)

2 4 6 8 100
u0

Dx = 0

Dx = 0.5Dz

Dx = Dz

Dx = (1 − |x|/R)Dz
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are compared to show the role of the transverse diffusion in the 2D
diffusion model considered (V = 5, 𝐷

𝑧
= 0.5𝐷

0
; other parameters

are the same as in Figure 2).

an external voltage. Connecting the two reservoirs with dif-
ferent particle concentrations, the channel is modeled as a
rigid cylinder characterized by the three structure parame-
ters: the radius, the length, and the surface density of the
negative charges of channel interior-lining. These negative
charges induce inside the channel a potential that is uniquely
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determined by the channel structure parameters and that
critically affects the transmembrane particle movement. The
suggested model is rather phenomenological so that the
channel-induced potential can be calculated exactly. Never-
theless, it serves well to gain an understanding of the physical
mechanism of the channel-facilitated particle movement.
More detailed quantitative models are required to describe
concrete realistic biological channels (see, e.g., [31, 32]).

Our study is concentrated on showing the influences of
this channel-induced potential and the external voltage on
the typical dynamical characteristics of particles such as the
translocation probabilities, the average translocation times,
the net current, and the channel ion conductance. It was
shown that while the external voltage does not cause any
especial effect, the channel potential increases both the
translocation probabilities and the average translocation
times. And, surprisingly, studies demonstrated a single aver-
age translocation time that is equally applied for the particles
passing the channel in two contrary directions, regardless of
even the directed influence of the external voltage.

The most interesting result appeared in examining the
particle current. It was shown that at a given temperature the
channel with appropriate structure parameters can induce the
resonant potential that effectively facilitates the transmem-
brane movement of the particles of a given valence, resulting
in a very large net particle current across the channel. In other
words, to facilitate the transmembrane particlemovement the
channel should be naturally self-optimized so that its poten-
tial coincides with the resonant one.The resonant potential is
an intrinsic characteristic of the channel and facilitating the
transmembrane particle movement is an intrinsic property of
biological channels, independent of the external factors such
as the external voltage or the particle concentration gradient.
In addition, the observed CFPM is very selective in the sense
that a channel of definite structure parameters can facilitate
the transmembrane movement of only particles of proper
valence at corresponding temperatures. Calculated current-
voltage characteristics also show that the channel model is
nonohmic. The full characteristics of conductance exhibit an
absolute maximum at the same resonant channel potential as
that identified in the currents.

It should be conclusively noted that all the results pre-
sented above are principally related to the considered single
particle model, neglecting all the effects associated with the
many-particle couplings, the particle size, and the potential
induced by particle itself. So, these results might serve as an
argument for further studies.
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