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This paper examines the effects of the thermodynamic second law on steady flow of an incompressible variable viscosity electrically
conducting fluid in a channel with permeable walls and convective surface boundary conditions. The nonlinear model governing
equations are solved numerically using shooting quadrature. Numerical results of the velocity and temperature profiles are utilised
to compute the entropy generation number and the Bejan number. The results revealed that entropy generation minimization can
be achieved by appropriate combination of the regulated values of thermophysical parameters controlling the flow systems.

1. Introduction

Hydromagnetic channel flows have attracted the attention
of many researchers due to their numerous engineering and
industrial applications. Such flow can be found in magne-
tohydrodynamic (MHD) generator, geothermal reservoirs,
cooling of nuclear reactors, petroleum reservoirs, acceler-
ators, pumps, flow meter, astrophysics, metallurgy, crystal
growth, magnetic filtration and separation, jet printers, and
microfluidic devices [1]. Several researchers have discussed
MHD fluid flow under various physical situations [2–4].
Lehnert [5] presented a theoretical investigation on the be-
havior of electrical conducting liquid under magnetic field.
Makinde and Mhone [6] investigated the combined effect of
transverse magnetic field and radiative heat transfer on un-
steady flow of a conducting optically thin fluid through a
channel filled with saturated porous medium and nonuni-
form wall temperature. Seth et al. [7] studied unsteady
MHD Couette flow of a viscous incompressible electrically
conducting fluid between two parallel porous plates in the
presence of a transverse magnetic field. Agarwal [8] analyzed

the effect of magnetic field on generalized Couette flow. The
combined effects of variable viscosity and electrical conduc-
tivity on MHD generalized Couette flow and heat transfer
were numerically investigated by Makinde and Onyejekwe
[9].

Meanwhile, most industrial and engineering flow pro-
cesses and thermal systems are unable to work at optimal
level due to entropy production.Therefore, it is imperative to
determine the factors that contributed to entropy generation
in order to minimize their effects and maximize the flow
system efficiency. The analysis of entropy generation mini-
mization in a thermal system was pioneered by Bejan [10].
Thereafter, several researchers have theoretically studied
entropy generation in thermal and flow systems under many
physical situations [11–13]. Sahin and Ben-Mansour [14]
reported a numerical solution of the entropy generation in a
circular pipe. Hooman [15] studied the effects of different
thermal boundary conditions on entropy generation in a
microscale forced convection with velocity slip. The effect of
Navier slip on entropy generation in a porous channel
with suction/injection was investigated by Eegunjobi and
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Figure 1: Schematic diagram of the problem.

Makinde [16]. Recently,Makinde andEegunjobi [17] reported
a numerical solution for the effects of convective heating on
entropy production in a channel with permeable walls.

In this present study, the recent work of Makinde and
Eegunjobi [17] is extended to include the combined effects of
variable viscosity and asymmetric convective boundary con-
ditions on the entropy generation rate in MHD porous
channel flow. In the following sections, the model problem is
formulated, analyzed, and numerically solved. Pertinent re-
sults are presented graphically and discussed quantitatively,
with respect to various thermophysical parameters control-
ling the flow system.

2. Mathematical Model

We consider a steady, incompressible flow of an electrically
conducting variable viscosity fluid between two fixed per-
meable parallel infinite plates of width ℎ. The flow is fully
developed and the edge effects are disregarded. A constant
magnetic field of strength B

0
is imposed transversely in the

y-direction. In addition, both the electric field and Hall effect
are not present (see Seth et al. [7], Turkyilmazoglu [18]). The
appliedmagnetic field is assumed to be strong enough so that
the induced magnetic field due to the fluid motion is weak
and can be neglected. It is assumed that the lower permeable
plate, where fluid injection occurs, is convectively heated;
while at the upper permeable plate both fluid suction and
convective heat loss take place as shown in Figure 1.

Under these assumptions, the governing equations for
the momentum and energy balance in one dimension can be
written as follows [7–9, 16, 17]:
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The boundary conditions are
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where (𝑥, 𝑦) is the axial and normal coordinates, 𝑢 is the
velocity of the fluid, 𝑃 is the fluid pressure, 𝑉 is the uniform
suction/injection velocity at the channel walls, 𝛾

0
is the heat

transfer coefficient at the lower plate, 𝛾
1
is the heat transfer

coefficient at the upper plate, 𝛼 is the thermal diffusivity, 𝜌
is the fluid density, 𝜎 is the fluid electrical conductivity, 𝑘 is
the thermal conductivity coefficient, 𝑐

𝑝
is the specific heat at

constant pressure, 𝑇
𝑓
is the temperature, of the hot fluid at

the lower permeable plate,𝑇 is the channel fluid temperature,
and𝑇
∞
is the ambient temperature above the upper plate.The

temperature dependent viscosity 𝜇 can be expressed as [9]
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where𝑚 is a viscosity variation parameter and 𝜇
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dynamic viscosity at the ambient temperature. We introduce
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Substituting (5) into (1)–(4), we obtain
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with the boundary conditions
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where 𝐺 is the pressure gradient parameter,

Re = 𝑉ℎ/𝜐 (Reynolds number),
Pr = 𝜐/𝛼 (Prandtl number),
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of Hartmann number),
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𝜀 = 𝑚(𝑇
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) (variable viscosity parameter),

Bi
0
= 𝛾
0
ℎ/𝑘 (lower plate Biot number),
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1
= 𝛾
1
ℎ/𝑘 (upper plate Biot number).

It is important to note that 𝜀 = 0 corresponds to the case of
constant viscosity conducting fluid. The exact solution of (6)
for the fluid velocity is possible under this constant viscosity
scenario and we obtain
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where𝛼 = (Re+√Re2 + 4Ha)/2 and𝛽 = (Re−√Re2 + 4Ha)/2.
Moreover, the coupled nonlinear boundary value problem
represented by (6)-(7) together with their boundary condi-
tions in (8) has been solved numerically using an efficient
fourth-order Runge–Kutta method along with a shooting
technique [19].

3. Entropy Analysis

In many engineering and industrial processes, entropy pro-
duction destroys the available energy in the system. It is there-
fore imperative to determine the rate of entropy generation in
a system, in order to optimize energy in the system for
efficient operation in the system.The convection process in a
channel is inherently irreversible and this causes continuous
entropy generation. Wood [11] gave the local volumetric
rate of entropy generation for a viscous incompressible con-
ducting fluid in the presence of magnetic field as follows:
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In (10), the first term represents irreversibility due to heat
transfer; the second term is entropy generation due to viscous
dissipation, while the third term is local entropy generation
due to the effect of themagnetic field (Joule heating orOhmic
heating). Using (5), the dimensionless form of local entropy
generation rate in (10) is given as follows:
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where Ω = (𝑇
𝑓
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∞
)/𝑇
∞

is the temperature difference
parameter and Br = Ec Pr is the Brinkmann number. The
Bejan number (Be) is defined as
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The Bejan number (Be) as shown in (12) has a range of
0 ≤ Be ≤ 1. If Be = 0, then the irreversibility is dominated by
the combined effects of fluid friction and magnetic fields, but
if Be = 1, then the irreversibility due to heat transfer dominates
the flow system by the virtue of finite temperature differences.

Table 1: Comparison between the exact and numerical solution of
velocity profile for 𝐺 = 1, Re = 1, Ha = 1, and 𝜀 = 0.

𝜂 Exact solution 𝑤(𝜂) Numerical solution 𝑤(𝜂)

0 0 0
0.1 0.035822 0.035822
0.2 0.065264 0.065264
0.3 0.087963 0.087963
0.4 0.103449 0.103449
0.5 0.111127 0.111279
0.6 0.110257 0.110257
0.7 0.099930 0.099930
0.8 0.079042 0.079042
0.9 0.046264 0.046264
1.0 0 0
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Figure 2: Velocity profiles increasing Ha.

4. Results and Discussion

The numerical results for the fluid velocity, temperature,
entropy generation rate, and Bejan number distributions are
reported in Table 1 and Figures 2–30. Representative values
of various parameters are utilized and the Prandtl number
Pr is assumed to range from 0.71 (Air) ≤ Pr ≤ 7.1 (water). In
order to validate the accuracy of our numerical procedure, we
compare a special case of our result (𝜀 = 0) with the exact
solution for the velocity profile in (9). The results displayed
in Table 1 show perfect agreement and attest the correctness
of our results.

4.1. Effects of Parameter Variations on Velocity Profiles. The
effects of variation in key parameters on the velocity profiles
are shown in Figures 2–8. Generally, the velocity profiles
are parabolic in geometries with zero values at the channel
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Figure 4: Velocity profiles with increasing Re.

walls due to no slip condition and attain their maximum
value within channel. In Figure 2, it is observed that the fluid
velocity decreases with increasing magnetic field intensity
(Ha). This can be attributed to the presence of Lorentz force
acting as a resistance to the flow as expected and is in perfect
agreement with earlier results as reported in the literature
[3–9]. As the fluid viscosity decreases as shown in Figure 3
with increasing values of 𝜀, the velocity profiles increase. The
fluid velocity decreases and skews towards the upper plate as
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Figure 5: Velocity profiles with increasing Ec.
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Figure 6: Velocity profiles increasing Pr.

Reynolds number (Re) increases due to increasing injection
at the lower plate and increasing suction at the upper plate as
shown in Figure 4. Figures 5 and 6 show that the fluid velocity
increases with increase in the values of Eckert number (Ec)
and Prandtl number (Pr). As Ec increases, the velocity gra-
dient increases as a result of a decrease in the fluid viscosity,
consequently, the fluid velocity increases. Figures 7 and 8
show that the fluid velocity increases with increasing con-
vective heating (Bi

0
) at the lower plate and decreases with
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Figure 8: Velocity profiles with increasing Bi
1
.

increasing convective cooling (Bi
1
) at the upper plate. This

is expected, since the fluid becomes lighter and flows faster
with increasing temperature due to convective heating.

4.2. Effects of Parameter Variations on Temperature Profiles.
Figures 9–15 demonstrate the effects of various parameters
on the temperature profiles. The imposed thermal boundary
conditions ensure that the fluid temperature at the lower plate
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𝜀 = 0.1, Bi0 = 0.1, Bi1 = 0.1
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Figure 9: Temperature with increasing Ha.
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Figure 10: Temperature with increasing 𝜀.

is highest due to convective heating and decreases gradually
to its lowest value at the upper plate due to convective heat
loss to the ambient. Figure 9 shows the influence of magnetic
field (Ha) on the flow field. As Ha increases due to increasing
magnetic field intensity, the fluid temperature decreases
within the channel. This decrease in the fluid temperature
may be attributed to the combined effects of fluid suction
and convective heat loss, despite the presence of Ohmic
heating (or Lorentz heating) which serves as additional heat
source to the flow system. The effects of increasing 𝜀, Re,
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Figure 12: Temperature with increasing Ec.

and Ec are shown in the Figures 10, 11, and 12. The rise in
the fluid temperature is observed with increasing values of
these parameters. This may be attributed to the facts that as
𝜀, Re, and Ec increase, the fluid viscosity becomes lighter
and viscous heating increases due to increasing convective
heating at the lower plate increases leading to a rise in the
fluid temperature. As the Prandtl number increases fromPr =
0.71 (Air) to Pr = 7.1 (water) the fluid temperature decreases
as illustrated in Figure 13. In Figure 14, a rise in the fluid
temperature is observedwith increasing convective heating at

Pr = 0.71, 3, 5, 7.1

𝐺 = 1, 𝜀 = 0.1, Ec = 0.1, Re = 0.1,
Ha = 0.1, Ri0 = 0.1, Bi1 = 0.1
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Figure 13: Temperature with increasing Pr.

Bi0 = 0.1, 0.2, 0.5, 1

𝐺 = 1, 𝜀 = 0.1, Pr = 0.71, Ec = 0.1,
Re = 0.1, Ha = 0.1, Bi1 = 0.1
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Figure 14: Temperature with increasing Bi
0
.

the lower plate as expected. Figure 15 shows the effect of
increasing Bi

1
on the temperature. As expected, the fluid

temperature decreases due to increasing convective heat loss
at the upper plate.

4.3. Effects of Parameter Variations on Entropy Generation
Rate. The effects of key parameters variation on entropy
generation rate (Ns) are shown in Figures 16–22. Generally,
the entropy production is more pronounced at the permeable
channel walls and decreases towards the channel centerline
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Pr = 0.71, Re = 0.1 , Ec = 0.1 , BrΩ−1 = 0.1,
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Ha = 0.1
Ha = 1

Ha = 2

Ha = 3

0 0.2 0.4 0.6 0.8 1
𝜂

0.025

0.02

N
s 0.015

0.01

0.005

Figure 16: Ns with increasing Ha.

region. Figure 16 reveals the effect of increasing magnetic
field intensity (Ha) on entropy generation rate (Ns). As Ha
increases, the entropy generation decreases at the walls and
increases at the centerline region of the channel. Meanwhile,
it is interesting to note that two points exist, that is, 𝜂 =
0.3 and 𝜂 = 0.7 within the flow field where the entropy
production is not affected by increasing Ha. In Figure 17, it

Pr = 0.71, Ha = 0.1, 𝐺 = 1, 𝜀 = 0.1,
BrΩ−1 = 0.1, Bi0 = 0.1, Bi1 = 0.1
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Figure 17: Ns with increasing Re.

Pr = 0.71, Ha = 0.1, Ec = 0.1, BrΩ−1 = 0.1,
𝐺 = 1, Re = 0.1 Bi0 = 0.1, Bi1 = 0.1
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Figure 18: Ns with increasing 𝜀.

is observed that entropy production is enhancedwith increas-
ing suction (Re) at the upper wall region, while a decrease
in the entropy generation occurs at the lower wall with
increasing fluid injection. The effects of 𝜀, BrΩ−1 and 𝐺

on the entropy generation rate are shown in Figures 18–20.
As the fluid viscosity decreases with increasing values of 𝜀,
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Figure 19: Ns with increasing BrΩ−1.

Pr = 0.71, Ha = 0.1, Ec = 0.1, 𝜀 = 0.1,
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Bi0 = 0.1, Bi1 = 0.1
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Figure 20: Ns with increasing G.

the entropy production increases at both walls and decreases
towards the channel centerline as indicated in Figure 18.
However, a point exists at 𝜂=0.5, where entropy production is
virtually zero. This may be attributed to the presence of zero
velocity gradients at the region. A similar trend of entropy
production is observed with increasing values of group

Pr = 0.71, Ha = 0.1, Ec = 0.1, 𝜀 = 0.1, 𝐺 = 1

BrΩ−1 = 0.1, Re = 0.1, Bi1 = 0.1

0 0.2 0.4 0.6 0.8 1
𝜂

0.03

0.025

0.02

0.015

0.01

0.005

N
s

Bi0 = 0.1

Bi0 = 0.2

Bi0 = 0.3

Bi0 = 4

Figure 21: Ns with increasing Bi
0
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Figure 22: Ns with increasing Bi
1
.

parameter (BrΩ−1) and constant pressure gradient (G) as
demonstrated in Figures 19 and 20. Figures 21 and 22 show
that the entropy generation rate increases with combined
increase in convective heating at the lower wall and convec-
tive cooling at the upper wall that is, as Bi

0
and Bi

1
increase.

4.4. Effects of Parameter Variations on Bejan Number.
Figures 23–30 illustrate the effects of different values of key
parameters on Bejan number (Be). Generally, the Bejan
number is highest along the channel centerline region with
irreversibility due to heat transfer dominating the flow, while
near the channel walls the fluid friction and magnetic field
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Figure 23: Bejan number with increasing Ha.
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Figure 24: Bejan number with increasing Re.

irreversibility dominate. Moreover, it is evident in Figure 23
that an increase in Ha results in a decrease of Be along the
channel centerline. As Re increases (see Figure 24), the Bejan
number decreases near the lower wall due to injection and
increases toward the upperwall due to suction. Figures 25 and
26 show a general decrease in Bejan number with increasing
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Figure 25: Bejan number with increasing 𝜀.
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Figure 26: Bejan number with increasing BrΩ−1.

parameter values of 𝜀 and BrΩ−1 due to a decrease in fluid
viscosity and an increase in viscous dissipation irreversibility.
In Figures 27 and 28, an increase in the dominant influence
of heat transfer irreversibility is observed as the parameter
values of Bi

0
and Bi

1
increase, consequently, the Bejan

number increases. Hence, the convective thermal boundary
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Figure 28: Bejan number with increasing Bi
0
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conditions enhance the dominant effects of heat transfer
irreversibility on the flow system. An increase in the pressure
gradient parameter causes a decrease in the Bejan number
within the channel leading to an increase in the irreversibility
due to fluid friction as shown in Figure 29. Figure 30 shows
that theBejannumber slightly decreases at the lower plate and
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Figure 29: Bejan number with increasing 𝐺.
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Figure 30: Bejan number with increasing Pr.

slightly increases at the upper plate with increasing Prandtl
number Pr.
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5. Conclusion

In this paper, the effects ofmagnetic field on variable viscosity
channel flow with suction/injection together with convec-
tive heating/cooling at the walls have been investigated.
The nonlinear model problem is tackled numerically using
shooting quadrature and fourth-order Runge-Kutta iteration
scheme. Based on the results presented above, the following
conclusions are deduced.

(i) An increase in 𝜀, Ec,𝐺, Pr, and Bi
0
increases the veloc-

ity profiles, while an increase in Ha and Bi
1
decreases

the velocity profile along channel centerline region.
(ii) An increase in 𝜀, Ec, 𝐺, Pr, Re, and Bi

0
increases the

temperature profiles, while an increase in Ha and Bi
1

decreases the temperature profile.
(iii) An increase in 𝜀, Bi

0
, Bi
1
, 𝐺, and BrΩ−1 increases the

entropy generation rate. An increase in Re decreases
Ns at injectionwall, while at suctionwall Ns increases.
An increase in Ha increases Ns at both walls but de-
creases Ns at centre of the channel.

(iv) An increase in 𝜀, 𝐺, BrΩ−1, and Ha decreases the
Be with increasing fluid friction and magnetic field
irreversibility. An increase in Pr decreases Be at injec-
tion wall but increases Be at suction wall. Meanwhile
increase in Bi

0
, Bi
1
increases the Be with increasing

effect of heat transfer irreversibility.

Nomenclature

𝐶
𝑝
: Specific heat at a constant pressure

𝑢: Fluid velocity
𝑉: Uniform suction/injection velocity
𝑇: Fluid temperature
Be: Bejan number
𝑇
𝑓
: Hot fluid temperature

ℎ: Channel width
Re: Reynolds number
Br: Brinkmann number
(𝑥, 𝑦): Cartesian coordinates
𝑋: Dimensionless axial coordinate
Bi
0
: Lower plate Biot number

𝑚: Variable viscosity parameter
𝑘: Thermal conductivity
𝑃: Fluid pressure
𝐸
𝐺
: Volumetric rate of entropy

Ha: Square of Hartmann number
𝑇
∞
: Ambient temperature

𝐺: Pressure gradient
Pr: Prandtl number
Ec: Eckert number
𝑤: Dimensionless velocity
𝐵
0
: Magnetic field strength

Bi
1
: Upper plate Biot number.

Greek Symbols
𝛼: Thermal diffusivity
𝜃: Dimensionless temperature

Ω: Temperature difference parameter
𝜂: Dimensionless transverse coordinate
𝜇(𝑇): Temperature dependent viscosity
𝜇
0
: Fluid viscosity at ambient temperature

𝜇: Fluid viscosity
𝜙: Irreversibility ratio
𝜌: Fluid density
𝜎: Electrical conductivity
𝛾
0
: Lower plate heat transfer coefficient

𝛾
1
: Upper plate heat transfer coefficient.
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