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This study attempts to elucidate individual car-following behavior using risk homeostasis theory (RHT). On the basis of this
theory and the stimulus-response concept, we develop a desired safety margin (DSM) model. Safety margin, defined as the level
of perceived risk in car-following processes, is proposed and considered to be a stimulus parameter. Acceleration is assessed in
accordance with the difference between the perceived safety margin (perceived level of risk) and desired safety margin (acceptable
level of risk) of a driver in a car-following situation. Sixty-three cases selected fromNext Generation Simulation (NGSIM) are used
to calibrate the parameters of the proposed model for general car-following behavior. Other eight cases with two following cars
taken from NGSIM are used to validate the model. A car-following case with stop-and-go processes is also used to demonstrate
the performance of the proposed model. The simulation results are then compared with the calculations derived using the Gazis-
Herman-Rothery (GHR) model. As a result, the DSM and GHR models yield similar results and the proposed model is effective
for simulation of car following. By adjusting model parameters, the proposed model can simulate different driving behaviors. The
proposed model gives a new way to explain car-following process by RHT.

1. Introduction

Car-following models are used to determine individual
driving behaviors under continuous traffic flow, in which
vehicles do not make lane changes [1]. These models are
important for autonomous cruise control systems [2, 3] and
are considered key evaluation tools for intelligent transporta-
tion system strategies [4–6]. A number of researchers have
proposed mathematical models for car-following simulation.
Brackstone and McDonald provided an excellent review
on the history of car-following models proposed in the
20th century [7]. Many studies have recently explored car-
following behavior to improve existing models or construct
new ones [1, 8–21]. Some researchers focus on the stability
analysis of car following [16, 19].

Although most of the reviewed models effectively simu-
late car-following behaviors and determine how car following
occurs in actual scenarios, the reason why vehicles follow one

another in a certain manner remains unclear. Hamdar et al.
explained car-following behaviors based on the prospect the-
ory of Kahnemann and Tversky and proposed a car following
model by evaluating the gains and losses while driving [21].
Another risk-taking theory, Wilde’s risk homeostasis theory
(RHT) is also helpful to explain car-following behaviors [22].

Wilde defines driving behavior as a homeostatic con-
trolled self-regulation process, in which a driver alters his/her
current behavior after comparing the instantaneously expe-
rienced level of risk with the level of risk he/she is willing
to take [22, 23]. According to RHT, people develop behav-
ioral adaptation to compensate for the difference between
perceived and acceptable risk [24].This theorymaintains that
individuals submit to a certain level of subjectively estimated
risk to their health or safety in exchange for the benefits
they hope to receive from that activity [25]. Quantifying risk,
especially perceived risk, is one of the key problems in RHT
research. Some scholars quantify risk in RHT as “the accident
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toll-the probability of an accident multiplied by its severity
per unit of time, and it is assumed that this quantity is directly
under the road user’s control” [26]. Some researchers also use
speed as a parameter for risk evaluation [26, 27]. Another
method for risk investigation is self-reporting [28, 29]. Few
studies quantify risk perception under unique microscopic
traffic conditions, such as car following, lane changing, or
merging processes.

A car-following model based on risk perception as
defined in RHT and a stimulus-response model aid the
understanding of car-followingmechanisms and facilitate the
simulation of car-following behaviors that differ depending
on varied individual characteristics (the different levels of
acceptable risk).

Most of the reported car-following models are based
on the stimulus-response concept. The key concepts of
these models revolve around defining stimulus parameters,
response parameters, and response function. Using only
relative speed as stimulus, Chandler et al. proposed the first
linear model based on the stimulus-response concept [30,
31]. Subsequently, different stimulus parameters or response
functions were used in numerous models that simulate car-
following processes.

The optimized velocity approach proposed by Bando et
al. assumes that car following is based on a driver’s desire to
maintain optimal velocity in a traffic stream [32]. The driver
in the following car adjusts vehicular speed in accordance
with the difference between the speed of the following
vehicle and optimized velocity. Optimized velocity changes
under different traffic conditions, making it an unsuitable
quantitative indicator of homeostatic risk perception. Li et
al. presented an empirically desired headway (EDH) model,
which assumes that every car-following vehicle has an EDH
at its speed and that every driver responds to stimulus from a
leading vehicle [12]. Given that EDH changes with speed, it is
also an unsuitable quantitative indicator of homeostatic risk
perception. In the driving by visual angle model, visual angle
and its changes are used as initial stimulus parameters [33].
Despite these efforts, themanner bywhich a driver constructs
an indicator of risk perception by visual angle and its changes
remains unelucidated.

The speeds of following and leading cars, along with the
relative speed and spacing between them, are commonly used
as an initial stimulus parameters in many models [1, 15, 32,
34]. The acceleration, velocity, relative distance, or trajectory
of these cars is typically employed as response parameters
[1, 15, 32–35]. However, the preset models do not precisely
solve the problem of how to describe the risk perceived by
drivers in car-following processes. Time-to-collision (TTC)
and time headway (TH) are typically used as risk indicators
in car following. Nevertheless, whether a driver uses these
indicators in evaluating risk level is uncertain.

TTC is the fraction of time until collision occurs when
both vehicles continue on the same course and at the same
speed [36]. Some studies use it as a criterion for activating
a driver support system, such as collision avoidance sys-
tems (CAS) [37]. Some researchers also consider TTC as a
potential parameter for distinguishing between dangerous
and safe situations [38]. Regardless of its wide application,

TTC suffers from certain drawbacks in quantifying risk. A
large or undefined TTC value occurs when the speed of a
following car is near or equal to that of a leading vehicle.
When the difference in speed between the following and
leading cars is very small, the TTC is very large even at a small
relative spacing between the two cars. A large TTC sometimes
indicates that the difference in speed between two vehicles is
small, making it an inaccurate parameter for quantifying the
degree of risk in car following.

TH is the time difference between the consecutive arrival
instants of two vehicles passing the measurement point on a
lane. Some car-followingmodels are based on the assumption
that each driver attempts to maintain a desired following
headway behind a leading vehicle [39, 40]. Although TH has
been used to simulate traffic flow and adaptive cruise control,
it is affected by absolute speed [41]. Because its formulation
neglects the effect of relative speed, it may underestimate risk
at large relative speeds.

Minimum gap and the actual gap are always used to
evaluate level of risk in car following. In Gipps’ model, speed
of following car is determined by actual gap and desired
minimum gap which are related to desired acceleration and
comfortable deceleration [35]. In intelligent-driver model
(IDM), interaction term of acceleration of following car is
determined by actual gap and desired minimum gap which
are related to comfortable braking deceleration, minimum
spacing, maximum acceleration, and desired time headway
[20]. We use actual gap and minimum safe gap which is
related tomaximumbraking deceleration instead of comfort-
able braking deceleration to define the object level of risk
as a clue to develop a quantitative indicator of subjective
homeostatic risk perception in car following. In this paper,
we propose a quantitative indicator of risk perception called
the safety margin by measuring the speed of following
and leading cars, as well as the gap between these cars.
In our previous research, we found that it is a suitable
quantitative indicator of homeostatic risk perception in car-
following process [42]. A car-following model based on the
stimulus-response concept is also proposed. In the model,
the difference between perceived safety margin (perceived
risk) and desired safety margin (acceptable risk) serves as
the stimulus parameter. Therefore, car-following behaviors
that are affected by individual characteristics (with different
acceptable risks) can be simulated by adjusting the desired
safety margin (DSM) and enhancing (or moderating) the
sensitivity factor in the response function. Genetic algorithm
(GA) is used to calibrate the parameters of the proposed
model for general following behavior. The model gives a way
to explain car following by RHT.

Ranjitkar et al. investigated eight models and found
that the model proposed by Chandler et al. and Gazis-
Herman-Rothery (GHR model) performs better than the
others by producing lower percentile errors for speed and
acceleration predictions [31]. Therefore, we compare the test
results derived using the proposedmodel with those obtained
by the GHR model.
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Figure 1: Car-following model based on risk perception.

2. Model Assumptions

A driver’s behavior is usually influenced by car interaction,
driver characteristics, and external environment [33]. Under
sufficiently safe conditions, the car runs at a specific speed
(desired speed) and is influenced only by the driver’s char-
acteristics and external environment. However, when a car
is close to a leading car, the speed of the following car
is affected by that of the leading car. The behavior of the
driver in the following car depends on the speed of the
leading car, distance from the leading car, and speed of
the following vehicle. According to RHT, the driver of the
following car adjusts the distance (or speed) in accordance
with the perceived and acceptable risk levels. If the perceived
level of risk is greater than the acceptable level, the driver
decelerates to avoid crash.

In RHT and the stimulus-response concept, the driver
of a following car responds to the stimulus (perceived level
of risk) (shown in Figure 1). The driver adjusts the speed in
accordance with his/her perception of risk, which is based
on initial stimulus information, including the speed of the
following and leading cars, relative spacing between cars,
and traffic situation. However, the manner by which available
information stimulates a driver and the relationship between
the initial stimulus information and risk perception remain
unclear. In this paper, the perception of risk is denoted by
a quantified indicator of the safety margin. DSM is used
to represent acceptable risk levels under different traffic
environments.

In summary, a drivermaintains an acceptable risk level by
adjusting car speed. We assume that the driver of a following
car responds to the difference between the perceived safety
margin (perceived level of risk) and DSM (acceptable level of
risk). In the succeeding section, we comprehensively quantify
and discuss the safety margin.

Safe distance
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Figure 2: Braking process of a car during a car-following situation.

3. Safety Margin (Level of Risk) of
Car Following

On the basis of the braking process during a car-following
situation (Figure 2), we use actual gap andminimum safe gap
to define level of risk as follows:
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where 𝑉
𝑛
(𝑡) is the speed of the following car; 𝑉
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1), respectively; 𝜏 represents the response time, including the
driver’s response time (𝜏

1
) and brake system’s response time
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car; and 𝑑
𝑛−1

(𝑡) is the deceleration of the leading car.
Risk can be described as
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To ensure safety, actual gap cannot be less thanminimum
safe gap. Thus,

𝜉
𝑛
(𝜏, 𝑡) ≤ 1.0. (3)

When 𝜉
𝑛
(𝜏, 𝑡) = 1.0, the driver of the following car risks

approaching the leading car but does not intend to collide
with it in case the driver of the leading car suddenly pushes
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on the brakes. The condition for keeping safe following in (3)
can be denoted as

𝑉
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(𝑡) ⋅ 𝜏
1
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≤ 1.0 − 𝜉
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(𝜏
2
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We quantify safety margin as

SM
𝑛
(𝑡) = 1.0 − 𝜉

𝑛
(𝜏
2
, 𝑡) . (5)

To avoid crash, the following car must maintain a certain
distance from the leading car. Thus,
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𝑛
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Expression (6) then becomes

𝜏
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≤ SM
𝑛
(𝑡)

𝐷
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𝑉
𝑛
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A large safety margin indicates that the driver of the
following car has more time to respond to the movement of
the leading car and that the driver has enough time to adjust
relative spacing or speed.

In a car-following situation, the following car should
maintain adequate space to ensure safety. When the driver
of the leading car suddenly applies the brakes, the driver of
the following car should follow suit to avoid a potential crash.
When the emergency brake is used in the following car, its
acceleration is affected by the adhesion coefficient. Adhesion
coefficients are influenced by operational parameters such as
speed, vertical load, and performance of road surfaces. The
peak values for the adhesion coefficient are usually from 0.1
(icy road) to 0.9 (dry asphalt and concrete) [43].TheHighway
CapacityManual recommends that “vehicle acceleration rates
of passenger cars accelerating after a stop range between 3 and
13 ft/s2, while passenger car deceleration rates range between
7 and 26 ft/s2” [44]. With reference to the test data in the
literature [45, 46], the deceleration in the calculation of risk
is set as

𝑑
𝑛
(𝑡) = 𝑑

𝑛−1
(𝑡) = 0.75𝑔, (8)

where 𝑔 is the acceleration due to gravity.
A driver’s reaction time is difficult to determine because

it is affected bymany factors.While some studies determined
it to be between 0.3 and 1 seconds [47], many experiments
showed that a driver’s reaction time ranges from 0.3 to 1.2
seconds [48]. Setti et al. investigated perception-reaction time
(PRT) which corresponds to travel times to the intersection
[49]. The study revealed that the observed PRTs occurred
between 0.3 and 1.7 seconds, with a mean of 0.742 sec-
onds, a median of 0.7 seconds, and a standard deviation of
0.189 seconds. A drivers’ reaction time differs in the car-
following process. A driver requires little reaction time when
he/she adjusts speed only by acceleration pedal or brake
pedal control. However, if driving requires shifting from the
acceleration pedal to the brake pedal (or vice versa) to adjust
speed, then a driver would need more time to react.

The response time (𝜏
2
) of a brake system also differs

under various situations because of the difference in force
and speed of brake pedals. The response time of hydraulic
brakes is less than that of air brakes. Bayan et al. presented
detailed brake timing information obtained from the full-
scale instrumented testing of a tractor semitrailer under
various loads and speeds [50].The study showed that average
lag time, rise time, and steady-state delay time are 0.15, 0.33,
and 0.49 seconds, respectively. After investigating the braking
parameters of automobiles with and without an antilock
braking system, Sokolovskij found that “the values of the time
of deceleration increase of most of the Japanese and Western
vehicles have not exceeded 0.2 s and remained within the
limits of 0.1-0.2 s.” [51]. Under emergency situations, the
driver may quickly and strongly step on the brakes. Thus, we
set 𝜏
2
as 0.15 seconds.

We assume that a driver of a following car always
maintains adequate spacing to prevent collision caused by
emergency brake of leading car. We use minimum safe gap
which is determined by maximum decelerations of following
and leading cars to evaluate the risk level instead of desired
minimum gap which is related to comfortable deceleration
used in Gipps model and IDM [20, 35]. Consequently, the
safety margin is simplified as follows:
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,

(9)

where 𝜏
2
= 0.15 s.

Generally, drivers do not understand the response time of
a brake or perceive speed or distance to an inch. They should
be trained to precisely evaluate or determine safety levels (or
risk levels). In our previous research, we found that safety
margin almost fluctuated around a fixed value in the car-
following process and was suitable to quantify homeostatic
risk perception [42].

4. Car-Following Model Based on
Risk Perception

As a driver follows another vehicle, he/she should adjust
relative spacing (or gap) to guarantee an acceptable risk
level, which can be described by the DSM. On the basis
of the difference between a driver’s DSM and the perceived
safety margin, the driver of the following car decides to
accelerate, decelerate, or maintain constant speed. The driver
usually decelerates, accelerates, or maintains constant speed
when the perceived safety margin is small, large, or within
the domains of DSM, respectively. Given that the proposed
model is based on the difference between a driver’s DSM and
the perceived safety margin, we call it the DSMmodel.
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The DSMmodel for car following is described as follows:
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where 𝑎
𝑛-follow(𝑡) is the acceleration of a following car at time

𝑡, SM
𝑛𝐷𝐻

(𝑡) is the upper limit of the DSM in a car-following
condition, SM

𝑛𝐷𝐿
(𝑡) denotes the lower limit of the DSM in

a car-following condition, and 𝛼
1
and 𝛼

2
are the sensitivity

factors for acceleration and deceleration, where 𝛼
1
> 0m/s2,

𝛼
2
> 0m/s2.
Despite our aim for naturalistic driving, the DSM may

change because of psychological factors. In a simulation
designed to analyze the primary factors that affect the car-
following process, random factors are disregarded and the
DSMs are considered to be fixed values that are related to
driver behavior and traffic environment. Equation (10) is
simplified as follows:
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Four constraints are imposed on (11).
(1) Maximum deceleration: the Highway Capacity Man-

ual recommends that the deceleration of passenger
car range between 7 and 26 ft/s2 [44]. We set a
maximum deceleration restriction as 𝑎

𝑛-follow(𝑡) ≥
−8.0m/s2. If 𝑎

𝑛-follow(𝑡) < −8.0m/s2, then 𝑎
𝑛-follow(𝑡) =

−8.0m/s2.
(2) Maximum favorite acceleration: the Highway Capac-

ity Manual recommends that the vehicle acceleration
of passenger cars accelerating after a stop range
between 3 and 13 ft/s2 [44]. Treiber and Kesting sug-
gested that accelerations are within 0.8–2.5m/s2 [52].
Maximum favorite acceleration of simplified Gipps’
model is set to be 1.5m/s2 [35, 52]. Maximum favorite
acceleration of IDM is set to be 1.0m/s2 [20, 52]. Typ-
ical values of a comfortable acceleration are not more
than 1.5m/s2 [52]. We set maximum favorite acceler-
ation as 1.5m/s2 and maximum favorite acceleration
restriction as 𝑎

𝑛-follow(𝑡) ≤ 1.5m/s2. If 𝑎
𝑛-follow(𝑡) >

1.5m/s2, then 𝑎
𝑛-follow(𝑡) = 1.5m/s2.

(3) Minimum speed of the following car: because of
the simulated time interval, the result of calculated
speed may be negative when the speed is close to
zero in numerically updated process. Thus, we set
the minimum speed of the following car as 𝑉

𝑛
(𝑡) =

0.0m/s, if 𝑉
𝑛
(𝑡) < 0.0m/s.
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Figure 3: Relative spacing when both the following and leading car
are at a stop.

(4) Minimum relative spacing: if a following car is exces-
sively near a leading car, especially if the following car
is close to stopping, the safetymargin calculated using
(9) will abnormally increase and cause abnormal
acceleration.Thus, we set aminimum relative spacing
constraint. Using 40 cases, we investigate relative
spacing when both the following and leading cars are
at a stop. Under this condition, the relative spacing
varies from 1.07 to 4.83m, with a mean of 2.17m, a
median of 1.90m, and a standard deviation of 0.90m
(Figure 3). The minimum relative spacing constraint
is set to be 𝑎

𝑛-follow(𝑡 + 𝜏) = max{−[𝑉
𝑛
(𝑡)]2/(2 ⋅

max[(𝐷
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0
), 0.01]), −8.0m/s2}, if𝐷
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is minimum favorite gap when two cars are at stop
and it is set to be 1.9m. max[(𝐷
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avoid [𝑉
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0
), 0.01]) to be

unreasonable.
Treiber and Kesting summarized four criteria for acceler-

ation or speed functions encoding the driving behavior [52].
The four criteria are as follows.

(1) The acceleration is a strictly decreasing function of the
speed;

(2) the acceleration is an increasing function of the
distance to the leading vehicle;

(3) the acceleration is an increasing function of the speed
of the leading vehicle;

(4) a minimum gap to the leading vehicle is maintained.
Similar to theGHRmodel, ourmodel also does not satisfy

the second criterion strictly; that is 𝜕𝑎
𝑛-follow(𝑡)/𝜕𝐷𝑛(𝑡) =

lim
𝜏→0

(𝜕𝑎
𝑛-follow(𝑡 + 𝜏)/𝜕𝐷𝑛(𝑡)) < 0 for 𝑉

𝑛
(𝑡) < 𝑉

𝑛−1
(𝑡).

A complete car-followingmodel can consistently describe
all situations that may arise in single-lane traffic [52]. Equa-
tion (11) can be used to describe the following situation and
cannot be used to describe the free traffic situation. We add
another function to describe the free traffic situation which is
the same as the IDMmodel [52], as

𝑎
𝑛-free (𝑡 + 𝜏) = 𝑎mf [1 − (

𝑉
𝑛
(𝑡)

𝑉
𝑛0

)
𝛿

] , (12)



6 Mathematical Problems in Engineering

where 𝑎
𝑛-free(𝑡) is the acceleration in free traffic at time 𝑡, 𝑎mf

is the maximum favorite acceleration which can be set to be
1.5m/s2, 𝑉

𝑛0
is desired speed, and 𝛿 is acceleration exponent

which is set to be 4 as in the IDMmodel.
The proposed complete car-following model can be

described as

𝑎
𝑛
(𝑡) = min [𝑎

𝑛-follow (𝑡) , 𝑎𝑛-free (𝑡)] . (13)

The model can be numerically updated after setting
parameters of the model, 𝜏, SM

𝑛𝐷𝐿
, SM
𝑛𝐷𝐻

, 𝛼
1
, 𝛼
2
, 𝑎mf, 𝑔0,

and 𝑉
𝑛0
. The update interval is set to be Δ𝑡 = 𝜏/𝑗, in which 𝑗

is integer. The update scheme at step 𝑖 is proposed as follows:

(1) calculate the SM
𝑛
(𝑖 − 𝑗 ⋅ Δ𝑡) by (9);

(2) calculate 𝑎
𝑛
(𝑖) by SM

𝑛
(𝑖 − 𝑗 ⋅ Δ𝑡) according to (11) to

(13);
(3) 𝑉
𝑛
(𝑖) = 𝑉

𝑛
(𝑖 − 1) + 𝑎

𝑛
(𝑖 − 1) ⋅ Δ𝑡;

(4) 𝑥
𝑛
(𝑖) = 𝑥

𝑛
(𝑖 − 1) + 𝑉

𝑛
(𝑖 − 1) ⋅ Δ𝑡 + 0.5𝑎

𝑛
(𝑖 − 1) ⋅ Δ𝑡2;

(5) 𝐷
𝑛
(𝑖) = 𝑥

𝑛−1
(𝑖) − 𝑥

𝑛
(𝑖) − 𝐿

𝑛−1
.

5. Model Calibration

As formulated in (11), five parameters should be calibrated
before the model is used to simulate the car-following
process. The parameters are response time 𝜏, lower limit of
the DSM SM

𝑛𝐷𝐿
, upper limit of the DSM SM

𝑛𝐷𝐻
, sensitivity

factors for acceleration 𝛼
1
, and sensitivity factors for deceler-

ation 𝛼
2
. We denote them as a vector,

p = (𝜏 SM
𝑛𝐷𝐿

SM
𝑛𝐷𝐻

𝛼
1
𝛼
2
)
𝑇

. (14)

The idea of calibration is to obtain a vector p, which can
minimize the difference between measured and simulated
trajectories.

5.1. Calibration Method. GA is a nonlinear optimization
algorithm that simulates biological evolution, and it has been
extensively used to solve complicated nonlinear optimization
problems widely. It has also been used to calibrate car-
following model [8]. We use GA to calibrate the parameters
of the car-following model that is based on risk perception.

Speed of the following car 𝑉
𝑛
(𝑡), speed of the leading

car 𝑉
𝑛−1

(𝑡), and relative spacing between following car and
leading car 𝐷

𝑛
(𝑡) affect the car-following process. We define

fitness to minimize the difference between measured and
simulated speeds and the difference between measured and
simulated relative spacing.

We formulate the difference between measured and
simulated values of following speeds as

𝑑𝑉 (𝑡) =

󵄨󵄨󵄨󵄨󵄨𝑉̂𝑛 (𝑡) − 𝑉𝑛 (𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑉
𝑛
(𝑡)

, (15)

where 𝑉̂
𝑛
(𝑡) is the simulated speed of the following car at time

𝑡 and𝑉
𝑛
(𝑡) is themeasured speed of the following car at time 𝑡.

The difference betweenmeasured and simulated values of
relative spacing is formulated as

𝑑𝐷 (𝑡) =

󵄨󵄨󵄨󵄨󵄨𝐷𝑛 (𝑡) − 𝐷𝑛 (𝑡)
󵄨󵄨󵄨󵄨󵄨

𝐷
𝑛
(𝑡)

, (16)

where 𝐷
𝑛
(𝑡) is the simulated relative spacing at time 𝑡 and

𝐷
𝑛
(𝑡) is the measured relative spacing at time 𝑡.
The average differences between the measured and simu-

lated values of following speeds and relative spacing at time 𝑡
can be calculated as follows:

𝑑𝐸 (𝑡) =
𝑑𝑉 (𝑡) + 𝑑𝐷 (𝑡)

2
. (17)

All the data used to calibrate themodel are discrete.Thus,
we define the total average difference between measured and
simulated values of following speeds and relative spacing as

𝐸 =
1

𝑁

𝑁

∑
𝑖=1

𝑑𝐸 (𝑖) , (18)

where𝑁 is the number of data in a car-following process.
GA is used to find a vector p to minimize the 𝐸.

5.2. Calibration Result. Data from Next Generation Sim-
ulation (NGSIM) [53], a program funded by the Federal
Highway Administration (FHWA), are used to calibrate the
DSM model. We obtain 63 cases of car-following processes
as the dataset used in calibration; these cases were collected
on I-80 freeway [53]. Because different drivers have different
behaviors, we calibrate p for each case and calculate themean
or median of parameters of all cases as the parameters of the
model for general following behavior.

Figure 4 shows the box plots of the parameters calibrated
using the 63 cases. The descriptive statistics of the param-
eters are presented in Table 1. As shown in Figure 4, the
parameters vary for different cases since different drivers
have different behaviors. To avoid the influence from extreme
cases, we use the median of the parameters of cases for
general behavior instead of the mean. That is, we set p =

(0.50 0.75 0.94 6.43 12.22)
𝑇 in the model to simulate

general car-following behavior.

6. Model Validation

In this section, the DSM model is validated in real-world
cases and then compared with the GHR model. It seems
that the DSM and GHR models yield similar results and the
proposed model is effective for simulation of car following.

6.1. GHR Model Used for Comparison. The GHR model is
formulated as [7]

𝑎
𝑛
(𝑡) = 𝑐V𝑚

𝑛
(𝑡)

ΔV (𝑡 − 𝜏)

Δ𝑥𝑙 (𝑡 − 𝜏)
, (19)

where 𝑎
𝑛
(𝑡) is the acceleration of car 𝑛 implemented at time

𝑡, V
𝑛
(𝑡) is the speed of the 𝑛th car, Δ𝑥 and ΔV refer to the
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Table 1: Descriptive statistics of parameters calibrated using 63 cases.

Response time
𝜏 (s)

Lower limit of
the DSM
SM
𝑛𝐷𝐿

Upper limit of
the DSM
SM
𝑛𝐷𝐻

Sensitivity factors
for acceleration

𝛼
1
(m/s2)

Sensitivity factors
for deceleration

𝛼
2
(m/s2)

𝑁 Valid 63 63 63 63 63
Missing 63 63 63 63 63
Mean 0.7016 0.7333 0.9297 8.4055 14.0590
Std. error of mean 0.05236 0.01673 0.00856 .66395 1.03028
Median 0.5000 0.7500 0.9398 6.4263 12.2188
Std. deviation 0.41562 0.13275 0.06796 5.26996 8.17763
Variance 0.173 0.018 0.005 27.773 66.874
Range 1.70 0.48 0.34 26.12 26.99
Minimum 0.30 0.50 0.66 3.79 3.01
Maximum 2.00 0.98 1.00 29.91 30.00

relative distance and speed, respectively, between the 𝑛th
and the (𝑛 − 1) car (immediately subsequent car), 𝜏 is the
driver reaction time, and 𝑚, 𝑙, and 𝑐 represent the constants
to be determined. Much work has been performed on the
calibration and validation of the GHR model [7]. According
to the calibrated results in the literatures, the parameters in
(19) are set as 𝑐 = 1.1,𝑚 = 0.9, and 𝑙 = 1 for deceleration and
𝑐 = 1.1,𝑚 = −0.2, and 𝑙 = 0.2 for acceleration [7].

6.2. Test Results. We selected eight cases from the dataset
on the vehicle trajectory of the FHWA’s NGSIM project
to validate the model based on quantified risk perception.
The cases are the results of observations of US Highway
101 (Hollywood Freeway) in Los Angeles. The cases can be
classified into four categories: speed changes a little, speed
increases, speed decreases, and speed changeswith increasing
and decreasing. Each case includes a leading car (denoted as
car 0) and two following cars (designated as car 1 and car
2). Car 1 was following car 0, and car 2 was following car
1. The measured trajectories of the leading car are used as

initial data. The initial positions of the first and the second
cars are set as the measured values. After response time 𝜏,
the trajectories of the first and the second cars are calculated
using the DSM and GHR models.

We use the calibration result in the previous section as the
parameters of the DSM model to simulate all the cases. That
is, SM

𝑛𝐷𝐿
, SM
𝑛𝐷𝐻

, 𝛼
1
, and 𝛼

2
are set as 0.75, 0.94, 6.43m/s2,

and 12.22m/s2, respectively. Response time 𝜏 is set as 0.5
seconds for the DSM and GHR models.

The rootmean square errors (RMSE) of the simulation are
shown in Table 2. For all the eight cases, there are 16 pairs of
car following. The average RMSE of speed of the 16 following
cars for the DSM and GHR models are 1.25 and 1.38m/s,
respectively. The average RMSE of the relative spacing of the
16 following cars for the DSM and GHR models are 6.47 and
8.24m, respectively. This seems that the proposed model in
this paper is as good as the GHR model. Figure 5 shows the
simulation results for one of the test cases. The figure shows
that the DSM and GHR models yield similar results.
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Table 2: Root mean square errors of the simulation.

Case type Case no. Model Speed of car 1
(m/s)

Speed of car 2
(m/s)

Relative spacing
between car 0 and

car 1 (m)

Relative spacing
between car 1 and

car 2 (m)

Speed changes a little
1 DSM 0.84 1.62 4.87 19.34

GHR 0.86 2.37 5.33 27.33

2 DSM 0.99 1.15 1.96 5.66

GHR 1.10 1.03 7.64 4.89

Speed increases
3 DSM 0.62 1.13 3.65 4.78

GHR 0.67 1.08 3.90 4.54

4 DSM 0.84 1.31 1.92 9.30

GHR 0.85 1.20 1.76 11.03

Speed decreases
5 DSM 1.56 1.87 5.00 5.04

GHR 1.78 1.98 10.32 2.94

6 DSM 1.35 1.88 3.75 4.63

GHR 1.93 1.90 7.89 1.72

Speed changes with
increasing and
decreasing

7 DSM 1.33 1.32 14.53 8.92
GHR 1.36 1.43 14.23 9.41

8 DSM 0.88 1.33 6.49 3.63
GHR 1.05 1.46 14.97 3.85

Average

DSM 1.05 1.45 5.27 7.66
GHR 1.20 1.56 8.26 8.21
DSM 1.25 6.47
GHR 1.38 8.24

6.3. Validating for Car Following with Stop-and-Go Processes.
Most car-following models cannot be used to simulate stop-
and-go actions in the car-following process.This function has
been synthesized into the proposed model. We use a case
to demonstrate it. The case is also selected from the dataset
on the vehicle trajectory of the FHWA’s NGSIM project and
is a result of observations of US Highway 101 (Hollywood
Freeway) in Los Angeles between 7:50 and 8:05 a.m. on June
15 2005 [53]. The vehicle ID of the following car is 2740
while that of the leading car is 2458. The results of the
simulation in which the DSM model used are shown in
Figure 6.These are compared with the findings derived using
the GHRmodel. The parameters of the models are also set as
p = (0.50 0.75 0.94 6.43 12.22)

𝑇.
The results of the DSMmodel resemble the detected data.

Figure 6 shows that the DSM model can simulate stop-and-
start processes. In the early stage of the car-following process
(from 0 to 22.5 seconds; Figure 6), the results of both the
models slightly differ from those of the case. For the GHR
model, however, the acceleration (the output of the model)
may be close to zero when the speed of the following car is
close to zero. Consequently, the simulationmay be inaccurate
when the following car is close to a stop. The acceleration is
zero when the speed of the following car is zero, as indicated
by (19). Thus, if the following car is at a stop, it cannot start
until after the leading car resumesmotion in the car-following
process (from 22.5 to 70 seconds; Figure 6).

7. Discussion

In spite of that the Gipps’ model and the IDM contain intu-
itive parameters related to the driving style, such as desired
accelerations, comfortable decelerations, and a desired safe
time gap, they cannot to be used to describe some important
aspects of the cognitive processes used by drivers, such as per-
ception, judgment, and execution while driving [21]. Hamdar
et al. assumed that a driver will have a probability density
function of the acceleration he or she will adopt while given
an assumed distribution of the future velocity of the leading
car [21]. In our opinion, a driver adopts the acceleration
or deceleration by judging that if risk level is smaller or
larger than one’s acceptable domain for a given state. Hamdar
et al. assumed that a driver perceives risk by estimating the
probability of being involved in rear-end collision. However,
we aimed to propose a quantitative indicator of homeostatic
risk perception. Hamdar et al. adopted prospect theory for
evaluation process of gains and losses while driving, whereas
a driver makes judgment by comparing perceived risk level
with acceptable risk domain in DSMmodel.

Parameters 𝛼
1
, 𝛼
2
, SM
𝑛𝐷𝐿

, SM
𝑛𝐷𝐻

, and 𝜏 in the DSM
model are used to describe driving behavior in the car-
following process.Themodel can also be employed to analyze
the effect of driving behavior on the car-following process by
setting different parameters for different drivers.

First of all, interval [SM
𝑛𝐷𝐿

, SM
𝑛𝐷𝐻

] is an indicator of
driving behavior in adjusting speed. For instance, a small
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Figure 5: Simulation results on one of the test cases (case no. 7).

(SM
𝑛𝐷𝐻

-SM
𝑛𝐷𝐿

) indicates that the driver prefers frequent
adjustment in speed in order to keep his/her SM within the
small range. Second, 𝛼

1
and 𝛼

2
describe the preference of

acceleration and deceleration. SM
𝑛𝐷𝐻

, SM
𝑛𝐷𝐿

, 𝛼
1
, and 𝛼

2

are influenced by traffic circumstance, as well as by the a
drivers’ physiological and psychological characteristics. For
example, the more careful the driver, the higher the SM

𝑛𝐷

value. If a driver displays preference for sudden deceleration
or acceleration, 𝛼

1
or 𝛼
2
may be increased. Finally, if a

driver quickly reacts, his (her) reaction time 𝜏 may be low.
The sensitivity factors, 𝛼

1
and 𝛼

2
, DSM [SM

𝑛𝐷𝐿
, SM
𝑛𝐷𝐻

],
and reaction time 𝜏 are related to a driver’s physiological
and psychological characteristics. We can use the vector
p = (𝜏 SM

𝑛𝐷𝐿
SM
𝑛𝐷𝐻

𝛼
1
𝛼
2
)
𝑇 to describe the different

behaviors of car-following for different individuals.
In the previous section, we calibrated the parameters of

the model for general car-following process. The result of
p = (0.50 0.75 0.94 6.43 12.22)

𝑇 denotes the average (or
general) behavior of car-following behavior. This does not

mean that good simulation results can be obtained for all car-
following processes using this calibrated result because car-
following behaviors are varied with driver or circumstance.
For instance, careful drivers always maintain a larger relative
spacing from the leading car than do aggressive drivers. By
setting different DSMs, 𝛼

1
, 𝛼
2
, and 𝜏 values, the model can be

used to describe the scenarios inwhich either different drivers
maintain varied relative spacing under the same condition
or the same driver maintains different relative spacing under
various conditions.

As depicted in Figure 6, when parameters vector p =

(0.50 0.75 0.94 6.43 12.22)
𝑇 is used to simulate the car-

following process, the simulated relative spacing is greater
than the measured relative spacing; the frequency of speed
adjustments in simulation result is less than that measured.
In this case, it seems that the driver frequently adjusts speed.
A better result (shown in Figure 7) can be obtained if we
adjust the [SM

𝑛𝐷𝐿
, SM
𝑛𝐷𝐻

] and set parameters vector as
p = (0.50 0.85 0.90 6.43 12.22)

𝑇 in the model. The model
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Figure 6: Simulation of the case with stop and start processes.
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Figure 7: Simulation of the case with stop and start processes when [SM
𝑛𝐷𝐿

, SM
𝑛𝐷𝐻

] is adjusted to [0.85, 0.90].

facilitates the formulation of a car-following strategy that
adapts to different behavior.

The proposed model can be linked with macroscopic
traffic behavior. In a stationary flow, all drivers have the
same target risk level of SM, denoted as SM

𝐷
. For the car-

following process in stationary flow, 𝑉
𝑛
(𝑡) = 𝑉

𝑛−1
(𝑡) = 𝑉 and

𝑎
𝑛
(𝑡) = 0. In the proposed model, average time headway can

be calculated using (11) as follows:

𝐻
𝑡
=

𝜏
2

1 − SM
𝐷

+
𝐿

𝑉
, (20)

where 𝐿 is the average length of the cars and 𝜏
2
= 0.15 s.

Referring to Highway CapacityManual [44], 𝐿 is set to be
5.5m, and SM

𝐷
is set to be mean of SM

𝑛𝐷𝐿
and SM

𝑛𝐷𝐻
, 0.85.

The relationship between time headway and speed in the car-
following process is shown in Figure 8. This relationship is
similar to the result obtained by Brackstone et al. [39].

Further research should be carried out before the DSM
model can be used in traffic flow analysis; issues such as
distributions for reaction time 𝜏, DSM, 𝛼

1
, and 𝛼

2
should

be considered. We have calibrated SM
𝑛𝐷𝐿

and SM
𝑛𝐷𝐻

which
can be regarded as the thresholds for triggering deceleration
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Figure 8: Relationship between time headway and speed derived
using the proposed model.

or acceleration in general car-following behavior. Interval
[SM
𝑛𝐷𝐿

, SM
𝑛𝐷𝐻

] is the acceptable safety margin domain, but
this does not mean that SM

𝐷
is uniformly distributed in

the [SM
𝑛𝐷𝐿

, SM
𝑛𝐷𝐻

] interval during car-following process.
Further effort to identify the distribution of SM

𝐷
would
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be favorable for modeling the relationship between time
headway and speed. Moreover, a novice driver may have
larger safety margin values than a skilled driver. Investigating
the distribution of DSM for different kinds of drivers in
general car-following condition is important. In addition,
the proposed model is appropriate for simulating the car-
following process in a single lane. The application of other
theories along with the DSM is also recommended for
simulating the effect of other cars or traffic environments. For
example, when cars in adjacent lanes may potentially move
into the gap between the leading vehicle and the following
vehicle, the driver of the following car may reduce the DSM
to decrease (often drastically) the relative spacing (“defensive”
close-following). Examining the DSM and calibrating model
parameters for different drivers classified according to their
characteristics in a typical traffic environment are also worth-
while research directions.

8. Conclusion

According to the stimulus-response concept, a driver decides
to accelerate, decelerate, or maintain a constant speed
depending on stimulus. Using RHT, we deduce that the
perceived level of risk may be a suitable indicator of stimulus.
Therefore, identifying one or more parameters that describe
perceived risk levels during the car-following process is
essential. Initial stimulus information includes the speed of
the following car, speed of the leading car, relative spacing
between cars, and other traffic variables. Nevertheless, how
this information stimulates driver behavior remains unclear.

In this paper, the safety margin is quantified as the
function of the speed of the leading car, the speed of the
following car, and relative spacing during the car-following
process. A new car-following model called the DSMmodel is
proposed to determine the difference between the perceived
safety margin and the DSM as the stimulus parameter. The
following car accelerates (or decelerates) in response to the
DSM. The proposed model serves as a potential method for
investigating situations, in which different drivers maintain
varied relative spacing under the same conditions, and those
in which drivers maintain different relative spacing (gap)
under various conditions. Different driving behaviors can be
accurately described by the DSM through adjustments in the
interval of the DSM and the sensitivity factors during car
following. For general following behavior, 63 car-following
cases are selected from datasets on I-80 freeway of NGSIM
to calibrate the parameters of the proposedmodel. Moreover,
eight cases with two following cars from datasets on US
Highway 101 are used to validate the DSMmodel. The results
are compared with those calculated by the GHRmodel. Both
models show a slight difference. A case of car following with
stop-and-go processes is used to demonstrate performance in
stop-and-go following processes.These findings may provide
useful insights into research on the car-following process.

Compared with existing models, the proposed model
introduces a new method for explaining the mecha-
nism underlying speed adjustment in car-following process.

The characteristics of the proposed model can be summa-
rized as follows.

(1) It is based on RHT and uses the safety margin as a
quantified index of risk perception. It serves as a link
between risk theory and car-following model.

(2) The parameters of the model, 𝛼
1
, 𝛼
2
, SM
𝑛𝐷𝐿

, SM
𝑛𝐷𝐻

,
and 𝜏, can be used to explain different car-following
behaviors.

(3) By setting different DSMs, 𝛼
1
, 𝛼
2
, and 𝜏 values,

the model can be used to describe scenarios, in
which either different drivers maintain varied relative
spacing under the same condition or the same driver
maintains different relative spacing under various
conditions.

Overall, the proposed model is a simple method for
simulating different driving behaviors that are affected by the
individual characteristics and car-following process can be
explained by RHT using the proposed model.
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