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State estimation problem is addressed for a class of nonlinear discrete-time systems withMarkov parameters and nonhomogeneous
transition probabilities (TPs). In this paper, the optimal estimation mechanism of transition probability matrix is proposed in
the minimum mean square error sense to show some critical points. Based on this mechanism, the extended Kalman filters are
employed as the subfilters to obtain the subestimates with correspondingmodels. A novel operator which fuses the prior knowledge
and the posterior information embedded in observations is developed to modify the posterior mode probabilities. A meaningful
example is presented to illustrate the effectiveness of our method.

1. Introduction

Markov jump systems (MJSs) are special systems which
involve both time-evolving and event-driven mechanisms
and have been used to model a wide variety of dynamic sys-
tems with unpredictable system structures. For MJSs, the
state of the systems has two components: the finite valued
state (denoted as mode) and the state in a finite dimensional
Euclidean space. Motivated by a wide spectrum of applica-
tions, state estimation for MJSs has received considerable
attention in the literatures [1–7] over the last three decades. It
is well known that the optimal estimator for linearMJSs with-
out the information about the underlying mode sequence is
obtained by a bank of Kalman filters which requires expo-
nentially increasing memory and computation with time. In
order to limit the resource requirement, some suboptimal
but executable algorithms have been proposed, including
the generalized pseudo-Bayesian (GPB) [2], the interacting
multiplemodel (IMM) [3], the improved IMMmethod [4, 5],
and the particle filters (PF) [6, 7]. Moreover, methods based
on guaranteed-cost approachwhich attempt to guarantee that
the covariance of state is upper bounded by a certain constant
value are also derived in quantity [8–14].

It is worth noting that the all the Markov chains con-
sidered in the aforementioned estimators are assumed to be
homogeneous. More specifically, the transition probabilities
(TPs) are constant and are not allowed to be time-variant
during the entire estimation process [15]. However, since the
external practical environment (humidity, temperature, etc.)
always exhibits complex and rich dynamics, it is impossible to
guarantee the TPs of all likely modes to be time-invariant. In
other words, nonhomogeneousMarkov process is a common
phenomenon, not the exception in practice [16, 17]. On the
other hand, TPs are introduced to depict the uncertainties
of transitions between possible system behavior patterns and
the accuracy of TPs is critical to the estimation performance
of MM-type estimators [18]. In this sense, it is wise and
meaningful to consider the nonhomogeneous Markov chain
in systems. By observing this, nonlinear stochastic hybrid sys-
temswith state-dependent TPswere considered in [19], where
PF was embedded into IMM method to obtain the IMM-
PF. With the same motivation, state-dependent TPs were
modeled in terms of Gaussian-shaped functions in [20] and
the Gaussian hypotheses were used to reduce the computa-
tional cost of the developed algorithms. However, the exist-
ing literatures seem to lack a complete approach of state
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estimation for MJSs with uncertain time-varying TPs, until
the H-infinity filter for nonhomogeneous linear MJSs was
proposed in [21]. In this paper, the character of nonhomo-
geneous TPs is reflected by a higher-level transition matrix
and TPs vary within a finite set in discrete-time domain.
Later, the convenience brought by the assumption that the
transition probability matrix (TPM) randomly takes value in
a finite set was demonstrated analytically in [22] by compar-
ing the optimal Bayesian equation derived under two differ-
ent conditions. Nevertheless, all these estimators require the
information about the TPM. More specifically, all the candi-
date TPMs and high-level transitionmatrix are required to be
known accurately, making the resulting methods intractable
in practical applications.

In this paper, a recursive estimator is derived for nonlin-
ear MJSs with nonhomogeneous TPs. Different from [21, 22],
the information about the dynamic of TPM including candi-
date TPMs and high-level transition matrix is not required
to be known completely. This is a particular advantage of the
framework raised here, and to the best of authors’ knowledge,
no similar situation has been considered. The Bayesian
equation that exploits the likelihoods of TPM to update the
prior PDFs is developed. For the output calculation, we are
required to find both the likelihoods and the dynamic of TPM
which unfortunately turn out to be impossible. Therefore,
instead of considering all the possible values of TPM in
an admissible region, a constant diagonally dominant TPM
which is rudely determined in advance is employed in the
entire estimation process. In this sense, the problems involved
in the estimation of TPM are solved naturally. The extended
Kalman filter (EKF) [23, 24] is utilized as the subfilter under
different models to obtain the subestimates and posterior
mode probabilities. The exponentially increased compu-
tational problem is solved by the IMM-type approximation.
Once the posterior mode probabilities are available, a novel
operator is proposed to modify the posterior mode proba-
bilities. Specifically, the probabilities of dominant modes are
modified to approach one automatically according to their
dominating degree. This operation is reasonable, as if the
probability of one model is much larger than the others and
we can almost make sure that it is the real one.

The content of this paper is organized as follows. In
Section 2, some definitions and preliminaries are given.
Section 3 proposes Bayesian estimation of TPM. The deriva-
tion of the suboptimal implementation is given in Section 4,
where we propose a novel operator to modify the poste-
rior mode probabilities after time update. The objective of
Section 5 is to demonstrate the effectiveness of our method
with a simulation example. Finally, Section 6 concludes this
paper.

2. Problem Formulation and Preliminaries

We consider the discrete-time nonlinear JMSs described by
the following equations:

𝑥𝑘 = 𝑓 (𝑥𝑘−1, 𝑟𝑘) + 𝑤𝑘, (1a)

𝑦𝑘 = ℎ (𝑥𝑘, 𝑟𝑘) + V𝑘, (1b)

where𝑓(⋅) and ℎ(⋅) are nonlinear transition andmeasurement
functions, respectively; 𝑥𝑘 ∈ 𝑅

𝑛 is the continuous state in
Euclidean space with known initial distribution of state 𝑥0;
𝑦𝑘 ∈ 𝑅

𝑝 is the measurement; 𝑤𝑘 and V𝑘 are, respectively,
uncorrelated white process and measurement noises with
known statistics; the sequence {𝑟𝑘} is a continuous-time
discrete-valuedMarkov chain and takes values in a finite state
space 𝑀 = {1, 2, . . . , 𝑚}. In this paper, the Markov chain
governing the system dynamics is nonhomogeneous, which
means that the time 𝑘 exists as a guard condition of the
probability of a jump from mode 𝑖 at time 𝑘 − 1 to mode 𝑗

at time 𝑘 as

𝜋
𝑘

𝑖𝑗
= 𝑃𝑟 (𝑟𝑘 = 𝑗 | 𝑟𝑘−1 = 𝑖, 𝑘) , (2)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑚. Then, the TPM can be given as Π𝑘 =
[𝜋
𝑘

1
, 𝜋
𝑘

2
, . . . , 𝜋

𝑘

𝑚
]

T
, where notation [⋅]

T denotes the transpose
of matrix or vector, 𝜋𝑘

𝑖
= [𝜋
𝑘

𝑖1
, 𝜋
𝑘

𝑖2
, . . . , 𝜋

𝑘

𝑖𝑚
]

T
, and 𝑖 = 1, 2,

. . . , 𝑚. Note that if Π𝑘 is known as a prior, the existing
algorithms such as IMM-PFmethod [2, 5, 6] can be extended
to the nonhomogeneous cases easily by using corresponding
TPMat each time step.Unfortunately, TPs always change ran-
domly and it is unrealistic to obtain the dynamic trajectories
of real TPM in practical applications. Hence, it is assumed in
the paper [21] that for arbitrary 𝑘,Π𝑘 is unknown but takes its
value in a finite setΘ = {Π

1
, Π
2
, . . . , Π

𝑙
}, according a Markov

chain 𝜒(𝑘) with a high-level transition matrix 𝜃 = [𝜃𝑝𝑞],
where 𝑝, 𝑞 = 1, 2, . . . , 𝑙 and ∑

𝑙

𝑞=1
𝜃𝑝𝑞 = 1. In this sense,

the discrete distribution of Π𝑝, where 𝑝 = 1, 2, . . . , 𝑙, can be
considered as a point-mass approximation ofΠ𝑘 over the sim-
plex of valid TPMs. However, the requirement that both the
candidate elements in Θ and the high-level transition matrix
𝜃 should be available in advance is difficult to be satisfied in
applications.That is to say, the finite-valued hypothesis is also
impractical. In fact, a filter designer often uses a diagonally
dominant constant matrix 𝜋 = [𝜋1, 𝜋2, . . . , 𝜋𝑚]

T to replace
the true values in reality, where 𝜋𝑖 = [𝜋𝑖1, 𝜋𝑖2, . . . , 𝜋𝑖𝑚]

T

and ∑
𝑚

𝑗=1
𝜋𝑖𝑗 = 1, for any 𝑖 ∈ 𝑀. Intuitively, if no further

operator is implemented, using such an inaccurate matrix
directly may lead to performance degradation, as it failed to
capture the real possible system behavior patterns.Therefore,
the objective of this paper is to derive a recursive, filtering
algorithm that yields satisfactory estimates of states in the
cases that only the approximate matrix 𝜋 is available.

3. Bayesian Estimation

It is well known that the recursive Bayesian equation of the
JMSs with accurate TPs is given as

𝑝 (𝑥𝑘 | 𝑌𝑘)

=

1

𝑎𝑘

𝑚

∑

𝑗=1

𝑝 (𝑦𝑘 | 𝑥𝑘, 𝑟
𝑗

𝑘
)

𝑚

∑

𝑖=1

𝑃𝑟 (𝑟
𝑗

𝑘
, 𝑟
𝑖

𝑘−1
| 𝑌𝑘−1)

× ∫𝑝 (𝑥𝑘 | 𝑟
𝑗

𝑘
, 𝑥𝑘−1) 𝑝 (𝑥𝑘−1 | 𝑟

𝑖

𝑘−1
, 𝑌𝑘−1) 𝑑𝑥𝑘−1,

(3)
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where 𝑎𝑘 is a normalization constant, 𝑝(𝑦𝑘 | 𝑥𝑘, 𝑟
𝑗

𝑘
) and

𝑝(𝑥𝑘 | 𝑟
𝑗

𝑘
, 𝑥𝑘−1) denote the likelihoods and system dynamic

under mode 𝑗, respectively, 𝑃𝑟(𝑟
𝑗

𝑘
, 𝑟
𝑖

𝑘−1
| 𝑌𝑘−1) are the joint

probabilities of system modes at current and previous time
steps, and 𝑝(𝑥𝑘−1 | 𝑟

𝑖

𝑘−1
, 𝑌𝑘−1) denote the prior PDFs of state

under mode 𝑖, where 𝑖 = 1, 2, . . . , 𝑚. To see the derivation
in detail, one can refer to one of our recent papers [22].
Considering (3), show that the effect of TPs in filtering
process is mainly exhibited by the terms 𝑃𝑟(𝑟

𝑗

𝑘
, 𝑟
𝑖

𝑘−1
| 𝑌𝑘−1),

which govern the dynamic of modes. Note that 𝑃𝑟(𝑟
𝑗

𝑘
, 𝑟
𝑖

𝑘−1
|

𝑌𝑘−1) can be decomposed in a more compact way as

𝑃𝑟 (𝑟
𝑗

𝑘
, 𝑟
𝑖

𝑘−1
| 𝑌𝑘−1) = 𝑃𝑟 (𝑟

𝑗

𝑘
| 𝑟
𝑖

𝑘−1
, 𝑘) 𝑃𝑟 (𝑟

𝑖

𝑘−1
| 𝑌𝑘−1)

= 𝜋
𝑘

𝑖𝑗
𝑃𝑟 (𝑟
𝑖

𝑘−1
| 𝑌𝑘−1) ,

(4)

where 𝑃𝑟(𝑟
𝑖

𝑘−1
| 𝑌𝑘−1) are the mode probabilities at a previous

time step. At this point, we can see that using incorrect TPs
will lead to the deviation ofmode probabilities and reduce the
estimation accuracy further due to the following fact:

𝜋
𝑘

𝑖𝑗
𝑃𝑟 (𝑟
𝑖

𝑘−1
| 𝑌𝑘−1) ̸= 𝜋𝑖𝑗𝑃𝑟 (𝑟

𝑖

𝑘−1
| 𝑌𝑘−1) . (5)

Thus, it is highly desirable and really nice to obtain the true
TPM Π𝑘 at each time step. Unfortunately, Π𝑘 is assumed
to be unavailable, and a natural solution of this problem is
to estimate the unknown TPM recursively. In the following,
we thus focus our attention on the problem of finding the
posterior PDF 𝑝(Π𝑘 | 𝑌𝑘) of the nonhomogeneous TPM in
the Bayesian framework. In view of Bayes’ ruler, we have

𝑝 (Π𝑘 | 𝑌𝑘) =
𝑝 (𝑦𝑘 | Π𝑘, 𝑌𝑘−1) 𝑝 (Π𝑘 | 𝑌𝑘−1)

𝑝 (𝑦𝑘 | 𝑌𝑘−1)

, (6)

where 𝑝(𝑦𝑘 | 𝑌𝑘−1) is considered as a normalization constant,
𝑝(𝑦𝑘 | Π𝑘, 𝑌𝑘−1) is the likelihood, and 𝑝(Π𝑘 | 𝑌𝑘−1) denotes
the prior PDF ofΠ𝑘. Using the law of the total probability, the
prior PDF 𝑝(Π𝑘 | 𝑌𝑘−1) can be equivalently written as

𝑝 (Π𝑘 | 𝑌𝑘−1) = ∫𝑝 (Π𝑘 | Π𝑘−1) 𝑝 (Π𝑘−1 | 𝑌𝑘−1) 𝑑Π𝑘−1, (7)

where 𝑝(Π𝑘 | Π𝑘−1) and 𝑝(Π𝑘−1 | 𝑌𝑘−1) denote the dynamic
of Π𝑘 itself and posterior PDF at a previous time step. Using
the total probability theorem, the first term in the numerator
of the right-hand side of (6) becomes

𝑝 (𝑦𝑘 | Π𝑘, 𝑌𝑘−1)

=

𝑚

∑

𝑗=1

𝑝 (𝑦𝑘 | 𝑟
𝑗

𝑘
,Π𝑘, 𝑌𝑘−1) 𝑃𝑟 (𝑟

𝑗

𝑘
| Π𝑘, 𝑌𝑘−1)

=

𝑚

∑

𝑗=1

𝑝 (𝑦𝑘 | 𝑟
𝑗

𝑘
,Π𝑘, 𝑌𝑘−1)

×

𝑚

∑

𝑖=1

𝑃𝑟 (𝑟
𝑗

𝑘
| 𝑟
𝑖

𝑘−1
,Π𝑘) 𝑃𝑟 (𝑟

𝑖

𝑘−1
| Π𝑘, 𝑌𝑘−1)

=

𝑚

∑

𝑗=1

𝑝 (𝑦𝑘 | 𝑟
𝑗

𝑘
,Π𝑘, 𝑌𝑘−1)

×

𝑚

∑

𝑖=1

𝜋
𝑘

𝑖𝑗
𝑃𝑟 (𝑟
𝑖

𝑘−1
| Π𝑘, 𝑌𝑘−1) .

(8)

Defining the likelihood vector Λ𝑘 and mode probability vec-
tor 𝜐𝑘−1 as Λ𝑘 = [Λ

1

𝑘
, Λ
2

𝑘
, . . . , Λ

𝑚

𝑘
]

T, 𝜐𝑘−1 = [𝜐
1

𝑘−1
, 𝜐
2

𝑘−1
, . . . ,

𝜐
𝑚

𝑘−1
]
T, where Λ

𝑗

𝑘
= 𝑝(𝑦𝑘 | 𝑟

𝑗

𝑘
,Π𝑘, 𝑌𝑘−1) and 𝜐

𝑖

𝑘−1
= 𝑃𝑟(𝑟

𝑖

𝑘−1
|

Π𝑘, 𝑌𝑘−1), we obtain

𝑝 (𝑦𝑘 | Π𝑘, 𝑌𝑘−1) =

𝑚

∑

𝑗=1

Λ
𝑗

𝑘

𝑚

∑

𝑖=1

𝜋
𝑘

𝑖𝑗
𝜐
𝑖

𝑘−1
= 𝜐
𝑇

𝑘−1
Π𝑘Λ𝑘. (9)

By the Chapman-Kolmogorov equation, the denominator of
the right-hand of (6) can be rewritten as

𝑝 (𝑦𝑘 | 𝑌𝑘−1) = ∫𝑝 (𝑦𝑘 | Π𝑘, 𝑌𝑘−1) 𝑝 (Π𝑘 | 𝑌𝑘−1) 𝑑Π𝑘

= ∫ 𝜐
𝑇

𝑘−1
Π𝑘Λ𝑘𝑝 (Π𝑘 | 𝑌𝑘−1) 𝑑Π𝑘.

(10)

Substituting (9) and (10) into (6) yields

𝑝 (Π𝑘 | 𝑌𝑘) =
𝜐
𝑇

𝑘−1
Π𝑘Λ𝑘𝑝 (Π𝑘 | 𝑌𝑘−1)

∫ 𝜐
𝑇

𝑘−1
Π𝑘Λ𝑘𝑝 (Π𝑘 | 𝑌𝑘−1) 𝑑Π𝑘

, (11)

where 𝑝(Π𝑘 | 𝑌𝑘−1) is given by (7). Note that formula (11)
is the key of the entire estimation process, as it tells that
the known prior distribution 𝑝(Π𝑘 | 𝑌𝑘−1) is updated using
the likelihoods of TPM to obtain the posterior conditional
PDF 𝑝(Π𝑘 | 𝑌𝑘). Unfortunately, calculating (11) analytically
is almost impossible as it involves the following problems:
(i) the dynamic of Π𝑘 in (7) is difficult to obtain; (ii) notice
that to get the posterior conditional distribution, one has
to calculate the likelihood of Π𝑘. However, since Π𝑘 is
unknown and is also required to be estimated at time 𝑘,
evaluating the likelihood directly is impossible. Due to the
above problems, the implementation of (11) is intractable and
an alternative approach or some necessary approximation
will be introduced in the following section.

Remark 1. If we assume that the TPM takes in a finite set Θ,
the dynamic of TPM in (7) can be expressed by the high-
level transition probabilities 𝜃𝑝𝑞, where 𝑝, 𝑞 = 1, 2, . . . , 𝑙.
Moreover, we are not required to consider all possible values
in an admissible region and only consider the likelihood of
the values inΘ that need to be evaluated,making the problem
considerable simpler.

4. Suboptimal Estimator

Since the system under consideration is nonlinear, in this
paper, EKFs are utilized as subfilters. It is well known that EKF
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is one of themost widely used algorithms in the framework of
nonlinear filtering. Let 𝑥𝑖

𝑘−1|𝑘−1
, Δ𝑖
𝑘−1|𝑘−1

denote the estimate
of state, covariancematrix computed by the 𝑖EKF at time 𝑘−1,
respectively. Let 𝜐𝑖

𝑘−1
denote the mode probability of mode 𝑖

at time 𝑘− 1. Then, the PDF of state at time 𝑘− 1 conditioned
on 𝑟
𝑖

𝑘−1
is denoted as

𝑝 (𝑥𝑘−1 | 𝑟
𝑖

𝑘−1
, 𝑌𝑘−1) = 𝑁(𝑥𝑘−1; 𝑥

𝑖

𝑘−1|𝑘−1
, Δ
𝑖

𝑘−1|𝑘−1
) , (12)

where𝑁(⋅) denotes the normal distribution. As done in IMM
method, the optimal Bayesian equation is decomposed into a
series of basic transitions. In this sense, the PDFs 𝑝(𝑥𝑘−1 |

𝑟
𝑗

𝑘
, 𝑌𝑘−1) can be equivalently given as follows:

𝑝 (𝑥𝑘−1 | 𝑟
𝑗

𝑘
, 𝑌𝑘−1)

=

𝑚

∑

𝑖=1

𝑝 (𝑥𝑘−1 | 𝑟
𝑖

𝑘−1
, 𝑌𝑘−1) 𝑃𝑟 (𝑟

𝑖

𝑘−1
| 𝑟
𝑗

𝑘
, 𝑌𝑘−1) .

(13)

Note that
𝜐
𝑖𝑗

𝑘|𝑘−1
≜ 𝑃𝑟 (𝑟

𝑖

𝑘−1
| 𝑟
𝑗

𝑘
, 𝑌𝑘−1)

=

𝑃𝑟 (𝑟
𝑗

𝑘
| 𝑟
𝑖

𝑘−1
) 𝑃𝑟 (𝑟

𝑖

𝑘−1
| 𝑌𝑘−1)

𝑃𝑟 (𝑟
𝑗

𝑘
| 𝑌𝑘−1)

=

𝜋𝑖𝑗𝜐
𝑖

𝑘−1

∑
𝑚

𝑖=1
𝜋𝑖𝑗𝜐
𝑖

𝑘−1

(14)

we have

𝑝 (𝑥𝑘−1 | 𝑟
𝑗

𝑘
, 𝑌𝑘−1) =

𝑚

∑

𝑖=1

𝜐
𝑖𝑗

𝑘|𝑘−1
𝑁(𝑥𝑘−1; 𝑥

𝑖

𝑘−1|𝑘−1
, Δ
𝑖

𝑘−1|𝑘−1
) .

(15)

Here, the IMMapproximation is employed.More specifically,
𝑚-component Gaussianmixture is replaced by a single Gaus-
sian density to solve the computational sensitive problem as

𝑝 (𝑥𝑘−1 | 𝑟
𝑗

𝑘
, 𝑌𝑘−1) ≈ 𝑁(𝑥𝑘−1; 𝑥

𝑗

𝑘−1|𝑘−1
, Δ

𝑗

𝑘−1|𝑘−1
) , (16)

where 𝑗 = 1, 2, . . . , 𝑚,

𝑥
𝑗

𝑘−1|𝑘−1
=

𝑚

∑

𝑖=1

𝜐
𝑖𝑗

𝑘|𝑘−1
𝑥
𝑖

𝑘−1|𝑘−1
,

Δ

𝑗

𝑘−1|𝑘−1

=

𝑚

∑

𝑖=1

𝜐
𝑖𝑗

𝑘|𝑘−1
[Δ
𝑖

𝑘−1|𝑘−1

+ (𝑥
𝑖

𝑘−1|𝑘−1
− 𝑥
𝑗

𝑘−1|𝑘−1
) (𝑥
𝑖

𝑘−1|𝑘−1
− 𝑥
𝑗

𝑘−1|𝑘−1
)

Τ

] .

(17)

Once 𝑥𝑗
𝑘−1|𝑘−1

andΔ

𝑗

𝑘−1|𝑘−1
are available,𝑚 EKFs are executed

to obtain the posterior filtered states 𝑥𝑗
𝑘|𝑘

and covariance Δ𝑗
𝑘|𝑘

as follows:
𝑥
𝑗

𝑘|𝑘−1
= 𝑓 (𝑥

𝑗

𝑘−1|𝑘−1
, 𝑟
𝑗

𝑘
) ,

Δ
𝑗

𝑘|𝑘−1
= 𝐹
𝑗

𝑘
Δ

𝑗

𝑘−1|𝑘−1
(𝐹
𝑗

𝑘
)

T
+ 𝑄𝑘,

𝑥
𝑗

𝑘|𝑘
= 𝑥
𝑗

𝑘|𝑘−1
+ 𝐾
𝑗

𝑘
(𝑦𝑘 − ℎ (𝑥

𝑗

𝑘|𝑘−1
, 𝑟
𝑗

𝑘
)) ,

Δ
𝑗

𝑘|𝑘
= Δ
𝑗

𝑘|𝑘−1
− 𝐾
𝑗

𝑘
𝑆
𝑗

𝑘
(𝐾
𝑗

𝑘
)

T
,

(18)

where𝐾𝑗
𝑘
is the filter gain given as𝐾𝑗

𝑘
= Δ
𝑗

𝑘|𝑘−1
(𝐻
𝑗

𝑘
)

T
(𝑆
𝑗

𝑘
)

−1

,

𝐹
𝑗

𝑘
=

𝜕𝑓(𝑥𝑘, 𝑟
𝑗

𝑘
)

𝜕𝑥𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥𝑘=𝑥

𝑗

𝑘−1|𝑘−1

, (19)

𝐻
𝑗

𝑘
=

𝜕ℎ(𝑥𝑘, 𝑟
𝑗

𝑘
)

𝜕𝑥𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥𝑘=𝑥

𝑗

𝑘−1|𝑘−1

, (20)

𝑆
𝑗

𝑘
= 𝐻
𝑗

𝑘
Δ
𝑗

𝑘|𝑘−1
(𝐻
𝑗

𝑘
)

T
+ 𝑅𝑘,

(21)

where 𝑄𝑘 and 𝑅𝑘 are the covariance matrices of the process
noise and measurement noise, respectively. At this point, the
posterior mode probabilities can be updated as

𝜐
𝑗

𝑘
=

𝑝 (𝑦𝑘 | 𝑟
𝑗

𝑘
, 𝑥𝑘)∑

𝑚

𝑖=1
𝜋𝑖𝑗𝜐
𝑖

𝑘−1

∑
𝑚

𝑗=1
𝑝 (𝑦𝑘 | 𝑟

𝑗

𝑘
, 𝑥𝑘)∑

𝑚

𝑖=1
𝜋𝑖𝑗𝜐
𝑖

𝑘−1

, (22)

where 𝑗 = 1, 2, . . . , 𝑚. Considering (14) and (22), show that
only the approximate TPs 𝜋𝑖𝑗 are employed to compute the
mode probabilities which are used as “weights” of subfilters
in the filtering process. That is to say, the estimation perfor-
mance will be unsatisfied, as the mode probabilities deviate
from their real trajectories. On the other hand, it is known
that the ideal case of estimation ofMJSs is that the underlying
mode sequence is known. In such case, only one subfilter is
required to calculate the estimate at every time step and the
multiple-model estimation algorithm will degenerate to be
the Kalman filter with corresponding model. In this sense,
the information of TPs is not required any more in filtering
process. By observing these, a novel operator is developed to
modify the dominating mode probabilities after time update
to make them approach to one according to their dominating
degree. Without loss of generality, we present 𝜌(𝜐𝑗

𝑘
) at time 𝑘

as

𝜐
𝑗

𝑘
= 𝜌 (𝜐

𝑗

𝑘
) =

(𝜐
𝑗

𝑘
)

𝜒𝑘

(𝜐
1

𝑘
)
𝜒𝑘

+ ⋅ ⋅ ⋅ + (𝜐
𝑚

𝑘
)
𝜒𝑘
, (23)

where 𝑗 = 1, 2, . . . , 𝑚; the index parameter 𝜒𝑘 is given as
follows. For the cases with 𝑚 > 2 and 𝛽𝑘 + 𝛽

󸀠

𝑘
> 2/𝑚, we

have

𝜒𝑘 =

𝛽𝑘 − 1/𝑚

1/𝑚 − 𝛽
󸀠

𝑘

(24)

else 𝜒𝑘 = 1, where 𝛽𝑘 and 𝛽
󸀠

𝑘
are the maximum mode proba-

bility and minimummode probability at time 𝑘, respectively.
Note that it is not difficult to verify that 𝛽󸀠 ̸= 1/𝑚 in the cases
𝛽𝑘 + 𝛽

󸀠

𝑘
> 2/𝑚. Therefore, the denominator of the right-

hand side of (23) will not be zero and can be used safely in
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computer simulation. For the cases with𝑚 = 2 and 𝛽𝑘 − 𝜀𝑘 >

0.1, the index parameter can be evaluated by

𝜒𝑘 = 10 (𝛽𝑘 − 𝜀𝑘) (25)

else 𝜒𝑘 = 1. At this point, we can see that the index parameter
𝜒𝑘 which governs the modification degree in our method
is adaptive and varies automatically according to the dom-
inance of posterior mode probabilities. Specifically, a large
parameter is evaluatedwhen the dominance is evident, other-
wise either 1 or another relatively small value is employed. It
is also necessary to point out that the assumption that the real
TPs are constants is not required, as the compensation param-
eter is updated using online information at each sampling
time step. The proposed method works effectively as long as
the dominance is obvious. This is an intuitively meaningful
property and can be considered a particular advantage of
the method introduced here. After modifying the posterior
mode probabilities, the final estimate is calculated bymerging
the posterior estimates 𝑥

𝑗

𝑘|𝑘
and covariance Δ

𝑗

𝑘|𝑘
using the

modified mode probability 𝜐
𝑗

𝑘
as

𝑥𝑘|𝑘 =

𝑚

∑

𝑗=1

𝜐
𝑗

𝑘
𝑥
𝑗

𝑘|𝑘
, (26)

Δ 𝑘|𝑘 =

𝑚

∑

𝑗=1

𝜐
𝑗

𝑘
[Δ
𝑗

𝑘|𝑘
+ (𝑥
𝑗

𝑘|𝑘
− 𝑥𝑘|𝑘) (𝑥

𝑗

𝑘|𝑘
− 𝑥𝑘|𝑘)

Τ

] . (27)

The algorithm based on the above illustrations is detailed
below.

Step 1. Initializations: given 𝑥
𝑖

0|0
, Δ𝑖
0|0

and 𝜐
𝑖

0
, set 𝑘 = 1.

Step 2. Interacting: compute mixed states 𝑥
𝑗

𝑘−1|𝑘−1
and

Δ

𝑗

𝑘−1|𝑘−1
according to (16).

Step 3. Extended Kalman filtering: in accordance with the
steps of EKF, obtain the 𝑥𝑗

𝑘|𝑘
, Δ𝑗
𝑘|𝑘
, and posterior mode prob-

abilities 𝜐𝑗
𝑘
according to (4)–(22).

Step 4. Modification: modify the posteriormode probabilities
𝜐
𝑗

𝑘
according to (23) and (24) to obtain 𝜐

𝑗

𝑘
.

Step 5. Output: calculate the overall estimate as (26), set 𝑘 =

𝑘 + 1, and go back to Step 2.

5. Numerical Example

To illustrate the performance of our method, a nonlinear
dynamic systemmodeled which is a slightlymodified version
of the one given in [25] was carried out. Consider

𝑥𝑘 = 0.5𝑥𝑘−1 + 𝑎

𝑥𝑘−1

1 + 𝑥
2

𝑘−1

+ 𝑤𝑘−1,

𝑦𝑘 =

𝑥
2

𝑘

20

+ V𝑘,

(28)
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Figure 1: Average RMS error of state.

where 𝑤𝑘 ∼ 𝑁(0, 1) and V𝑘 ∼ 𝑁(0, 1). The mode-dependent
parameters 𝑎 are aggregated into three possible modes shown
as 𝑎1 = 30 and 𝑎2 = 5. The nonhomogeneous TPM Π𝑘 takes
its value in a finite set Θ = {Π1, Π2, Π3}, where Π1, Π2, and
Π3 are presented as follows:

Π1 = [

0.8 0.2

0.2 0.8
] , Π2 = [

0.7 0.3

0.3 0.7
] ,

Π3 = [

0.6 0.4

0.4 0.6
] .

(29)

The high-level transition matrix 𝜃 is equal to

𝜃 =
[

[

0.9 0.05 0.05

0.05 0.9 0.05

0.05 0.05 0.9

]

]

. (30)

It is necessary to point out that all the candidate TPMs Π𝑖,
where 𝑖 = 1, 2, 3 and high-level transition matrix 𝜃 are
unknown in advance and only an approximate TPM 𝜋 which
is chosen by designer crudely is available as

𝜋 = [

0.5 0.5

0.5 0.5
] . (31)

Two different algorithms were performed:

(i) the IMM-EKF with 𝜋;
(ii) the proposed algorithms (denoted as OA) with 𝜋.

To assess the performance of algorithms, the average root
mean square (RMS) error based on 5000 times Monte-Carlo
simulations is employed. All the filters are initiated with the
prior distribution 𝑝(𝑥0) ∼ 𝑁(0, 2). Results from 5000 Monte
Carlo runs are shown in Figures 1 and 2 and Table 1.
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Figure 2: Variation of the index parameter in a typical simulation.

Table 1: Average results of different algorithms.

Average RMS error IMM OA
Position 0.907 0.864
Average computational time (sec.) 0.068 0.069

In Figure 1, the average RMS error of state based on
5000 Monte Carlo runs of different algorithms is shown.
Together with Table 1 and Figure 1, we can clearly see that OA
yields improvements in estimation performance significantly
over IMM-EKF as expected. This is the result of using more
reasonable mode probabilities, which are mainly caused by
the operator developed. That is, the information embedded
in the measurements is exploited to counteract the negative
effect brought by the wrong TPs. At each time step, the pos-
terior mode probability of dominating mode is modified to
approach one according to the dominating degree.The index
parameter in a typical run is given in Figure 2.We see that the
index parameter varies with the time instants and constantly
adjusts and realigns itself according to the dominance of
the posterior mode probabilities. In this sense, the operator
can be considered as an instrument that can increase the
probabilities of dominating modes automatically. Another
important issue in practical application is the computation
time. Note that in OA, the index parameter is required to
be calculated at every time step. However, the computational
time of OA is almost the same as IMM-EKF. This is mainly
because the computation of OA is quite simple, no circulation
or inversion is required, making the proposed method more
competitive in online applications.

6. Conclusions

This paper proposed a novel state estimation method for a
class of nonlinear JMSs with nonhomogeneous TPs. In our

work, the optimal Bayesian estimation of TPM is proposed
and EKF is employed to handle the nonlinear problem.More-
over, an operator is developed to modify the posterior mode
probabilities to compensate the effect caused by wrong TPs
used. Simulation implicates that our method yields better
estimation performance than IMM-EKF and shows more
robustness against the wrong TPs.
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