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Evolutionary algorithms, in particular particle swarm optimization (PSO), have recently received much attention. PSO has
successfully been applied to a wide range of technical optimization problems, including channel estimation. However, most
publications in the area of digital communications ignore improvements developed by the PSO community. In this paper, an
overview of the original PSO is given as well as improvements that are generally applicable. An extension of PSO termed cooperative
PSO (CPSO) is applied for MIMO channel estimation, providing faster convergence and, thus, lower overall complexity. Instead
of determining the average iterations needed empirically, a method to calculate the maximum number of iterations is developed,
which enables the evaluation of the complexity for a wide range of parameters. Knowledge of the required number of iterations is
essential for a practical receiver design. A detailed discussion about the complexity of the PSO algorithm and a comparison to a
conventional minimum mean squared error (MMSE) estimator are given. Furthermore, Monte Carlo simulations are provided to
illustrate the MSE performance compared to an MMSE estimator.

1. Introduction

Multiple-input multiple-output (MIMO) transmission is
considered as a key technology to reach the challenging goals
of upcoming wireless standards, such as long-term evolution
advanced (LTE-A) [1]. A wide range of MIMO detectors are
known in the literature offering a performance close to the
channel capacity. Precise channel state information (CSI) is
required to obtain this performance. Correspondingly, the
performance of the detection algorithms highly depends on
the accuracy of the CSI. Minimum mean squared error-
(MMSE-) based channel estimation reaches optimum per-
formance with computational cost that may become infeasi-
ble for practical implementation.

Advanced iterative receivers, which jointly detect the data
symbols and estimate the channel, offer a close-to-optimum
performance at often reduced computational complexity.
However, the majority of joint receivers need good initial
channel estimates to reach their ultimate performance. The
space alternating generalized expectation (SAGE) algorithm
in [2] and the graph-based iterative receiver in [3] are exam-
ples of iterative receivers which need proper initialization.

Generally, channel estimation can be seen as an optimiza-
tion problem, that is, to minimize the Euclidean distance
between the estimated and the true channel coefficients. The
straightforward solution to this problem incorporates matrix
inversion and leads to the well-known least-squares (LS)
and/or MMSE estimator.

Heuristic, nature-inspired algorithms, such as particle
swarm optimization (PSO) [4, 5] or genetic algorithms (GA)
[6, 7], are attractive low-complexity solutions to facilitate
MIMO channel estimation. PSO is a population-based heur-
istic global optimization algorithm, which originated in mod-
eling the social behavior of bird flocks and fish schools. It
has been applied to a variety of technical optimization prob-
lems, including channel and parameter estimation [8–13]
as well as data detection [14] and multiuser detection [15].
Unfortunately, a fair evaluation of PSO is rather difficult due
to the wide range of available modifications and the fact that
the algorithm is often tuned to optimum performance for a
specific optimization problem by empirical measures.

Genetic algorithms are inspired by natural evolution. Ac-
cordingly, population members are termed chromosomes.
Based on an optimization metric, a subset of chromosomes
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is selected to breed a new generation, which is subsequently
used to generate a new generation by means of crossover
and/or mutation.

PSO and GA share many similarities as both start with a
randomly initialized population and both use a fitness value
to evaluate their population members. The main difference
lies within the selection of leaders (in terms of PSO) or
parents (in terms of GA) as well as the update of position
and/or generation of new members, respectively. Population
members within PSO are updated iteratively and influence
themselves directly by their personal best position. On the
contrary, population members in GA pass characteristic
information to their children.

It is difficult to compare the performance of PSO and
GA in general as both depend on the specific optimization
problem. Additionally, a similar variety of possible imple-
mentations exists also for GA. However, several publications
in the field of digital communications come to the conclusion
that PSO is advantageous compared to GA in terms of
computational complexity, convergence speed, and accuracy
[16–18]. Additionally, fewer parameters need to be set for the
PSO algorithm.

PSO is a viable alternative to replace the closed-form
solution of standard LS/MMSE estimators if it can provide
similar performance at lower complexity. Nevertheless, the
overwhelming variety of implementations makes a perfor-
mance/complexity analysis cumbersome. This paper evalu-
ates the applicability of PSO for MIMO channel estimation
with respect to mean squared error (MSE) performance
and computational complexity. The paper comprises the
following central points.

(i) An overview of the original PSO is given as well
as general improvements which lead to a modified
update function. Although PSO is widely adopted in
many fields, mainly the original version of PSO is
applied. Nevertheless, in many cases the performance
can be improved and/or the required number of
iterations can be reduced by more advanced versions.
The focus is hereby on strategies which can be applied
in general and do not have to be tuned for a specific
optimization problem.

(ii) While PSO has already been applied to MIMO
channel estimation in the literature (e.g., [9]), an
extension known as cooperative PSO (CPSO) [19] is
introduced in this paper. Although PSO is directly
applicable for some cases, advanced strategies, such
as CPSO, are necessary either to provide optimum
performance and/or a lower complexity.

(iii) The performance of PSO and CPSO is compared
with a conventional channel estimation algorithm,
namely, the optimum MMSE estimator. Additionally,
PSO/CPSO and an MMSE estimator are used to
provide initial channel estimates for a graph-based
iterative receiver. BER results illustrate the advantage
of CPSO over PSO.

(iv) A general rule to determine the maximum number of
iterations is developed on the basis of the generalized

extreme value distribution. This approach allows
the actual computation of the required number of
iterations to reach a predefined target. To the authors
best knowledge, a similar method to predict the
required number of iterations does not yet exist,
although it may be essential for the evaluation of the
complexity.

(v) The complexity of PSO/CPSO is discussed and
compared to the conventional MMSE estimator.
It is known that the complexity of PSO/CPSO
per iteration is low. However, depending on the
optimization problem several hundred iterations are
required until convergence is achieved. Utilizing
the proposed criterion to determine the maximum
number of iterations, the complexity of PSO/CPSO
can be evaluated for a wide range of parameter
settings, and an optimum tradeoff between iterations
and complexity per iteration can be determined.

The remainder of this paper is organized as follows:
PSO and the extension to cooperative PSO is elaborated in
Section 2. The application to MIMO channel estimation is
described in Section 3. A performance as well as a complexity
comparison of PSO/CPSO with an MMSE estimator is given
in Sections 4 and 5, respectively. The extension to multiple
objectives is discussed in Section 6. Finally, Section 7 draws
the conclusion.

Throughout the paper, the following notation conven-
tions are adopted. Bold-face capital and lower-face letters
stand for matrices and vectors of appropriate dimensions,
respectively. INT denotes a NT ×NT identity matrix. Further-
more, ()† represents the Hermitian operator.

2. Particle Swarm Optimization

PSO is a population based, heuristic, iterative optimization
algorithm. Due to the heuristic approach, no gradient
information is required to converge to the global optimum.
Hence, it can easily be adopted to a wide range of technical
optimization problems.

In the following a general overview of PSO is given
in Section 2.1. An extension termed cooperative PSO is
introduced and applied for MIMO channel estimation in
Section 2.2.

2.1. Standard PSO. The standard PSO is described by
Algorithm 1. Initially all Np particles of a swarm are ran-
domly set throughout the feasible search region [Smin, Smax],
where S ∈ RD. The particles of a swarm “fly” through a
D-dimensional search space, which is gradually explored by
adjusting the trajectory of each particle at each iteration.
Within each iteration the current position of a particle
pi = [p1, . . . , pD] is used as a candidate solution for the
optimization metric termed fitness function. The fitness
value of a particle is distributed to all particles within the
swarm. The previously best position of a particle is termed
personal best pIB

i , whereas the previous best position of the
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Initialize swarm
Locate leader
i = 1
while i < imax or convergence do

for each particle do
Update position using (1)/(2), (4)
Evaluation using (5)
Update pBest

end for
Update leader
i++

end while

Algorithm 1: Standard PSO algorithm.

swarm is called global best pGB. The velocity vector of a
particle i is updated according to [5, 20]:

v′i= ωvi + c1ε1 ◦
(

pIB
i − pi

)
+ c2ε2 ◦

(
pGB − pi

)
, (1)

where ◦ denotes the entrywise product. The variables ε1

and ε2 denote random numbers in the range of [0, 1]. The
inertia weight ω typically decreases from 0.9 to 0.4 over
the course of iterations. The social and cognitive parameters
c1 and c2 are acceleration coefficients towards the personal
and/or global best position, respectively. The velocity vector
of a particle is, similar to the search space, restricted within
certain boundaries [vmin, vmax]. Particles which are beyond
the boundaries of search space and velocity, respectively, are
reset to the boundary limits.

The update function (1) was published in 1998 as part of
an already revised version of the PSO algorithm. The original
update function of PSO published in 1995 [4] did not include
the inertia weight or the cognitive and social parameters.
Since then, an overwhelming amount of variations have
been proposed. However, no standard algorithm or set
of parameters has yet emerged, which delivers optimum
performance independent of the optimization problem.
Hence, parameters are tuned for each specific problem
and settings tuned by means of empirical measures are
often applied. The authors of [21] propose a so-called
standardized version of PSO which incorporates several
general applicable improvements, that is, bound handling,
swarm size, and an update equation replacing the inertia
weight with a constriction factor. The standardized version
improves the performance for most optimization problems
compared to the original version. We restrict ourselves to
general applicable optimization for PSO, although adaptive
versions [22] are also able to improve the performance of
the standard PSO, but their parameters may be optimized for
each optimization problem.

The update rule based on the constriction factor is given
by

v′i = χ
{

vi + c1ε1 ◦
(

pIB
i − pi

)
+ c2ε2 ◦

(
pGB − pi

)}
, (2)

with

χ = 2∣∣∣2− ϕ−
√
ϕ2 − 4 · ϕ

∣∣∣
, (3)

where ϕ = c1 +c2, ϕ > 4. The factors c1 and c2 are constraints
on the velocity towards the global and the personal best
position. According to [23], suitable values for a wide range
of test functions are as follows: c1 = 2.8 and c2 = 1.3, which
results in χ ≈ 0.7298. The standardized update function
(2) as well as the above-mentioned parameters are applied
throughout all simulations. The position of a particle is
updated subsequently according to

p′i = pi + v′i . (4)

The updated velocity vector v′i is added to the current
position pi of a particle. The new position p′i is used
as a candidate solution for the optimization metric. The
optimization performed by PSO is described by

pOPT = arg min
pi

f
(

pi
)
. (5)

The so-far emerged personal and/or global best pIB
i and pGB,

respectively, are replaced by the updated position p′i , if the
fitness value pOPT is improved compared to the values of
the personal and the global best position. This procedure is
repeated until PSO is converged or the maximum number
of iterations imax is reached. imax is chosen to be sufficiently
large to prevent that the algorithm is stopped before the
global optimum could be found. Frequently, the optimum
solution is found with just a fraction of imax. Therefore, a
stopping criterion is necessary to reduce the average number
of iterations needed for convergence. An overview of suitable
stopping criteria is given in [24]. In this paper, PSO is said
to be converged if pOPT is below a certain threshold th for γ
iterations.

In case PSO converges, all particles p of the swarm are
located at the same position minimizing (5). Without loss of
generality, only minimization problems are considered.

2.2. Cooperative PSO. In general, population-based opti-
mization algorithms are searching for a region of small,
specified volume in a D-dimensional search space, sur-
rounding the global optimum. In order to converge to the
global optimum, an optimization algorithm needs to create
a sample within this region. The probability of generating a
sample within the region is the volume of the region divided
by the volume of the search space [19]. This probability
decreases exponentially with increasing dimensionality of
the search space. This effect is often termed “curse of
dimensionality.”

Separating the high-dimensional search space into sets of
smaller dimension improves the performance significantly.
PSO is known to perform rather poor for high-dimensional
problems. A large variety of solutions is proposed to solve
this problem. In [25] the update function (1) is adapted
to take adaptive parameters into account. These parameters
are changed over the course of iterations and improve the
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converge behavior of PSO algorithm. However, the optimum
set of parameters remains problem dependent. An alternative
solution to improve the performance of the original PSO
algorithm is given by a so-called cooperative approach to
particle swarm optimization (CPSO) presented in [19]. The
CPSO approach relies on the original update equation and
is described in the following. The pseudocode describing
CPSO is given by Algorithm 2. The Np particles of the PSO
swarm are now separated into Ns swarms with N ′

p particles.
The number of particles for both PSO and CPSO should be
chosen within a certain range. Too few particles (Np,N ′

p < 5)
lead to a deteriorated performance, while too many are not
able to increase the performance (Np,N ′

p > 100). About
15 particles is a good tradeoff between complexity and
performance [23].

Accordingly, the D-dimensional problem is split into Ns

subsets and optimized separately by an individual swarm
of particles s = [s1, . . . , sD/δ], where δ is the number of
dimensions for each swarm. The position of a particle i of
swarm s is given by ρs,i = [ρ1, . . . , ρδ]. The separation of
the dimensions is mitigating a drawback of the standard
PSO algorithm: Since the standard PSO considers the full-
dimensional vector in the update function, it allows that
some dimensions move further away from the solution
as long as the overall fitness value is improved. On the
contrary, cooperative PSO is evaluating subsets of the D-
dimensional vector. The probability that single components
are deteriorated in favor of other dimensions is thus reduced.

For Ns = 1 swarm, CPSO is equivalent to PSO since
all dimensions are optimized by one swarm. In case of
Ns > 1, the evaluation of the optimization metric is not
directly possible since a particle represents only a subset
of dimensions of the optimization problem. Consequently,
a context vector φs,i is necessary. In order to construct
a D-dimensional vector, the D − δ missing dimensions
are replaced by the global best positions of the remaining
swarms: φs,i = [ρGB

1 . . . ρs,i . . . ρ
GB
D/δ]. The optimization func-

tion (5) is changed accordingly:

pOPT = arg min
φs,i

f
(
φs,i
)
. (6)

3. Application to MIMO Channel Estimation

We consider a MIMO system with NT transmit and NR

receive antennas. The received signal vector at time index
k, y[k] ∈ CNR×1, is modeled as

y[k] = Hx[k] + n[k], (7)

where x[k] ∈ CNT×1 is the transmitted signal vector at
time index k. The entries of the channel matrix H ∈
CNR×NT are assumed to be independent and identically
distributed (i.i.d.) according to CN (0, 1). We consider a
quasi-time-invariant channel for the numerical analysis of
PSO and CPSO. The application to time-varying channels
is given briefly by the description of a multiple-objective
PSO in Section 6. Furthermore, only a memoryless channel
is considered in the numerical results in order to simplify
the optimization metric and the discussion of the results.

Initialize Ns swarms with N ′
P particles

Locate leader
i = 1
while i < imax or convergence do

for each swarm do
for each particle do

Update position using (1)/(2), (4)
Evaluation using (6)
Update pBest

end for
end for
Update leader
i++

end while

Algorithm 2: Cooperative PSO algorithm.

The complexity analysis is directly applicable to frequency-
selective channels as well, since only the dimensionality of
the problem is discussed here. Dimensions can be increased
by either transmit and receive antennas and/or the channel
memory length L. The MSE performance for a channel
memory length L > 0 will follow the MSE performance
of a least-squares estimator. For detailed information about
the application of PSO to channels with memory, interested
readers are referred to [12]. Furthermore, n[k] denotes the
noise vector at the receiver whose entries are i.i.d. modeled
as CN (0, σ2

n).
Training symbols are transmitted to support pilot-aided

channel estimation (PACE). Stacked in a matrix, the transmit
vector x[k] can be written as X ∈ CNT×NT . A minimum of NT

training symbols are transmitted to ensure a full rank. The
training matrix consists of orthogonal sequences subject to
XX† = μINT , where μ is related to the signal power assigned
to the training matrix [26].

In the following, we assume that the transmit vector x[k]
of length NT consists of training symbols only.

In case of a quasi-invariant (block-fading) channel, the
maximum-likelihood metric (fitness function) for PSO can
be written as follows:

f
(

pi
) =

NT∑

k=1

∥∥y[k]− Pix[k]
∥∥2
. (8)

The position of the ith particle Pi is used as a potential
solution for the metric. For a consistent notation in line with
(7), the previously used vector notation of the position of
the particle is changed here to a matrix notation with Pi ∈
CNR×NT . Thus, a position of a particle represents a hypothesis
of the channel matrix H̃. It is of importance to note that each
dimension of a particle is real valued. As a particle needs to
estimate NR × NT complex-valued channel coefficients, the
dimensions of the search space results in D = 2 ·NT ·NR.

The maximum-likelihood metric for CPSO is very
similar to the PSO metric. Instead of using the position of
a particle, a context matrix φs,i is utilized, since a position
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h11 h12 h22h21
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Figure 1: Possible separation of an 8-dimensional problem into a
set of lower-dimensional problems by the CPSO compared to PSO.

of a particle of a subswarm represents only a fraction of the
channel matrix:

f
(
φs,i
) =

NT∑

k=1

∥∥y[k]− φs,ix[k]
∥∥2
. (9)

In case of MIMO channel estimation, NR ·NT channel coef-
ficients are estimated assuming a flat-fading time-invariant
channel. As mentioned before, the performance of PSO is
degraded with increasing dimensions. The dimensionality
of the optimization problem is not only determined by the
number of transmit and/or receive antennas but also by
the channel memory length. Thus, channel estimation of
a realistic MIMO system may result in a high-dimensional
optimization problem.

Figure 1 illustrates the difference between PSO and CPSO
for channel estimation of a 2 × 2 MIMO system. PSO
optimizes all channel coefficients with one swarm. CPSO is
able to separate the D = (2 ·NR ·NT)-dimensional problem
into subsets and optimizes each subset with a separate
swarm. In this example two swarms are shown; however, the
number of possible subswarms is in the range of [1,D]. In the
case of D subswarms, a single swarm would optimize either
real or imaginary part of one channel coefficient. While the
number of subswarms Ns is directly related to the number
of dimensions, there is no such relation for the number
of particles. A minimum number of particles need to be
assigned for each subswarm in order to allow convergence.
Additionally, the performance of CPSO cannot be improved
by increasing the number of particles once a threshold is
reached. The number of particles depends again on the
optimization problem. A good tradeoff between complexity
per iteration and performance is Np = N ′

p = 15 [23].

4. Performance Comparison

A performance comparison of PSO and CPSO with an opti-
mum MMSE channel estimator in terms of mean squared
error (MSE) is given in Figure 2. The simulation setup
consists of an MIMO system and a quasi-time-invariant
Rayleigh fading channel. Pilot-aided channel estimation is
conducted with orthogonal training sequences. The number
of particles is fixed to Np = 60 particles for PSO algorithm.
The CPSO algorithm consists of Ns = 4 subswarms with
N ′

p = 15 particles for each swarm. The overall complexity of
CPSO compared to PSO for one iterations is thus the same.
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Figure 2: MSE performance of PSO and CPSO compared to MMSE
channel estimation depending on the number of dimensions for a
quasi-time-invariant Rayleigh fading channel.

The MMSE estimate of H for a time-invariant channel is
given by

Ĥ = YX†
[
σ2
nINT + XX†

]−1
. (10)

PSO exhibits an inferior performance compared to CPSO
and/or MMSE estimation with increasing SNR and dimen-
sions D as illustrated in Figure 2. In this case, the dimensions
are increased by increasing the number of transmit antennas
with a constant number of receive antennas. The larger
the dimensions the earlier PSO converges to an error floor.
Large dimensions (D > 32) can easily be reached with
settings defined in upcoming wireless standards, that is,
long-term evolution advanced (LTE-A) [1]. For example, for
an 8 × 8-MIMO-OFDM system with a channel memory
length of L = 0 the dimensions results in D = 8 · 8 ·
2 = 128. Only the dimensions are studied to focus the
reader on the problem of large dimensions for PSO. The
performance of the original PSO can be further improved
by adapting the variables in (1) and/or (2) over the course
of iterations and/or by applying more advanced bound
handling mechanisms. These optimization methods for PSO
have to be tuned to the specific optimization metric. On the
other hand, the performance of CPSO reaches the optimum
MMSE performance with general settings.

It is worth mentioning that, although GA does not suffer
from the curse of dimensionality and is thus able to converge
in general, the required number of iterations increases, which
renders a practical implementation unfeasible.

Besides reaching the optimum performance, another
strength of the PSO algorithm is its fast convergence to a
“reasonable” MSE. The fast converging nature of PSO/CPSO
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Figure 3: Convergence speed comparison of PSO and CPSO for dif-
ferent SNR values compared to the optimum MMSE performance
with a 4 × 4 MIMO system.

can be seen in Figure 3, where a PSO algorithm with Np = 60
particles as well as a CPSO algorithm with Ns = 4 and
N ′

p = 15 is used to estimate a 4 × 4-MIMO channel.
The MSE improves significantly in the first 20, 60, and 120
iterations for CPSO depending on the SNR. The subsequent
iterations are needed for convergence to the optimum
performance. Interestingly, PSO converges earlier to the
optimum performance in case of an SNR of 20 dB. The CPSO
algorithm is attracted to local optima which are created
by the separation of the dimensions [19]. The convergence
speed, is slower in this case. The fast convergence is especially
beneficial when PSO/CPSO is used as an initialization
algorithm where only a good starting value is needed instead
of the optimum value. In order to further illustrate the
advantages of CPSO over PSO, the graph-based soft iterative
receiver (GSIR) of [3] is initialized by PSO, CPSO, and
the MMSE estimator in the following. A 8 × 8 MIMO
system is considered with QPSK modulation and a rate-
1/2 repetition code. A fixed number of 10 iterations are
used for the GSIR. A training preamble with orthogonal
properties, as described in Section 3, is applied. A data
sequence of length KD = 100 is transmitted subsequently.
Thus, the complete transmitted sequence can be represented
as X = [XTXD]. PSO, CPSO, and the MMSE estimator
are applied once, utilizing only the training symbols given
in XT and provide the initial channel coefficient estimates
used by the GSIR. The maximum number of iterations
imax for the PSO/CPSO is hereby restricted to keep the
computational overhead of the initialization at a minimum.
The BER results are shown in Figure 4. It is obvious that
CPSO outperforms PSO in terms of convergence speed. A
maximum of only 30 iterations is required for the CPSO
to provide initial coefficients that are sufficiently well for
the GSIR to converge to the same performance achieved
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Figure 4: BER performance of the GSIR initialized by PSO, CPSO,
and MMSE as a function of the maximum number of iterations.

with an MMSE initialization. As suggested by the results
given in Figure 3, the performance of PSO/CPSO depends
on the number of particles and subswarms. The relation
between the number of particles/subswarms on the number
of iterations is investigated in the following section. In order
to keep the computational overhead at a minimum the
maximum number of iterations for the PSO/CPSO should
be set to a minimum.

5. Complexity Analysis

The complexity of PSO/CPSO is determined by the number
of particles, subswarms, dimensions, and the required num-
ber of iterations for convergence. The number of particles
and subswarms is a design parameter of the algorithm and
is commonly chosen to achieve a good performance in terms
of MSE for channel estimation. The number of dimensions
is a fixed parameter depending on the optimization problem
(e.g., number of transmit and receive antennas and/or
channel memory length). In each iteration all particles N ′

p

of all subswarms Ns have to evaluate their current position
and compare their current fitness value with their personal
best as well as the global best, which results in a complexity
of order

O
(

CPSO(it)
)
= O

(
N ′

p ·Ns ·D
)

, (11)

per iteration.
The overall number of particles influences the number

of iterations needed to converge. In case of using only one
particle the required number of iterations until convergence
is maximized and computational complexity per iteration
is minimized, while, on the other hand, using an infinite
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Figure 5: Histogram of the minimum number of iterations
required to converge in dependence of the dimensionality.

number of particles is minimizing the number of iterations
and maximizing the computational complexity per iteration.
With an infinite number of particles, PSO is equivalent to
exhaustive search. Hence, a tradeoff between the overall size
of PSO/CPSO and the number of iterations has to be found.
Furthermore, the required minimum number of iterations
is depending on the optimization metric as well. In general,
the more complex (higher dimensional) the optimization
problem is, the more iterations are needed and vice versa.

A strategy often used to determine the maximum
number of iterations imax is to find the minimum value
of iterations at which the optimum MSE performance is
reached. This approach requires extensive simulations over
a variety of parameters in order to determine the optimum
tradeoff between complexity and iterations.

In the following a general criterion to determine the
maximum number of iterations based on the probability dis-
tribution function of the iterations required by PSO/CPSO
for convergence is presented. The advantage of this strategy
is that only a fraction of parameters need to be simulated
while missing parameters can be reconstructed by means of
an interpolation. PSO/CPSO is said to reach convergence if
the fitness value pOPT of (8)/(9) is below a certain threshold
th for γ iterations. In this case the threshold is set to th = 10−6

with γ = 10.
Monte Carlo simulations with a fixed parameter set

for CPSO and varying number of transmit antennas are
conducted. The iteration at which the stopping criterion is
fulfilled is recorded. A histogram of the iterations fulfilling
the stopping criterion for different dimensions is shown
in Figure 5. Each histogram can be approximated by a
generalized extreme value distribution. The characteristic
shape of the function is in the steep slope once a certain
value is exceeded and a slow decline after the maximum is
reached. The probability density function (pdf) of the gen-
eralized extreme value distribution is described by (12). The

distribution is characterized by three parameters, namely, the
shape parameter k, the scale parameter σ , and the location
parameter μ:

p
(
k,μ, σ

) =
(

1
σ

)
exp

(
−
(

1 + k
(x − μ)

σ

)−(1/k))

×
(

1 + k
(x − μ)

σ

)−1−(1/k)

.

(12)

Given the pdf for a certain parameter set, the maximum
number of iteration imax can be defined to cover a certain
percentage of the pdf. The amount to which the pdf
is covered defines the tradeoff between performance and
complexity. Setting the maximum number of iterations too
low reduces the complexity of the algorithm, but also implies
a performance loss due to a premature stop of the algorithm.
Vice versa, setting the maximum number of iterations too
large is increasing complexity without a gain in performance.
In case of D = 4 (cf. Figure 5 the location parameter results
in μ = 45, which resembles the most likely iteration at which
the algorithm converges. In order to cover at least 90% of
the required iterations the maximum number of iterations
should be set to imax ≥ 105.

The aforementioned tradeoff between the number of par-
ticles/subswarms and the number of iterations is evaluated in
the following. The maximum number of iterations is defined
to cover 90% of the pdf.

The number of iterations required by PSO/CPSO until
convergence depends on the number of dimensions of the
optimization problem and the allocated number of swarms
and inherently particles. In Figure 6, the required number of
iterations depending on the dimensions of the optimization
problem is given for different swarm sizes. With a constant
swarm size the iterations are increasing quadratically with
the dimensions. On the contrary, with increasing swarm
sizes, the required iterations are nearly constant over the
dimensions, as can be seen from the similar starting points
of the curves. The required number of iterations for PSO
(Ns = 1) to converge, exceeds 8000 at 20 dimensions. Since
the three parameters of the extreme value distribution are
correlated over the number of particles and subswarms, not
all swarm sizes need to be simulated but can be calculated
by means of interpolation. The optimum tradeoff between
swarm size and iterations can thus be determined with a
minimum amount of simulations.

The overall complexity of CPSO depends on the com-
plexity per iteration and the number of iterations:

O
(

CPSO(total)
)
= O

(
CPSO(it)

)
·O(I). (13)

The number of iterations is taken into account here, as they
are influenced by the dimensionality of the optimization
problem. The complexity of the MMSE is dominated by the
matrix inversion which has a complexity of order

O(MMSE) = O
(
N3

T

)
. (14)

A fair comparison of the complexity is not straightforward,
when for example the number of complex multiplications
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Figure 6: Required number of iterations of different swarm sizes as
a function of the number of dimensions at an SNR of 10 dB.

is considered, as different implementations as well as opti-
mization techniques for both algorithms will end in different
results. On basis of the O-notation, CPSO and MMSE
are compared to give an insight on the influence of the
different parameters of CPSO. The total complexity of CPSO
is separable into two parts as can be seen from (13),
namely, into the complexity per iteration and the complexity
introduced by the number of iterations. The complexity of
CPSO per iteration is increased linearly with the number of
transmit antennas. It is obvious that the complexity of the
MMSE will eventually be larger than the complexity of CPSO
per iteration with increasing number of transmit antennas.

However, the total complexity of CPSO will only be lower
for a given number of transmit antennas if the number
of iterations required by CPSO for convergence is small.
An assumption that is fulfilled when CPSO is used for
initialization.

With increasing number of transmit antennas a larger
number of subswarms/particles can be supported with a low-
er complexity than the MMSE estimator. Using a criterion
for optimum performance and not fast convergence (initial-
ization) is further increasing the complexity of CPSO. Hence,
optimum performance with a complexity lower than MMSE
is only reached for larger MIMO systems.

The following conclusions can be drawn from this result.

(i) CPSO is suitable for medium- to large-sized MIMO
systems when used for initialization.

(ii) Channel estimation with PSO/CPSO targeting opti-
mum performance is computational feasible for
MIMO systems with several dozens of transmit
antennas. Such scenarios are often referred to as
Large-MIMO systems [27].

6. Multiobjective PSO

High-dimensional optimization problems can be solved
efficiently by the aforementioned cooperative particle swarm
optimization algorithm. However, PSO as well as CPSO are
limited to solve single-objective problems. A constraint that
is fulfilled for channel estimation given quasi-time-invariant
channels. With time-varying channels, the need for multi-
objective optimization arises, since the optimization metric
(8) and/or (9) can no longer be minimized by a single
constant matrix. Specifically, this means that the position of
a particle, which is used as a candidate solution, may be exact
for one time index but will not for a second time index.

Considering the coefficients over the time as additional
dimensions is infeasible due to the inherent increase of
iterations and complexity. However, due to the correlation
of adjacent channel coefficients in the time domain a
multiobjective particle swarm optimization (MOPSO) can
be applied. The fitness function is changed for MOPSO to
minimize K objectives simultaneously:

f
(

pi[k]
) = ∥∥y[k]− pi[k]x[k]

∥∥2, 1 ≤ k ≤ K , (15)

where K represents the number of training symbols in case
of pilot-aided channel estimation of a time-varying channel.
Obviously, the candidate solution pi[k] may minimize the
kth objective but is not necessarily optimal for the (k + 1)th
objective. This means that one objective cannot be optimized
without neglecting the performance of at least one other
objective. The previous concept of one global best position
pGB is replaced by an archive F� with the so-called dominant
solutions for all objectives. A particle pi is said to dominate
another particle p′i , denoted as pi � p′i , if and only if

(1) ∀λ ∈ {1, . . . ,Λ} : pi ≤ p′i ,

(2) ∃λ′ ∈ {1, . . . ,Λ} : pi < p′i .

In each iteration an updated candidate solution is compared
to the solutions stored in the external archive. A candidate
solution is added to the archive if it improves at least
one objective compared to the already existing solutions.
A candidate solutions replaces an existing solution if it
improves all objectives of an existing solution. The set of
solutions contained in the archive is termed Pareto set:

F�
.=
{

pi ∈ RD | �p′i ∈ RD : p′i � pi

}
. (16)

It is of importance that all objectives are optimized equally
well by the particles of a swarm. Without an additional
control mechanism to ensure a certain degree of diversity
(quality) within the archive, all particles may concentrate
on one objective, equivalent to the single-objective PSO. A
diverse solution set can be found by applying the so-called
sigma method [28]. The idea of the sigma method is that
each point of the D-dimensional search space is assigned a
sigma value. The Euclidean distance of the sigma value of a
current particle and the sigma value of the archive members
is calculated. The leader of the current particle is determined
by the smallest Euclidean distance between the sigma value
of the current position and the sigma value of a member of
the archive.
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Initialize swarm
Locate leader in an external archive
i = 1
while i < imax or convergence do

for each particle do
Select leader from archive
Update position using (1)/(2), (4)
Mutation
Evaluation using (15)
Update pBest

end for
Update leaders in the external archive
Quality (leaders)
i++

end while

Algorithm 3: Multiobjective PSO algorithm.

The principle of MOPSO is described by Algorithm 3.
The update function is hereby unchanged to PSO/CPSO.
An additional mutation operator is recommended as the
MOPSO algorithm occasionally converges prematurely. The
mutation operator is used at certain iteration intervals and
increases the velocity of a particle and/or reinitializes a parti-
cle. The maintenance and the additional mutation operator
contribute to an increased complexity of the algorithm.
Nevertheless, a multi-objective PSO (MOPSO) is successfully
used in [29] to initialize a graph-based iterative receiver
with only 5 MOPSO iterations to achieve the optimum
performance with the subsequent graph-based receiver.

7. Conclusion

An overview of particle swarm optimization for MIMO
channel estimation has been given. General applicable solu-
tions for MIMO channel estimation are presented as well as
the achievable performance of the algorithms is evaluated by
means of Monte Carlo simulations. Furthermore, an analysis
of the complexity based on the distribution of the required
iterations until convergence is introduced. The proposed
method allows the calculation of a maximum number of
iterations with a minimum of simulation overhead, since
missing parameters can be reconstructed by means of an
interpolation.

It has been shown that cooperative PSO is able to
approach the optimum MMSE estimator. Thus, for a poten-
tial implementation, the required number of iterations are
of utmost importance. The presented MSE and BER results
further illustrate that CPSO is also able to converge fast to
a “reasonable” MSE, which allows an iterative receiver to
converge to the same performance achieved with an MMSE-
based initialization, with just a minimum of iterations
required for the CPSO. The advantage of CPSO over MMSE
is in the flexible tradeoff between complexity per iteration
and required number of iterations, which makes it ideally
suited for parallelization. Furthermore, the parameters for
CPSO do not need to be tuned by empirical measures, which

is an advantage of CPSO, since the algorithm can directly be
applied for MIMO channel estimation.

Although PSO/CPSO can be used to estimate time-
varying channels by utilizing the extension to multiple
objectives, the strength of PSO/CPSO lies in the estimation
of time-invariant channels.
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