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A second-order boundary value problem with nonlinear and mixed two-point boundary
conditions is considered, Lx = f(t, x, x′), t ∈ (a, b), g(x(a), x(b), x′(a), x′(b)) = 0, x(b) =
x(a) in which L is a formally self-adjoint second-order differential operator. Under appropriate
assumptions on L, f , and g, existence and uniqueness of solutions is established by the method
of upper and lower solutions and Leray-Schauder degree theory. The general quasilinearization
method is then applied to this problem. Two monotone sequences converging quadratically to the
unique solution are constructed.

1. Introduction

The investigation of boundary value problems (denoted as BVPs for short) of ordinary
differential equations is of great significance. On one hand, it makes a great impact on the
studies of partial differential equations [1]. On the other hand, BVPs of ordinary differential
equations can be used to describe a large number of mechanical, physical, biological,
and chemical phenomena; see [2–5] for example. So far a lot of work has been carried
out, including second-order, third-order, and higher-order BVPs with various boundary
conditions.

As far as we know, for a long termmost of works focused on existence and uniqueness
of solutions. The works relating to approximation of solutions are relatively rare. In recent
years, some approximate methods, such as the shooting method [6], monotone iterative
technique [7], homotopy analysis method [8], and general quasilinearization method have
been applied to BVPs for obtaining approximations of solutions. Among these methods, the
general quasilinearization method becomes more and more popular.

The quasilinearization method was originally proposed by Bellman and Kalaba [9].
It is a very powerful approximation technique and unlike perturbation methods, is not

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194194459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Abstract and Applied Analysis

dependent on the existence of a small or large parameter. The method, whose sequence of
solutions of linear problems convergences to the solution of the original nonlinear problem,
is quadratic and monotone, which is one of the reasons for the popularity of this technique.
This method was generalized by Lakshmikantham and Vatsala [10] in which the convexity
or concavity assumption on the nonlinear functions involved in the problems is relaxed.

So far, the general quasilinearization method, coupled with the method of upper and
lower solutions, has been applied to obtain approximation of solutions for a large number
of nonlinear problems, for example, BVPs of ordinary differential equations, such as first-
order BVP with nonlinear boundary condition [11] and second-order BVPs with Dirichlet
boundary condition [12], periodic boundary condition [13], three-point boundary condition
[14], four-point boundary condition [15], and m-point boundary condition [16]; BVPs of
partial differential equations, such as parabolic initial-boundary value problem [17], elliptic
problems with nonlinear boundary condition [18] and p-Laplacian equations with nonlinear
boundary condition [19], and so forth; BVPs of impulsive differential equations [20] and
impulse functional differential equations with anti-periodic boundary condition [21]; BVPs
of some practically nonlinear problems, such as Duffing equation involving both integral and
nonintegral forcing terms with Robin boundary condition [22] and forced Duffing equation
with discontinuous-type integral boundary condition [23]; as well as some abstract problems
such as fixed point theorems in ordered Banach space [24].

Recently, El-Gebeily and O’Regan [25, 26] consider the singular and nonsingular
second-order ordinary differential equations

l(u(t)) = f(t, u(t)), t ∈ (a, b) (1.1)

with nonlinear boundary conditions as follows:

g
(
u(a), u(b), pu′(a)

)
= 0, (1.2)

h
(
u(a), u(b), pu′(b)

)
= 0, (1.3)

in which lu = −(pu′)′ + qu is a formally self-adjoint second-order differential operator.
This type of BVPs arises in a variety of problems in applied mathematics and physics
[27]. By defining the upper and lower solutions of BVP (1.1)–(1.3) suitably, Gebeily and
Regan established the existence and uniqueness of solutions and constructed two monotonic
iterative sequences converging to the unique solution quadratically. However, it can be noted
that the u′(b) and u′(a) terms are not involved in (1.2) and (1.3), respectively. For second-
order two-point BVPs, if all the terms u(a), u(b), u′(a) and u′(b) are involved in the boundary
conditions, it seems quite difficult to deal with.

In this paper, we consider a second-order BVP with nonlinear and mixed two-point
boundary conditions as follows:

Lx = f
(
t, x, x′), t ∈ (a, b), (1.4)

g
(
x(a), x(b), x′(a), x′(b)

)
= 0, (1.5)

x(b) = x(a), (1.6)

where Lx = −(px′)′ + qx, in which p ∈ C1[a, b], p > 0, and q ∈ C[a, b], q ≥ 0.
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In BVP (1.4)–(1.6), it can be found that the boundary condition (1.5) is dependent on
all the x(a), x(b), x′(a), and x′(b) terms. First, existence and uniqueness of solutions of BVP
(1.4)–(1.6) is established by combining the method of upper and lower solutions with Leray-
Schauder degree theory. Then, the general quasilinearization method is applied to construct
the approximations of the unique solution. Twomonotone sequences of iterations converging
to the unique solution quadratically are obtained.

2. Preliminaries

In this section, several definitions and lemmas needed to the main results are given first.

Definition 2.1. β(t), α(t) ∈ C2[a, b] are called the upper and lower solutions of BVP (1.4)–(1.6),
respectively, if

Lβ ≥ f
(
t, β, β′

)
, t ∈ (a, b),

g
(
β(a), β(b), β′(a), β′(b)

) ≤ 0,

β(b) = β(a),

Lα ≤ f
(
t, α, α′), t ∈ (a, b),

g
(
α(a), α(b), α′(a), α′(b)

) ≥ 0,

α(b) = α(a).

(2.1)

Definition 2.2. Let E be a subset of [a, b] × R2; it is said that the right-hand side function of
(1.4) satisfies Nagumo condition on E if

∣∣f
(
t, x, x′)∣∣ ≤ h

(∣∣x′∣∣) = O
(∣∣x′∣∣2

)
(2.2)

holds for (t, x, x′) ∈ E and |x′| → +∞.

Lemma 2.3 (see [28]). Let f : [a, b] × R2 → R be a continuous function satisfying Nagumo
condition on

E =
{(

t, x, x′) ∈ [a, b] × R2 : α(t) ≤ x(t) ≤ β(t)
}
, (2.3)

where α, β : [a, b] → R are continuous functions such that α(t) ≤ β(t) for all t ∈ [a, b]. Then there
exists a constant N > 0 such that every solution x(t) of second-order equations x′′ = f(t, x, x′) with

α(t) ≤ x(t) ≤ β(t), t ∈ [a, b] (2.4)

satisfies ‖x′‖∞ ≤ N, in which N is called the Nagumo constant.
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Lemma 2.4. Boundary value problem as follows:

Lx = −x, t ∈ (a, b), (2.5)

x(a) = 0, x(b) = 0 (2.6)

has only the trivial solution.

Proof. Assume that x0(t) is an arbitrarily nontrivial solution of BVP (2.5)-(2.6). From the
boundary conditions (2.6), it can be concluded that x0(t) can achieve its positive maximum
or negative minimum in the interior of [a, b], suppose at t0, t0 ∈ (a, b).

If x0(t) achieves its positive maximum, then

x0(t0) > 0, x′
0(t0) = 0, x′′

0(t0) ≤ 0 (2.7)

which means that

Lx0(t0) = −p(t0)x′′
0(t0) − p′(t0)x′

0(t0) + q(t0)x(t0) ≥ 0. (2.8)

On the other hand, it can be derived from (2.5) that

Lx0(t0) = −x0(t0) < 0. (2.9)

It is a contradiction.
If x0(t) achieves its negative minimum, similar arguments lead to a contradiction too.

Hence, BVP (2.5)-(2.6) has only the trivial solution.

Lemma 2.5 (see [26]). Define a linear operator

l : C1[a, b] −→ C[a, b] × R × R (2.10)

by

lx(t) =

(

px′(a) − px′(t) +
∫ t

a

q(s)x(s)ds, x(a), x(b)

)

. (2.11)

Then l−1 exists and is continuous.

Lemma 2.6. Assume that

(1) α(t), β(t) are the lower and upper solutions of BVP (1.4)–(1.6), respectively;

(2) f(t, x, x′) is continuous on [a, b] × R2 and is strictly decreasing in x on

D =
{(

t, x, x′) ∈ [a, b] × R2 : min
{
α(t), β(t)

} ≤ x ≤ max
{
α(t), β(t)

}}
; (2.12)
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(3) g is continuously differentiable on R4, strictly decreasing in the first and second variables,
and nondecreasing and nonincreasing, respectively, in the third and forth variables.

Then,

α(t) ≤ β(t), t ∈ [a, b]. (2.13)

Proof. Suppose that α(t) > β(t) for some t ∈ [a, b]. Then there exist some t0 ∈ [a, b] such that

max
t∈[a,b]

[
α(t) − β(t)

]
= α(t0) − β(t0) > 0. (2.14)

If t0 ∈ (a, b), then α(t0) > β(t0), α′(t0) = β′(t0), and α′′(t0) ≤ β′′(t0) and consequently,

L
[
α(t0) − β(t0)

]
= Lα(t0) − Lβ(t0) ≥ 0. (2.15)

However, it follows from Definition 2.1 and mean value theorem that

Lα(t0) − Lβ(t0) ≤ f
(
t0, α(t0), α′(t0)

) − f
(
t0, β(t0), β′(t0)

)

= f ′
x

(
t0, ξ, β

′(t0)
)(
α(t0) − β(t0)

)

< 0,

(2.16)

in which ξ ∈ (β(t0), α(t0)), and the last inequality follows from the strictly decreasing property
of f in x. It is a contradiction.

If t0 = a, then α(a) > β(a) and

α′(a) − β′(a) = lim
t→a+

[
α(t) − β(t)

] − [α(a) − β(a)
]

t − a
≤ 0. (2.17)

By the definitions of the lower and upper solutions, we have

α(b) = α(a) > β(a) = β(b). (2.18)

Moreover,

α′(b) − β′(b) = lim
t→ b−

(
α(t) − β(t)

) − (α(b) − β(b)
)

t − b
= lim

t→ b−

(
α(t) − β(t)

) − (α(a) − β(a)
)

t − b
≥ 0.

(2.19)

Consequently, in view of the monotonicity of g in its variables, it follows that

0 ≥ g
(
β(a), β(b), β′(a), β′(b)

)
> g
(
α(a), α(b), α′(a), α′(b)

) ≥ 0, (2.20)

which is a contradiction.
If t0 = b, similar deductions lead to a contradiction too. Hence, Lemma 2.6 is proved.
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3. Existence and Uniqueness of Solutions

Theorem 3.1. Assume that

(1) α(t), β(t) are the lower and upper solutions of BVP (1.4)–(1.6), respectively;

(2) f(t, x, x′) is continuous on [a, b] × R2 and is strictly decreasing in x on

D =
{(

t, x, x′) ∈ [a, b] × R2 : α(t) ≤ x(t) ≤ β(t)
}

(3.1)

and satisfies Nagumo condition on D;

(3) g is continuously differentiable, strictly decreasing in the first and second variables,
nondecreasing and nonincreasing, respectively, in the third and forth variables on
[α(a), β(a)] × [α(b), β(b)] × R2.

Then there exists a unique solution x(t) ∈ C2[a.b] of BVP (1.4)–(1.6) such that

α(t) ≤ x(t) ≤ β(t), t ∈ [a, b]. (3.2)

Proof. Define

w(t, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α(t), x(t) < α(t),

x(t), α(t) ≤ x(t) ≤ β(t),

β(t), x(t) > β(t).

(3.3)

Introduce the following auxiliary BVPs with homotopy character:

Lx = λf(t,w(t, x), x′) − x + λw(t, x),
x(a) = λ

[
g(w(a, x(a)), w(b, x(b)), x′(a), x′(b)) +w(a, x(a))

]
,

x(b) = x(a)
(3.4)

in which λ ∈ [0, 1] is called the embedded parameter.
By the continuity of f and g, and by the boundedness of α(t) and β(t), we can select a

sufficiently large constant M0 > 0 such that

−M0 < α(t) ≤ β(t) < M0, (3.5)

f
(
t, β(t), 0

)
+ β(t) < M0, (3.6)

g
(
β(a), β(b), 0, 0

)
+ β(a) < M0, (3.7)

−M0 < f(t, α(t), 0) + α(t), (3.8)

−M0 < g(α(a), α(b), 0, 0) + α(a). (3.9)

In what follows, the proof of the existence of solutions is divided into four steps.
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Step 1. Show that, for λ ∈ [0, 1], every solution x(t) of BVPs (3.4) satisfies

|x(t)| < M0, t ∈ [a, b]. (3.10)

Suppose that the estimate |x(t)| < M0 is not true. Then, there must be some points
in [a, b] such that either x(t) ≥ M0 or x(t) ≤ −M0. For the former case, x(t) has a positive
maximum, suppose at t1, that is,

max
t∈[a,b]

x(t) = x(t1)(≥ M0 > 0) (3.11)

can be assumed. We have three cases to consider.

Case 1 (t1 ∈ (a, b)). In this case, x(t1) ≥ M0 > β(t1), x′(t1) = 0 and x′′(t1) ≤ 0 which leads to
Lx(t1) ≥ 0. On the other hand, since the definition ofw(t, x) yieldsw(t1, x(t1)) = β(t1); hence,
for λ ∈ (0, 1], we have

Lx(t1) = λf
(
t1, β(t1), 0

) − x(t1) + λβ(t1)

= λ
[
f
(
t1, β(t1), 0

)
+ β(t1)

] − x(t1)

≤ λ
[
f
(
t1, β(t1), 0

)
+ β(t1) −M0

]
< 0,

(3.12)

in which the last inequality is obtained by the inequality (3.6). It is a contradiction.
For λ = 0, it can be derived that

0 ≤ Lx(t1) = −x(t1) ≤ −M0 < 0, (3.13)

which is also a contradiction.

Case 2 (t1 = a). In this case, x(a) ≥ M0 > β(a), x′(a) ≤ 0. Furthermore, we have

x(b) = x(a) ≥ M0 > β(b),

x′(b) = lim
t→ b−

x(t) − x(b)
t − b

= lim
t→ b−

x(t) − x(a)
t − b

≥ 0.
(3.14)

The definition of w(t, x) means that w(a, x(a)) = β(a) and w(b, x(b)) = β(b). Hence, for
λ ∈ (0, 1], in view of x′(a) ≤ 0 and x′(b) ≥ 0, it follows from the monotonicity of g in its third
and forth variables and the inequality (3.7) that

M0 ≤ x(a) = λ
[
g
(
w(a, x(a)), w(b, x(b)), x′(a), x′(b)

)
+w(a, x(a))

]

= λ
[
β(a) + g

(
β(a), β(b), x′(a), x′(b)

)]

≤ λ
[
β(a) + g

(
β(a), β(b), 0, 0

)]

< λM0 ≤ M0

(3.15)

which is a contradiction.
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For λ = 0, we can obtain from the second equation in (3.4) that

0 < M0 ≤ x(a) = 0, (3.16)

which is a contradiction too.

Case 3 (t1 = b). In this case, x(b) ≥ M0 > β(b), x′(b) ≥ 0, and furthermore,

x(a) = x(b) ≥ M0 > β(a),

x′(a) = lim
t→a+

x(t) − x(a)
t − a

= lim
t→a+

x(t) − x(b)
t − a

≤ 0.
(3.17)

The same deductions with those in Case 2 yield, for λ ∈ (0, 1], that

M0 ≤ x(b) = x(a) ≤ λ
[
β(a) + g

(
β(a), β(b), 0, 0

)]

< λM0 ≤ M0.
(3.18)

It is also a contradiction. For λ = 0, it can be deduced from the boundary conditions of (3.4)
that

0 < M0 ≤ x(b) = x(a) = 0, (3.19)

which is a contradiction too.

Step 2. Show that there exists a positive constant M1 such that, for λ ∈ [0, 1], every solution
x(t) of BVPs (3.4) satisfies

∣∣x′(t)
∣∣ < M1, t ∈ [a, b]. (3.20)

Let

E =
{(

t, x, x′) ∈ [a, b] × R2 : |x(t)| < M0

}
. (3.21)

Define

Fλ

(
t, x, x′) =

1
−p
[
p′x′ − qx + λf

(
t,w(t, x), x′) − x + λw(t, x)

]
,
(
t, x, x′) ∈ E. (3.22)

Consequently, (1.4) can be rewritten as

x′′ = Fλ

(
t, x, x′). (3.23)
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Since the function f satisfies Nagumo condition on E,

∣
∣Fλ

(
t, x, x′)∣∣ =

1
p

∣
∣p′x′ − qx + λf

(
t,w(t, x), x′) − x + λw(t, x)

∣
∣

= O
(∣
∣x′∣∣2

)
, for

(
t, x, x′) ∈ E,

∣
∣x′∣∣ −→ +∞

(3.24)

is obvious if the boundedness of x(t) andw(t, x), p ∈ C1[a, b], p > 0, and q ∈ C[a, b] is kept in
mind. That is, Fλ(t, x, x′) satisfies Nagumo condition on E. Hence, by Lemma 2.3, the estimate
|x′(t)| < M1, t ∈ [a, b], can be obtained.

Step 3. Show that for λ = 1, BVP (3.4) has at least one solution x1(t).
Define a nonlinear operator

Nλ : C1[a, b] −→ C[a, b] × R × R (3.25)

by

Nλx(t) =

(∫ t

a

[
λf
(
s,w(s, x), x′) − x + λw(s, x)

]
ds,Aλ, Bλ

)

(3.26)

with

Aλ = λ
[
g
(
w(a, x(a)), w(b, x(b)), x′(a), x′(b)

)
+w(a, x(a))

]
,

Bλ = x(a).
(3.27)

Consequently, BVPs (3.4) are equivalent to the following operator equations:

(
I − l−1Nλ

)
x = 0, (3.28)

in which l is the linear operator defined in Lemma 2.5, and I is the unit operator.
Define the norm in C[a, b] × R × R as

‖x(t)‖C[a,b]×R×R = ‖x(t)‖C[a,b] + |R1| + |R2| (3.29)

for x(t) ∈ C[a, b] × R × R, in which R1, R2 are two real numbers.
Let {xn(t)} be the bounded sequence onC1[a, b]. It then follows from Steps 1 and 2 that

{Nλxn} and {N ′
λ
xn} are both uniformly bounded in the sense of the norm defined above.

Thus, {Nλxn} is equicontinuous on C[a, b] × R × R. Consequently, Arzela-Ascoli theorem
yields that {Nλxn} is compact on C[a, b] × R × R. Therefore, Nλx is a completely continuous
operator.

Furthermore, the operator

Tλ : C1[a, b] −→ C1[a, b] (3.30)
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defined by

Tλ = l−1Nλ (3.31)

is also a completely continuous operator.
Define a bounded and open domain as follows:

Ω =
{
x(t) ∈ C1[a, b] : |x(t)| < M0,

∣
∣x′(t)

∣
∣ < M1

}
. (3.32)

It follows from Steps 1 and 2 that

(
I − l−1Nλ

)
∂Ω/= 0. (3.33)

Therefore, the degree Deg(I−l−1Nλ,Ω, 0) is well defined. Then the invariance of degree under
homotopy yields

Deg
(
I − l−1N1,Ω, 0

)
= Deg

(
I − l−1N0,Ω, 0

)
. (3.34)

Since the operator equation (I − l−1N0)x = 0 is equivalent to BVP (2.5)-(2.6)which has
only the trivial solution, therefore

Deg
(
I − l−1N1,Ω, 0

)
= Deg

(
I − l−1N0,Ω, 0

)
= ±1. (3.35)

Consequently, the operator equation (I − l−1N1)x = 0 gives

Lx = f
(
s,w(s, x), x′) − x +w(s, x),

x(a) = g
(
w(a, x(a)), w(b, x(b)), x′(a), x′(b)

)
+w(a, x(a)),

x(b) = x(a),

(3.36)

which has at least one solution x1(t) ∈ C2[a, b].

Step 4. Show that every solution x(t) ∈ C2[a, b] of BVP (3.36) satisfies

α(t) ≤ x(t) ≤ β(t), t ∈ [a, b]. (3.37)

The right-hand side of this inequality is first proved. For the sake of contradiction,
suppose that x(t) > β(t) for some t ∈ [a, b]. Define h(t) = x(t) − β(t), then h(t) has a positive
maximum at some t1 ∈ [a, b].

Case 1 (t1 ∈ (a, b)). In this case, h(t1) = x(t1) − β(t1) > 0, h′(t1) = x′(t1) − β′(t1) = 0, and
h′′(t1) ≤ 0 and consequently, Lh(t1) ≥ 0.
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On the other hand,

Lh(t1) = Lx(t1) − Lβ(t1)

≤ f
(
t1, w(t1, x(t1)), x′(t1)

) − x(t1) +w(t,x(t1)) − f
(
t1, β(t1), β′(t1)

)

= f
(
t1, β(t1), β′(t1)

) − x(t1) + β(t1) − f
(
t1, β(t1), β′(t1)

)

= −x(t1) + β(t1) < 0,

(3.38)

which is a contradiction.

Case 2 (t1 = a). In this case,

h(a) = x(a) − β(a) > 0, h′(a) = x′(a) − β′(a) ≤ 0. (3.39)

Furthermore, we have

β(b) = β(a) < x(a) = x(b),

x′(b) − β′(b) = h′(b) = lim
t→ b−

h(t) − h(b)
t − b

= lim
t→ b−

h(t) − h(a)
t − b

≥ 0.
(3.40)

The definition of w(t, x) yields w(a, x(a)) = β(a) and w(b, x(b)) = β(b). In view of x′(a) ≤
β′(a) and x′(b) ≥ β′(b), it then follows from the monotonicity of g in its third and forth
variables that

β(a) < x(a) = g
(
w(a, x(a)), w(b, x(b)), x′(a), x′(b)

)
+w(a, x(a))

≤ g
(
β(a), β(b), β′(a), β′(b)

)
+ β(a)

≤ β(a).

(3.41)

It is also a contradiction.

Case 3 (t1 = b). In this case,

h(b) = x(b) − β(b) > 0, h′(b) = x′(b) − β′(b) ≥ 0. (3.42)

Furthermore,

β(a) = β(b) < x(b) = x(a),

x′(a) − β′(a) = h′(a) = lim
t→a+

h(t) − h(a)
t − a

= lim
t→a+

h(t) − h(b)
t − a

≤ 0.
(3.43)

Similar deductions lead to a contradiction too.
Therefore, the inequality x(t) ≤ β(t) holds. In a similar way, α(t) ≤ x(t) can be proved.
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Till now, by Steps 1–4, the proof of the existence of solutions is completed. In what
follows, we turn to the proof of the uniqueness of solutions.

We may assume that x1(t) and x2(t) are two arbitrary solutions of BVP (1.4)–(1.6).
Define

y(t) = x1(t) − x2(t), t ∈ [a, b]. (3.44)

If y(t) ≡ 0 for t ∈ [a, b], the uniqueness of solutions is obvious. Otherwise, there must be
some points in [a, b] such that either y(t) > 0 or y(t) < 0. For the former case, we define

max
t∈[a,b]

y(t) := y(t1). (3.45)

Similarly, we only need to consider the following three cases.

Case 1 (t1 ∈ (a, b)). In this case,

y(t1) = x1(t1) − x2(t1) > 0, y′(t1) = x′
1(t1) − x′

2(t1) = 0, y′′(t1) ≤ 0. (3.46)

Thus, 0 ≤ Ly(t1). On the other hand, the mean value theorem and the strictly decreasing
property of f(t, x, x′) in x results that

Ly(t1) = Lx1(t1) − Lx2(t1)

= f
(
t1, x1(t1), x′

1(t1)
) − f

(
t1, x2(t1), x′

2(t1)
)

= f ′
x

(
t1, θ, x

′
1(t1)

)
(x1(t1) − x2(t1)) < 0,

(3.47)

which is a contradiction, where θ ∈ (x2(t1), x1(t1)).

Case 2 (t1 = a). In this case,

y(a) = x1(a) − x2(a) > 0, y′(a) = x′
1(a) − x′

2(a) ≤ 0. (3.48)

Moreover,

y(b) = x1(b) − x2(b) = x1(a) − x2(a) = y(a) > 0,

x′
1(b) − x′

2(b) = y′(b) = lim
t→ b−

y(t) − y(b)
t − b

= lim
t→ b−

y(t) − y(a)
t − b

≥ 0.
(3.49)

Nevertheless, in view of the monotonicity of g in its variables, it follows from the mean value
theorem that

0 = g
(
x1(a), x1(b), x′

1(a), x
′
1(b)
) − g

(
x2(a), x2(b), x′

2(a), x
′
2(b)
)

= g ′
1[x1(a) − x2(a)] + g ′

2[x1(b) − x2(b)] + g ′
3
[
x′
1(a) − x′

2(a)
]
+ g ′

4

[
x′
1(b) − x′

2(b)
]
< 0,

(3.50)
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which is a contradiction, in which g ′
i = g ′

i(ξ1, ξ2, ξ3, ξ4), i = 1, 2, 3, 4, ξ1 ∈ (x2(a), x1(a)) and
ξ2, ξ3, ξ4 can be located by analogy.

Case 3 (t1 = b). For this case, in the sameway, it can be proved that this case is also impossible.

Consequently, the conclusion in Theorem 3.1 is proved.

4. Approximations of the Unique Solution

In this section, a series of boundary value problems whose sequence of solutions converging
to the unique solution of BVP (1.4)–(1.6) is constructed.

Theorem 4.1. Assume that

(1) there exist the upper and lower solutions β0(t), α0(t) of BVP (1.4)–(1.6);

(2) f(t, x, x′) is continuous on [a, b] × R2 and satisfies Nagumo condition on

D =
{(

t, x, x′) ∈ [a, b] × R2 : α0(t) ≤ x(t) ≤ β0(t)
}
; (4.1)

(3) fxx(t, x, x′) exists and is continuous on [a, b] × R2 and fx(t, x, x′) < 0, fxx(t, x, x′) ≤ 0
on D × [−C,C], where

C ≥ max
{
N, max

t∈[a,b]
α′
0(t), max

t∈[a,b]
β′0(t)

}
(4.2)

is chosen sufficiently large, and N is the Nagumo constant;

(4) g(u, v, z,w) ∈ C1([α0(a), β0(a)]× [α0(b), β0(b)]×R2, R), and it is strictly decreasing in
u and v, no-decreasing and nonincreasing, respectively, in z and w.

Then there exist a monotone nonincreasing sequence {βn(t)} and a monotone nondecreasing sequence
{αn(t)} converging uniformly to the unique solution of BVP (1.4)–(1.6). Moreover, the rate of the
convergence is quadratic.

Proof. Define a piecewise function q(x′) = max{−C,min{x′, C}} for x′ ∈ R, and introduce
f(t, x, q(x′)) on D × [−C,C] and

F
(
t, x, x′; z

)
= f
(
t, z, q

(
x′)) + fx

(
t, z, q

(
x′))(x − z) (4.3)

for (t, x, x′; z) ∈ D × [−C,C] × [α0(t), β0(t)].
Obviously, F(t, x, x′; z) is linear in x if z is viewed as a known quantity. Moreover,

f(t, x, q(x′)) and F(t, x, x′; z) both satisfy the Nagumo condition.
We begin by considering the following BVP:

Lx = F
(
t, x, x′; β0

)
,

g
(
x(a), x(b), x′(a), x′(b)

)
= 0,

x(b) = x(a).

(4.4)
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In view of the definition of the upper solution β0(t) of BVP (1.4)–(1.6), it can be verified
directly that

Lβ0 ≥ f
(
t, β0, β

′
0
)
= F
(
t, β0, β

′
0; β0
)
,

g
(
β0(a), β0(b), β′0(a), β

′
0(b)
) ≤ 0,

β0(b) = β0(a).

(4.5)

Hence, β0(t) is the upper solution of BVP (4.4).
According to condition (3), it can be deduced that

F
(
t, α0, α

′
0; β0
) − f

(
t, α0, α

′
0
)

= f
(
t, β0, α

′
0
)
+ fx

(
t, β0, α

′
0
)(
α0 − β0

) − f
(
t, α0, α

′
0
)

= f
(
t, β0, α

′
0
)
+ fx

(
t, β0, α

′
0
)(
α0 − β0

)

−
[
f
(
t, β0, α

′
0
)
+ fx

(
t, β0, α

′
0
)(
α0 − β0

)
+
1
2
fxx
(
t, ξ, α′

0
)(
α0 − β0

)2
]

= −1
2
fxx
(
t, ξ1, α

′
0
)(
α0 − β0

)2 ≥ 0,

(4.6)

in which |α′
0| < C has been taken into account, and ξ1 ∈ (α0, β0). Consequently, by taking the

definition of the lower solution α0(t) of BVP (1.4)–(1.6) into account, we have

Lα0 ≤ f
(
t, α0, α

′
0
) ≤ F

(
t, α0, α

′
0; β0
)
,

g
(
α0(a), α0(b), α′

0(a), α
′
0(b)
) ≥ 0,

α0(b) = α0(a),

(4.7)

which indicates that α0(t) is the lower solution of BVP (4.4). Since BVP (4.4) satisfies all the
requirements in Theorem 3.1, hence BVP (4.4) has a unique solution β1(t) ∈ C2[a, b] with
α0(t) ≤ β1(t) ≤ β0(t) and |β′1(t)| < C1, t ∈ [a, b], where C1 ≤ C is a constant.

Next, we consider

Lx = F
(
t, x, x′; β1

)
,

g
(
x(a), x(b), x′(a), x′(b)

)
= 0,

x(b) = x(a).

(4.8)
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It can be shown that

Lβ1 = F
(
t, β1, β

′
1; β0
)

= f
(
t, β0, β

′
1

)
+ fx

(
t, β0, β

′
1

)(
β1 − β0

)

≥ f
(
t, β0, β

′
1

)
+ fx

(
t, β0, β

′
1

)(
β1 − β0

)
+
1
2
fxx
(
t, ξ2, β

′
1

)(
β1 − β0

)2

= f
(
t, β1, β

′
1

)
= F
(
t, β1, β

′
1; β1
)

(4.9)

in which ξ2 ∈ (β1, β0). Thus, β1(t) is the upper solution of BVP (4.8) since

g
(
β1(a), β1(b), β′1(a), β

′
1(b)
) ≤ 0,

β1(b) = β1(a)
(4.10)

are obvious if we keep that β1(t) is the solution of BVP (4.4) in mind.
Similarly, we can show that α0(t) is the lower solution of BVP (4.8). Hence, according

to Theorem 3.1, there exists a unique solution β2(t) ∈ C2[a, b] of BVP (4.8) such that α0(t) ≤
β2(t) ≤ β1(t) and |β′2(t)| < C1, t ∈ [a, b], where C1 is a constant.

By repeating the above procedure iteratively, we obtain a monotone nonincreasing
sequence {βn(t)}with

α0(t) ≤ · · · ≤ βn(t) ≤ · · · ≤ β1(t) ≤ β0(t),
∣∣β′i(t)

∣∣ ≤ C1, t ∈ [a, b], (4.11)

where {βn(t)} are, respectively, the unique solution of the BVPs as follows:

Lx = F
(
t, x, x′; βn−1

)
,

g
(
x(a), x(b), x′(a), x′(b)

)
= 0,

x(b) = x(a).

(4.12)

Formula (4.11), the properties of the operator L, and the continuity of F yield the
uniform boundedness of {β′′n(t)} for t ∈ [a, b]. Therefore, the sequences {βin(t)} (i = 0, 1) are
uniformly bounded and equicontinuous on [a, b]. Hence, Ascoli-Arzela theorem guarantees
the existence of subsequences {βink

(t)} ⊂ {βin(t)} and a function x(t) ∈ C1[a, b] with {βink
(t)}

converging uniformly to xi(t) (i = 0, 1) on [a, b] as k → +∞.
Now let

fk = F
(
t, βnk , β

′
nk
; βnk−1

)
,

gk = g
(
βnk(a), βnk(b), β

′
nk
(a), β′nk

(b)
)
.

(4.13)
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The continuity of the functions F and g imply that, as k → +∞,

fk = F
(
t, βnk , β

′
nk
; βnk−1

) −→ f
(
t, x, x′),

gk = g
(
βnk(a), βnk(b), β

′
nk
(a), β′nk

(b)
) −→ g

(
x(a), x(b), x′(a), x′(b)

)
.

(4.14)

The Lebeague dominated convergence theorem then yields

∫ t

a

fk(s)ds −→
∫ t

a

f
(
s, x(s), x′(s)

)
ds (4.15)

for each t ∈ [a, b] as k → +∞.
Integrating the equation

Lβnk = F
(
t, βnk , β

′
nk
; βnk−1

)
(4.16)

from a to t results in

pβ′nk
(a) − pβ′nk

(t) +
∫ t

a

q(s)βnk(s)ds =
∫ t

a

fk(s)ds. (4.17)

Passing to the limit in (4.17), we obtain

px′(a) − px′(t) +
∫ t

a

q(s)x(s)ds =
∫ t

a

f
(
s, x(s), x′(s)

)
ds. (4.18)

Hence, x(t) is the unique solution of BVP (1.4)–(1.6).
To show the quadratic rate of convergence, we define the error function as follows:

en(t) = βn(t) − x(t). (4.19)

Hence, en(t) ≥ 0 for t ∈ [a, b].

Len = L
(
βn − x

)
= Lβn − Lx

= F
(
t, βn, β

′
n; βn−1

) − f
(
t, x, x′)

= f
(
t, βn−1, β′n

)
+ fx

(
t, βn−1, β′n

)(
βn − βn−1

) − f
(
t, x, x′)

= f
(
t, x, β′n

) − f
(
t, x, x′) + f

(
t, βn−1, β′n

) − f
(
t, x, β′n

)

+ fx
(
t, βn−1, β′n

)(
βn − x

)
+ fx

(
t, βn−1, β′n

)(
x − βn−1

)

= fx′
(
t, βn−1, η1

)
e′n + fx

(
t, βn−1, β′n

)
en − 1

2
fxx
(
t, η2, β

′
n

)(
x − βn−1

)2

≤ fx′
(
t, βn−1, η1

)
e′n +K1en +K2‖en−1‖2,

(4.20)
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in which η1 lies between β′n and x′, η2 ∈ (x, βn−1), K1 = maxt∈[a,b]fx(t, βn−1, β′n) is a negative
constant, K2 is a constant with 0 ≤ −(1/2)fxx(t, η2, β′n) ≤ K2 for (t, η2, β′n) ∈ D × [−C,C], and
‖en−1‖ = maxt∈[a,b]|en−1(t)|.

Moreover, since βn(t), x(t) are the solutions of BVPs (4.12) and BVP (1.4)–(1.6),
respectively, therefore, mean value theorem yields

g ′
1en(a) + g ′

2en(b) + g ′
3e

′
n(a) + g ′

2e
′
n(b) = 0, (4.21)

en(a) = en(b), (4.22)

in which g ′
i = g ′

i(η3, η4, η5, η6), i = 1, 2, 3, 4, where η3 ∈ (x(a), βn(a)), and so forth.
Define a constant function by

W(t) = −K2

K1
‖en−1‖2 ≥ 0, t ∈ [a, b]. (4.23)

Then, W(t) satisfies

LW ≥ fx′
(
t, βn−1, η1

)
W ′ +K1W +K2‖en−1‖2 (4.24)

and moreover, since W(t) is a nonnegative constant function, therefore, we have W(a) ≥
0,W(b) ≥ 0 and W ′(a) = 0, W ′(b) = 0. Consequently, the condition (4) guarantees that

g ′
1W(a) + g ′

2W(b) + g ′
3W

′(a) + g ′
2W

′(b) ≤ 0, (4.25)

W(a) = W(b) (4.26)

in which g ′
i, i = 1, 2, 3, 4, are defined in (4.21).

If en(t) ≤ W(t) holds uniformly for t ∈ [a, b], the quadratic convergence of the iteration
has been proved. Otherwise, there must be some points t ∈ [a, b] such that en(t) > W(t). We
then introduce a function

qn(t) = en(t) −W(t), t ∈ [a, b] (4.27)

and define

max
t∈[a,b]

qn(t) := qn(t1). (4.28)

Case 1 (t1 ∈ (a, b)). In this case, qn(t1) = en(t1) −W(t1) > 0, q′n(t1) = e′n(t1) −W ′(t1) = 0, and
q′′n(t1) = e′′n(t1) −W ′′(t1) ≤ 0. Hence, Lqn(t1) ≥ 0. On the other hand, it can be deduced that

Lqn(t1) = Len(t1) − LW(t1)

≤ fx′
(
t1, βn−1, η1

)(
e′n(t1) −W ′(t1)

)
+K1(en(t1) −W(t1))

= K1qn(t1) < 0

(4.29)

which is a contradiction.
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Case 2 (t1 = a). In this case, qn(a) > 0, q′n(a) ≤ 0. Furthermore, we can obtain

qn(b) = en(b) −W(b) = en(a) −W(a) = qn(a) > 0,

q′n(b) = lim
t→ b−

qn(t) − qn(b)
t − b

= lim
t→ b−

qn(t) − qn(a)
t − b

≥ 0.
(4.30)

Consequently, the monotonicity of g given in the condition (4) yields

g ′
1qn(a) + g ′

2qn(b) + g ′
3q

′
n(a) + g ′

2q
′
n(b) < 0. (4.31)

However, equation (4.21) minus inequality (4.25) gives

g ′
1qn(a) + g ′

2qn(b) + g ′
3q

′
n(a) + g ′

2q
′
n(b) ≥ 0 (4.32)

which contradicts to (4.31).

Similarly, we can prove that Case 3, that is, t1 = b, is also impossible.
Hence, the inequality

en(t) ≤ W(t) = −K2

K1
‖en−1‖2 (4.33)

holds uniformly for t ∈ [a, b], that is,

‖en(t)‖ ≤ K‖en−1‖2, t ∈ [a, b] (4.34)

holds uniformly, in which K = −K2/K1 ≥ 0 and ‖en(t)‖ = maxt∈[a,b]|en(t)|.

5. An Example

Consider a nonlinear BVP as follows:

−
((

t2 + 1
)
x′
)′

+ kx = −
(
t2 + 3

)
ex − 2

(
x′)2 + t2 + 1, t ∈ (−1, 1),

−x(−1) − x(1) +
1
3
(
x′(−1))3 − 1

3
(
x′(1)

)3 = 0,

x(−1) = x(1)

(5.1)

in which k is a constant to be determined, that is,

Lx = −
((

t2 + 1
)
x′
)′

+ kx, f
(
t, x, x′) = −

(
t2 + 3

)
ex − 2

(
x′)2 + t2 + 1,

g
(
x, y, z,w

)
= −x − y +

1
3
z3 − 1

3
w3

(5.2)

in this BVP.
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It can be verified that α0(t) = −2 and β0(t) = t2 are, respectively, the lower and upper
solutions of BVP (5.1) if k ≥ (3 − e2)/2e2 is chosen. Moreover, it is easy to show that all the
assumptions in Theorem 4.1 are satisfied. Therefore, by Theorem 4.1, BVP (5.1) has a unique
solution and it can be approximated quadratically by two monotone sequences.
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