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Copyright q 2011 Dragomir Ž. D− oković. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Base sequences BS(m,n) are quadruples (A;B;C;D) of {±1}-sequences, with A and B of length m
and C and D of length n, such that the sum of their nonperiodic autocorrelation functions is a δ-
function. Normal sequences NS(n) are base sequences (A;B;C;D) ∈ BS(n, n) such that A = B. We
introduce a definition of equivalence for normal sequences NS(n) and construct a canonical form.
By using this canonical form, we have enumerated the equivalence classes of NS(n) for n ≤ 40.

1. Introduction

By a binary respectively ternary sequence we mean a sequence A = a1, a2, . . . , am whose terms
belong to {±1} respectively {0,±1}. To such a sequence, we associate the polynomial A(z) =
a1 + a2z + · · · + amzm−1. We refer to the Laurent polynomial N(A) = A(z)A(z−1) as the norm
of A. Base sequences (A;B;C;D) are quadruples of binary sequences, with A and B of length
m and C and D of length n, and such that

N(A) +N(B) +N(C) +N(D) = 2(m + n). (1.1)

The set of such sequences will be denoted by BS(m,n).
In this paper, we consider only the case wherem = n or m = n + 1. The base sequences

(A;B;C;D) ∈ BS(n, n) are normal if A = B. We denote by NS(n) the set of normal sequences
of length n, that is, those contained in BS(n, n). It is well known [1] that for normal sequences
2n must be a sum of three squares. In particular, NS(14) and NS(30) are empty. Exhaustive
computer searches have shown that NS(n) are empty also for n = 6, 17, 21, 22, 23, 24 (see [2])
and n = 27, 28, 31, 33, 34, . . . , 39 (see [3–6]).
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Table 1:Number of equivalence classes of NS(n).

n Equ Gol Spo n Equ Gol Spo
1 1 1 21
2 1 1 22
3 1 1 23
4 1 1 24
5 1 1 25 4 4
6 26 2 2
7 4 4 27
8 7 6 1 28
9 3 3 29 2 2
10 5 4 1 30
11 2 2 31
12 4 4 32 516 480 36
13 3 3 33
14 34
15 2 2 35
16 52 48 4 36
17 37
18 1 1 38
19 1 1 39
20 36 34 2 40 304 304

The base sequences (A;B;C;D) ∈ BS(n + 1, n) are near-normal if bi = (−1)i−1ai for all
i ≤ n. For near-normal sequences n must be even or 1. We denote by NN(n) the set of near-
normal sequences in BS(n + 1, n).

Normal sequences were introduced by Yang in [1] as a generalization of Golay
sequences. Let us recall that Golay sequences (A;B) are pairs of binary sequences of the
same length, n, and such that N(A) + N(B) = 2n. We denote by GS(n) the set of Golay
sequences of length n. It is known that they exist when n = 2a10b26c where a, b, c are
arbitrary nonnegative integers. There exist two embeddings GS(n) → NS(n): the first
defined by (A;B) → (A;A;B;B) and the second by (A;B) → (B;B;A;A). We say that
these normal sequences (and those equivalent to them) are of Golay type. For the definition
of equivalence of normal sequences see Section 3. However, as observed by Yang, there exist
normal sequences which are not of Golay type. We refer to them as sporadic normal sequences.
From the computational results reported in this paper (see Table 1) it appears that there may
be only finitely many sporadic normal sequences. For example, all 304 equivalence classes
in NS(40) are of Golay type. The smallest length for which the existence question of normal
sequences is still unresolved is n = 41.

Base sequences, and their special cases such as normal and near-normal sequences,
play an important role in the construction of Hadamard matrices [7, 8]. For instance, the
discovery of a Hadamardmatrix of order 428 (see [9]) used a BS(71, 36), constructed specially
for that purpose.

Examples of normal sequences NS(n) have been constructed in [1, 2, 5, 7, 10]. For
various applications, it is of interest to classify the normal sequences of small length. Our
main goal is to provide such classification for n ≤ 40. The classification of near-normal



International Journal of Combinatorics 3

sequences NN(n) for n ≤ 40 and base sequences BS(n + 1, n) for n ≤ 30 has been carried
out in our papers [5, 6, 11] and [10, 12], respectively.

We give examples of normal sequences of lengths n = 1, . . . , 5:

A = +;

A = +;

C = +;

D = +;

A = +,+;

A = +,+;

C = +,−;
D = +,−;

A = +,+,−;
A = +,+,−;
C = +,+,+;

D = +,−,+;

A = +,+,−,+;
A = +,+,−,+;
C = +,+,+,−;
D = +,+,+,−;

A = +,+,+,−,+;
A = +,+,+,−,+;
C = +,+,+,−,−;
D = +,−,+,+,−.

(1.2)

When displaying a binary sequence, we often write + for +1 and − for −1. We have written
the sequence A twice to make the quads visible (see Section 2 ).

If (A;A;C;D) ∈ NS(n) then (A,+;A,−;C;D) ∈ BS(n + 1, n). This has been used in our
previous papers to view normal sequences NS(n) as a subset of BS(n+1, n). For classification
purposes it is more convenient to use the definition of NS(n) as a subset of BS(n, n), which is
closer to Yang’s original definition [1].

In Section 2, we recall the basic properties of base sequences BS(m,n). The quad
decomposition and our encoding scheme for BS(n + 1, n) used in our previous papers also
work for NS(n), but not for arbitrary base sequences in BS(n, n). The quad decomposition of
normal sequences NS(n) is somewhat simpler than that of base sequences BS(n + 1, n). We
warn the reader that the encodings for the first two sequences of (A;A;C;D) ∈ NS(n) and
(A,+;A,−;C;D) ∈ BS(n + 1, n) are quite different.

In Section 3, we introduce the elementary transformations of NS(n). We point out
that the elementary transformation (E4) is quite nonintuitive. It originated in our paper
[5] where we classified near-normal sequences of small length. Subsequently, it has been
extended and used to classify (see [10, 12]) the base sequences BS(n+ 1, n) for n ≤ 30. We use
these elementary transformations to define an equivalence relation and equivalence classes
in NS(n). We also introduce the canonical form for normal sequences, and, by using it, we
were able to compute the representatives of the equivalence classes for n ≤ 40.

In Section 4, we introduce an abstract group,GNS, of order 512 which acts naturally on
all sets NS(n). Its definition depends on the parity of n. The orbits of this group are just the
equivalence classes of NS(n).

In Section 5, we tabulate the results of our computations giving the list of
representatives of the equivalence classes of NS(n) for n ≤ 40. The representatives are written
in the encoded form which is explained in the next section.

The summary is given in Table 1. The column “Equ” gives the number of equivalence
classes in NS(n). Note that most of the known normal sequences are of Golay type. The
column “Gol” respectively “Spo” gives the number of equivalence classes which are of Golay
type respectively sporadic. (Blank entries are zeros.)
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2. Quad Decomposition and the Encoding Scheme

Let A = a1, a2, . . . , an be an integer sequence of length n. To this sequence, we associate the
polynomial

A(x) = a1 + a2x + · · · + anx
n−1, (2.1)

viewed as an element of the Laurent polynomial ring Z[x, x−1] (as usual, Z denotes the ring
of integers). The nonperiodic autocorrelation function NA of A is defined by

NA(i) =
∑

j∈Z
ajai+j , i ∈ Z, (2.2)

where ak = 0 for k < 1 and for k > n. Note thatNA(−i) = NA(i) for all i ∈ Z andNA(i) = 0 for
i ≥ n. The norm of A is the Laurent polynomial N(A) = A(x)A(x−1). We have

N(A) =
∑

i∈Z
NA(i)xi. (2.3)

Hence, if (A;B;C;D) ∈ BS(m,n) then

NA(i) +NB(i) +NC(i) +ND(i) = 0, i /= 0. (2.4)

The negation, −A, of A is the sequence

−A = −a1,−a2, . . . ,−an. (2.5)

The reversed sequence A′ and the alternated sequence A∗ of the sequence A are defined by

A′ = an, an−1, . . . , a1,

A∗ = a1,−a2, a3,−a4, . . . , (−1)n−1an.
(2.6)

Observe that N(−A) = N(A′) = N(A) and NA∗(i) = (−1)iNA(i) for all i ∈ Z. By A,B we
denote the concatenation of the sequences A and B.

Let (A;A;C;D) ∈ NS(n). For convenience, we set n = 2m (n = 2m + 1) for n even
(odd). We decompose the pair (C;D) into quads

[
ci cn+1−i

di dn+1−i

]
, i = 1, 2, . . . , m, (2.7)

and, if n is odd, the central column
[ cm+1
dm+1

]
. Similar decomposition is valid for the pair (A;A).
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The possibilities for the quads of base sequences BS(n + 1, n) are described in detail in
[10]. In the case of normal sequences we have 8 possibilities for the quads of (C;D):

1 =

[
+ +

+ +

]
, 2 =

[
+ +

− −

]
, 3 =

[− +

− +

]
, 4 =

[
+ −
− +

]
,

5 =

[− +

+ −

]
, 6 =

[
+ −
+ −

]
, 7 =

[− −
+ +

]
, 8 =

[− −
− −

]
,

(2.8)

but only 4 possibilities, namely, 1, 3, 6, and 8, for the quads of (A;A). In [10], we referred to
these eight quads as BS-quads. The additional eight Golay quads were also needed for the
classification of base sequences BS(n + 1, n). Unless stated otherwise, the word “quad” will
refer to BS-quads.

We say that a quad is symmetric if its two columns are the same, and otherwise we say
that it is skew. The quads 1, 2, 7, 8 are symmetric and 3, 4, 5, 6 are skew. We say that two quads
have the same symmetry type if they are both symmetric or both skew.

There are 4 possibilities for the central column:

0 =

[
+

+

]
, 1 =

[
+

−

]
, 2 =

[−
+

]
, 3 =

[−
−

]
. (2.9)

We encode the pair (A;A) by the symbol sequence

p1p2 · · ·pm, respectively, p1p2 · · ·pmpm+1, (2.10)

when n is even respectively odd. Here, pi is the label of the ith quad for i ≤ m and pm+1 is
the label of the central column (when n is odd). Similarly, we encode the pair (C;D) by the
symbol sequence

q1q2 · · · qm, respectively, q1q2 · · · qmqm+1. (2.11)

For example, the five normal sequences displayed in the introduction are encoded as
(0; 0), (1; 6), (60; 11), (16; 61), and (160; 640), respectively.

3. The Equivalence Relation

We start by defining five types of elementary transformations of normal sequences (A;A;
C;D) ∈ NS(n)

(E1) Negate both sequences A;A or one of C;D.

(E2) Reverse both sequences A;A or one of C;D.

(E3) Interchange the sequences C;D.

(E4) Replace the pair (C;D) with the pair (C̃; D̃) which is defined as follows: if (2.11)
is the encoding of (C;D), then the encoding of (C̃; D̃) is τ(q1)τ(q2) · · · τ(qm) or
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τ(q1)τ(q2) · · · τ(qm)qm+1 depending on whether n is even or odd, where τ is the
transposition (45). In other words, the encoding of (C̃; D̃) is obtained from that of
(C;D) by replacing simultaneously each quad symbol 4 with the symbol 5, and vice
versa. For the proof of the equality NC̃ +ND̃ = NC +ND see [10].

(E5) Alternate all four sequences A;A;C;D.

We say that two members of NS(n) are equivalent if one can be transformed to the
other by applying a finite sequence of elementary transformations. One can enumerate the
equivalence classes by finding suitable representatives of the classes. For that purpose we
introduce the canonical form.

Definition 3.1. Let S = (A;A;C;D) ∈ NS(n) and let (2.10) respectively (2.11) be the encoding
of the pair (A;A) respectively (C;D). We say that S is in the canonical form if the following
twelve conditions hold.

(i) For n even p1 = 1, and for n > 1 odd p1 ∈ {1, 6}.
(ii) The first symmetric quad (if any) of (A;A) is 1.

(iii) The first skew quad (if any) of (A;A) is 6.

(iv) If n is odd and all quads of (A;A) are skew, then pm+1 = 0.

(v) If n is odd and i < m is the smallest index such that the consecutive quads pi and
pi+1 have the same symmetry type, then pi+1 ∈ {1, 6}. If there is no such index and
pm is symmetric, then pm+1 = 0.

(vi) q1 ∈ {1, 6} if n > 1.

(vii) The first symmetric quad (if any) of (C;D) is 1.

(viii) The first skew quad (if any) of (C;D) is 6.

(ix) If i is the least index such that qi ∈ {2, 7} then qi = 2.

(x) If i is the least index such that qi ∈ {4, 5} then qi = 4.

(xi) If n is odd and qi /= 2, for all i ≤ m, then qm+1 /= 2.

(xii) If n is odd and qi /= 1, for all i ≤ m, then qm+1 = 0.

We can now prove that each equivalence class has a member which is in the canonical
form. The uniqueness of this member will be proved in the next section.

Proposition 3.2. Each equivalence class E ⊆ NS(n) has at least one member having the canonical
form.

Proof. LetS = (A;A;C;D) ∈ E be arbitrary and let (2.10) respectively (2.11) be the encoding of
(A;A) respectively (C;D). By applying the elementary transformations (E1), we can assume
that a1 = c1 = d1 = +1. If n = 1, S is in the canonical form. So, let n > 1 from now on. Note
that now the first quads, p1 and q1, necessarily belong to {1, 6} and that p1 /= q1 by (2.4). In
the case when n is even and p1 = 6 we apply the elementary transformation (E5). Note that
(E5) preserves the quads p1 and q1. Thus the conditions (i) and (vi) for the canonical form
are satisfied.

The conditions (ii), (iii), and (iv) are pairwise disjoint, so at most one of them
may be violated. To satisfy (ii), it suffices (if necessary) to apply to the pair (A;A) the
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transformation (E2). To satisfy (iii) or (iv), it suffices (if necessary) to apply to the pair (A;A)
the transformations (E1) and (E2).

For (v), assume that pi and pi+1 have the same symmetry type and that i is the smallest
such index. Also assume that pi+1 /∈ {1, 6}, that is, pi+1 ∈ {3, 8}.

We first consider the case where p1 = 1 and pi and pi+1 are symmetric. By our
assumption, we have pi+1 = 8, and, by the minimality of i, i must be odd. We first apply
(E2) to the pair (A;A) and then apply (E5). The quads pj for j ≤ i remain unchanged. On
the other hand, (E2) fixes pi+1 because it is symmetric, while, (E5) replaces pi+1 = 8 with 1
because i + 1 is even. We have to make sure that previously established conditions are not
spoiled. Only condition (iii) may be affected. If so, we must have i = 1 and we simply apply
(E2) again.

Next, we consider the case where again p1 = 1 while pi and pi+1 are now skew. Thus
pi+1 = 3 and i is even. We again apply (E2) to the pair (A;A) and then apply (E5). The quads
pj for j ≤ i again remain unchanged. On the other hand (E2) replaces pi+1 = 3 with 6 while
(E5) fixes it because i + 1 is odd. Note that in this case none of the conditions (i–iv) and (vi)
will be spoiled.

The remaining two cases (where p1 = 6) can be treated in a similar fashion. Now
assume that any two consecutive quads pi, pi+1 have different symmetry types and that the
last quad, pm, is symmetric. Assume also that pm+1 /= 0, that is, pm+1 = 3. If p1 = 1 then m is
odd and we just apply (E5). Otherwise p1 = 6 and m is even and we apply the elementary
transformations (E1) and (E2) to the pair (A;A) and then apply (E5). After this change, the
conditions (i–vi) will be satisfied.

To satisfy (vii), in view of (vi) we may assume that q1 = 6. If the first symmetric quad
in (C;D) is 2 respectively 7, we reverse and negate C respectivelyD. If it is 8, we reverse and
negate both C andD. Now, the first symmetric quad will be 1.

To satisfy (viii), (if necessary) reverse C or D, or both. To satisfy (ix), (if necessary)
interchange C andD. To satisfy (x), (if necessary) apply the elementary transformation (E4).
Note that in this process we do not violate the previously established properties.

To satisfy (xi), (if necessary) switch C andD and apply (E4) to preserve (x). To satisfy
(xii), (if necessary) replace C with –C′ or D with –D′, or both.

Hence, S is now in the canonical form.

We end this section by a remark on Golay-type normal sequences. Let (A;B) ∈
GS(n), with n = 2m > 2. While the Golay sequences (A;B) and (B;A) are always
considered as equivalent (see [13]) the normal sequences (A;A;B;B) and (B;B;A;A) may
be nonequivalent. It is easy to show that, in fact, these two normal sequences are equivalent
if and only if the binary sequences A and B∗ are equivalent, that is, if and only if B∗ ∈
{A;−A;A′;−A′}.

The equivalence classes of Golay sequences of length ≤40 have been enumerated
in [13]. This was accomplished by defining the canonical form and listing the canonical
representatives of the equivalence classes. These representatives are written there in encoded
form as δ1δ2 · · ·δm obtained by decomposing (A;B) intom quads. These are Golay quads and
should not be confused with the BS-quads defined in Section 2. If (A;B) ∈ GS(n) is one of the
representatives, it is obvious that B∗ /= −A and B∗ /= −A′, and it is easy to see that also B∗ /=A.
Thus. if B∗ is equivalent to A we must have B∗ = A′. Finally, one can show that the equality
B∗ = A′ holds if and only if δi ≡ i (mod 2) for each index i. For another meaning of the latter
condition see [13, Proposition 5.1]. Thus an equivalence class of Golay sequences GS(n)with
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canonical representative (A;B) provides either one or two equivalence classes of NS(n). The
former case occurs if and only if δi ≡ i (mod 2) for each index i.

By using this criterion, it is straightforward to list the equivalence classes of NS(n)
of Golay type for n ≤ 40. For instance, if n = 8 there are five equivalence classes of Golay
sequences. Their representatives are (see [13]) 3218, 3236, 3254, 3272, and 3315. Only the last
representative violates the above condition. Hence, we have exactly 4 + 2 = 6 equivalence
classes of Golay type in NS(8).

4. The Symmetry Group of NS(n)

We will construct a group GNS of order 512 which acts on NS(n). Our (redundant)
generating set for GNS will consist of 9 involutions. Each of these generators is an elementary
transformation, and we use this information to construct GNS, that is, to impose the defining
relations. We denote by S = (A;A;C;D) an arbitrary member of NS(n).

To construct GNS, we start with an elementary abelian group E of order 64 with
generators ν, ρ, and νi, ρi, i ∈ {3, 4}. It acts on NS(n) as follows:

νS = (−A;−A;C;D), ρS =
(
A′;A′;C;D

)
,

ν3S = (A;A;−C;D), ρ3S =
(
A;A;C′;D

)
,

ν4S = (A;A;C;−D), ρ4S =
(
A;A;C;D′).

(4.1)

Next, we introduce the involutory generator σ. We declare that σ commutes with ν
and ρ, and that σν3 = ν4σ and σρ3 = ρ4σ. The group H = 〈E, σ〉 is the direct product of two
groups: H1 = 〈ν, ρ〉 of order 4 and H2 = 〈ν3, ρ3, σ〉 of order 32. The action of E on NS(n)
extends toH by defining σS = (A;A;D;C).

We add a new generator θ which commutes elementwise with H1, commutes with
ν3ρ3, ν4ρ4, and σ, and satisfies θρ3 = ρ4θ. Let us denote this enlarged group by H̃. It has the
direct product decomposition

H̃ = 〈H, θ〉 = H1 × H̃2, (4.2)

where the second factor is itself a direct product of two copies of the dihedral group D8 of
order 8:

H̃2 =
〈
ρ3, ρ4, θ

〉 × 〈
ν3ρ3, ν4ρ4, θσ

〉
. (4.3)

The action ofH on NS(n) extends to H̃ by letting θ act as the elementary transformation (E5).
Finally, we define GNS as the semidirect product of H̃ and the group of order 2 with

generator α. By definition, α commutes with ν, ν3, ν4 and satisfies

αρα = ρνn−1,

αρjα = ρjν
n−1
j , j = 3, 4;

αθα = θσn−1.

(4.4)
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The action of H̃ on NS(n) extends to GNS by letting α act as the elementary transformation
(E5), that is, we have αS = (A∗;B∗;C∗;D∗).

We point out that the definition of the subgroup H̃ is independent of n and its action
on NS(n) has a quadwise character. By this we mean that the value of a particular quad, say
pi, of S ∈ NS(n) and h ∈ H̃ determine uniquely the quad pi of hS. In other words, H̃ acts on
the quads and the set of central columns such that the encoding of hS is given by the symbol
sequences

h
(
p1
)
h
(
p2
) · · · , h

(
q1
)
h
(
q2
) · · · . (4.5)

On the other hand, the definition of the full group GNS depends on the parity of n, and only
for n odd it has the quad-wise character.

An important feature of the quad-action of H̃ is that it preserves the symmetry type of
the quads. If n is odd, this is also true for GNS.

The following proposition follows immediately from the construction of GNS and the
description of its action on NS(n).

Proposition 4.1. The orbits of GNS in NS(n) are the same as the equivalence classes.

The main tool that one uses to enumerate the equivalence classes of NS(n) is the
following theorem.

Theorem 4.2. For each equivalence class E ⊆ NS(n) there is a unique S = (A;A;C;D) ∈ E having
the canonical form.

Proof. In view of Proposition 3.2, we just have to prove the uniqueness assertion. Let

S(k) =
(
A(k);A(k);C(k);D(k)

)
∈ E, (k = 1, 2) (4.6)

be in the canonical form. We have to prove that in fact S(1) = S(2).
By Proposition 4.1, we have gS(1) = S(2) for some g ∈ GNS. We can write g as g = αsh

where s ∈ {0, 1} and h = h1h2 with h1 ∈ H1 and h2 ∈ H̃2. Let p
(k)
1 p

(k)
2 · · · be the encoding of

the pair (A(k);A(k)) and q
(k)
1 q

(k)
2 · · · the encoding of the pair (C(k);D(k)). The symbols (i–xii)

will refer to the corresponding conditions of Definition 3.1.
We prove first preliminary claims (a–c).
(a) p(1)1 = p

(2)
1 and, consequently, q(1)1 = q

(2)
1 .

For n even this follows from (i). Let n be odd. When we apply the generator α to any
S ∈ NS(n), we do not change the first quad of (A;A). It follows that the quads p

(1)
1 and

p
(2)
1 = g(p(1)1 ) = h1(p

(1)
1 ) have the same symmetry type. The claim now follows from (i).

Clearly, we are done with the case n = 2.
If n = 3 it is easy to see that we must have p

(1)
1 = p

(2)
1 = 6 and q

(1)
1 = q

(2)
1 = 1. By (iv),

for the central column symbols, we have p
(1)
2 = p

(2)
2 = 0. Then (2.4) for i = 1 implies that

q
(k)
2 ∈ {1, 2} for k = 1, 2. By (xi) we must have q(1)2 = q

(2)
2 = 1. Hence S(1) = S(2) in that case.

Thus from now on we may assume that n > 3.
(b) If n is even then, s = 0.
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Table 2: Class representatives for n ≤ 15.

n = 1
1 0 0

n = 2
1 6 1

n = 3
1 60 11

n = 4
1 16 61

n = 5
1 160 640

n = 7
1 1660 6122 2 6113 1623 3 6160 1262
4 6163 1261

n = 8
1 1163 6618 2 1613 6168 3 1613 6443
4 1638 6116 5 1661 6183 6 1686 6131
7 1866 6311

n = 9
1 16133 64140 2 16163 64150 3 61180 16640

n = 10
1 11863 66311 2 16166 64156 3 16613 61838
4 16616 61831 5 18863 63311

n = 11
1 611680 164231 2 616163 126232

n = 12
1 161383 641261 2 163868 612243 3 186338 631422
4 186631 631422

n = 13
1 1616133 6414853 2 6116680 1286320 3 6168160 1613441

n = 15
1 61613163 12676761 2 61683860 12626262

By (i), p(1)1 = p
(2)
1 = 1. Note that the first quads of (A;A) in S and in αS have different

symmetry types for any S ∈ E. As the quad h(1) is symmetric, the equality αshS(1) = S(2)

forces s to be 0.
As an immediate consequence of (b), we point out that, if n is even, a quad p

(1)
i is

symmetric iff p
(2)
i is, and the same is true for the quads q(1)i and q

(2)
i .

(c) p(1)2 = p
(2)
2 .

We first observe that p(1)2 and p
(2)
2 have the same symmetry type. If n is even this follows

from (b) since then g = h. If n is odd then under the quad action on p2, each of α, ν, ρ preserves
the symmetry type of p2. Now the assertion (c) follows from (ii) and (iii) if p(1)1 and p

(1)
2 have

different symmetry types, and from (v) otherwise.
We will now prove thatA(1) = A(2).
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Table 3: Class representatives for 16 ≤ n ≤ 29.

n = 16

1 11186366 66631811 2 11186636 66631181

3 11631866 66186311 4 11633381 66181163

5 11636618 66188836 6 11638133 66183688

7 11661836 66116381 8 11663681 66111863

9 11666318 66118136 10 11668163 66113618

11 11816333 66361888 12 11816663 66361118

13 16131686 61686131 14 16133831 61681613

15 16136168 61688386 16 16138313 61683868

17 16161386 61616831 18 16163861 61611683

19 16163861 64124328 20 16166138 61618316

21 16166138 64127156 22 16168613 61613168

23 16381331 61166813 24 16381661 61166183

25 16388338 61163816 26 16388668 61163186

27 16611368 61836886 28 16611638 61836116

29 16618361 61833883 30 16618631 61833113

31 16831313 61386868 32 16833838 61381616

33 16836161 61384242 34 16836161 61388383

35 16838686 61383131 36 16838863 61344313

37 16861613 61316168 38 16863868 61311686

39 16866131 61318313 40 16868386 61313831

41 18116333 63661888 42 18116663 63661118

43 18631133 63186688 44 18633388 63181166

45 18636611 63188833 46 18638866 63183311

47 18661163 63116618 48 18663688 63111866

49 18666311 63118133 50 18668836 63113381

51 18886366 63331811 52 18886636 63331181
n = 18

1 161633881 641242146
n = 19

1 1168186360 6643551210
n = 20

1 1166131836 6611686381 2 1166861836 6611316381

3 1181616633 6636161188 4 1186161633 6631616188

5 1186868366 6631313811 6 1188686366 6633131811

7 1611663138 6441827614 8 1613383113 6168161368

9 1613383186 6168161331 10 1616138631 6164224786

11 1616311386 6161866831 12 1616681386 6161136831

13 1616831361 6161386883 14 1616833886 6161381631

15 1616836113 6161388368 16 1616838638 6161383116
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Table 3: Continued.

17 1638133138 6116681316 18 1638133161 6116681383

19 1638883818 6183331633 20 1661813881 6116361666

21 1661863138 6183311316 22 1661863161 6183311383

23 1683381313 6138836868 24 1683611313 6138166868

25 1683831361 6138386883 26 1683833886 6138381631

27 1683836113 6138388368 28 1683838638 6138383116

29 1686613113 6131831368 30 1686613186 6131831331

31 1863161133 6318616688 32 1863831133 6318386688

33 1881616663 6336161118 34 1886161663 6331616118

35 1886868336 6331313881 36 1888686336 6333131881
n = 25

1 1616138313163 6414148485143

2 1616161383163 6414148584143

3 1616161386163 6414148585143

4 1616168613163 6414158585143
n = 29

1 161383131316830 641414841515843

2 161686161313860 641515851514853

Assume first that n is even. Then p
(1)
1 = p

(2)
1 = 1 by (i), s = 0 by (b), and the equality

h1(p
(1)
1 ) = p

(2)
1 implies that h1(1) = 1. Thus h1 ∈ {1, ρ}. Let i be the smallest index (if any) such

that the quad p
(1)
i is skew. Then p

(1)
i = p

(2)
i = 6 by (iii). Hence h1(6) = 6 and so h1 = 1 and

A(1) = A(2) follows. On the other hand, if all quads p(1)i are symmetric, then all these quads
are fixed by h1 and so A(1) = A(2).

Next assume that n is odd. Then p
(1)
1 = p

(1)
2 ∈ {1, 6} by (i). Let i < m be the smallest

index (if any) such that the quads p(1)i and p
(1)
i+1 have the same symmetry type.

We first consider the case p
(1)
1 = 1. Since n is odd, α fixes the quad p1, and so h1 must

fix the quad 1. Thus we again have h1 ∈ {1, ρ}.
If i is even then, by minimality of i, both p

(1)
i and p

(1)
i+1 are skew. By (v), we have p(1)i+1 =

p
(2)
i+1 = 6. Since i is even, α fixes pi+1 and so we must have h1(6) = 6. It follows that h1 = 1. As

i > 1, the quad p
(1)
2 is skew and by (iii)we have p(1)2 = p

(2)
2 = 6. Since αmaps p2 to its negative,

we must have s = 0. Consequently, A(1) = A(2).
If i is odd then both p

(1)
i and p

(1)
i+1 are symmetric. By (v) we have p

(1)
i+1 = p

(2)
i+1 = 1. Since

i is odd, α maps pi+1 to its negative. Since ρ fixes the symmetric quads, we conclude that
1 = g(1) = αsh1(1) = αs(1) and so s = 0. If all quads p

(1)
i are symmetric, then they are all

fixed by g and so A(1) = A(2). Otherwise, let j be the smallest index such that p(1)j is skew. By

(iii) we have p
(1)
j = p

(2)
j = 6, and 6 = p

(2)
j = g(p(1)j ) = g(6) = h1(6) implies that h1 = 1. Thus

A(1) = A(2).
We now consider the case p(1)1 = 6. Since n is odd, α fixes the quad p1, and so h1 must

fix the quad 6. Thus we have h1 ∈ {1, νρ}.
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Table 4: Sporadic classes for n = 32.

1 1111636366331881 6666181845542277

2 1111663318816363 6666455411882727

3 1166186333886318 6641231814721176

4 1166186366113681 6641231858635567

5 1166813633883681 6614328141271167

6 1166813666116318 6614328185365576

7 1613161361683831 6168616842525747

8 1616168313861313 6412651765826487

9 1616168338613838 6412623728284126

10 1616168361386161 6412623756567358

11 1616383883163861 6412214634822843

12 1616386113133168 6412434384672376

13 1616386186866831 6412282832157623

14 1616613813136831 6412565684677623

15 1616613886863168 6412717132152376

16 1616616116833861 6412785365172843

17 1616831613868686 6412348265823512

18 1616831638616161 6412376243437358

19 1616831661383838 6412376271714126

20 1638163886681331 6142241631477413

21 1638163886681331 6241142632488423

22 1661166113688631 6142758368527413

23 1661166113688631 6241857367518423

24 1683161638383861 6138642142161717

25 1683161661616138 6138642183575656

26 1683383813863131 6138421671711253

27 1683383886136868 6138164234348746

28 1683616113866868 6138428321218256

29 1683616186133131 6138834235351743

30 1683838338386138 6138342816574646

31 1683838361613861 6138342842831212

32 1686168638686131 6131613142475752

33 1818633611886666 6363445518812222

34 1818666636638811 6363111144552772

35 1863116636816611 6341268841334537

36 1863116663183388 6341268814221826

If i is even then, by minimality of i, both p
(1)
i and p

(1)
i+1 are symmetric. By (v) we have

p
(1)
i+1 = p

(2)
i+1 = 1. Since i is even, α fixes pi+1 and so we must have h1(1) = 1. It follows that

h1 = 1. As i > 1, the quad p
(1)
2 is symmetric and by (ii) we have p(1)2 = p

(2)
2 = 1. Since α maps

p2 to its negative, we must have s = 0. Consequently, A(1) = A(2).
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If i is odd then both p
(1)
i and p

(1)
i+1 are skew. By (v) we have p

(1)
i+1 = p

(2)
i+1 = 6. Since i is

odd, α maps pi+1 to its negative. Since νρ fixes the skew quads, we conclude that 6 = g(6) =

αsh1(6) = αs(6) and so s = 0. If all quads p(1)i , i ≤ m, are skew, then they are all fixed by g

and p
(1)
m+1 = p

(2)
m+1 = 0 by (iv). Now 0 = p

(2)
m+1 = h1(p

(1)
m+1) = h1(0) entails that h1 = 1 and so

A(1) = A(2). Otherwise let j be the smallest index such that p(1)j is symmetric. By (ii) we have

p
(1)
j = p

(2)
j = 1, and 1 = p

(2)
j = g(p(1)j ) = h1(1) implies that h1 = 1. Thus A(1) = A(2).

It remains to consider the case where any two consecutive quads p(1)i and p
(1)
i+1, i < m,

have different symmetry types. Say, the quads p(1)i , i ≤ m, are skew for even i and symmetric

for odd i. By (i) and (iii) we have p(1)1 = p
(2)
1 = 1 and p

(1)
2 = p

(2)
2 = 6. Then h1 must fix the quad

1, and so h1 ∈ {1, ρ}. Since 6 = p
(2)
2 = g(p(2)1 ) = g(6) = αsh1(6), we must have s = 0 and h1 = 1

or s = 1 and h1 = ρ. In the former case, we obviously have A(1) = A(2). In the latter case, all

quads p(1)i , i ≤ m, are fixed by g. Moreover, if m is even also the central column pm+1 is fixed

by g and so A(1) = A(2). On the other hand, if m is odd, then the quad p
(1)
m is symmetric and

the second part of the condition (v) implies that p(1)m+1 = p
(2)
m+1 = 0. Hence again A(1) = A(2).

Similar proof can be used if the quads p(1)i , i ≤ m, are symmetric for even i and skew
for odd i. This completes the proof of the equality A(1) = A(2). The proof of the equality
(C(1);D(1)) = (C(2);D(2)) is the same as in [5].

5. Representatives of the Equivalence Classes

We have, computed a set of representatives for the equivalence classes of normal sequences
NS(n) for all n ≤ 40. Each representative is given in the canonical form which is made
compact by using our standard encoding. The encoding is explained in detail in Section 2.
This compact notation is used primarily in order to save space, but also to avoid introducing
errors during decoding. For each n, the representatives are listed in the lexicographic order
of the symbol sequences (2.10) and (2.11).

In Tables 2 and 3, we list the codes for the representatives of the equivalence classes of
NS(n) for n ≤ 15 and 16 ≤ n ≤ 29, respectively. As there are 516 and 304 equivalence classes in
NS(32) and NS(40), respectively, we list in Table 4 only the 36 representatives of the sporadic
classes of NS(32). The cases

n = 6, 14, 17, 21, . . . , 24, 27, 28, 30, 31, 33, 34, . . . , 39 (5.1)

are omitted since then NS(n) = ∅. We also omit n = 40 because in that case there
are no sporadic classes. The Golay-type equivalence classes of normal sequences can be
easily enumerated (as explained in Section 3) by using the tables of representatives of the
equivalence classes of Golay sequences [13].

Note that in the case n = 1, there are no quads and both zeros in Table 2 represent
central columns.
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