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A new scene classification method is proposed based on the combination of local Gabor features with a spatial pyramid matching
model. First, new local Gabor feature descriptors are extracted from dense sampling patches of scene images. These local feature
descriptors are embedded into a bag-of-visual-words (BOVW) model, which is combined with a spatial pyramid matching
framework.The new local Gabor feature descriptors have sufficient discrimination abilities for dense regions of scene images.Then
the efficient feature vectors of scene images can be obtained by K-means clustering method and visual word statistics. Second, in
order to decrease classification time and improve accuracy, an improved kernel principal component analysis (KPCA) method is
applied to reduce the dimensionality of pyramid histogram of visual words (PHOW). The principal components with the bigger
interclass separability are retained in feature vectors, which are used for scene classification by the linear support vector machine
(SVM) method. The proposed method is evaluated on three commonly used scene datasets. Experimental results demonstrate the
effectiveness of the method.

1. Introduction

Scene classification is an appealing and challenging problem
in image processing and machine vision. The goal of scene
classification is to automatically classify scene images into
specific scene categories such as mountain, street, forest,
and inside city. Scene classification methods have many
applications, such as video retrieval, content-based image
retrieval, UAV autonomous landing, and intelligent vehicle
navigation [1]. Moreover, scene classification can provide an
important cue for object recognition and detection, action
recognition, and other computer vision tasks.

Scene classification methods can be divided into two
main categories. First, the earlymethodsmainly use low-level
global features (e.g., texture and color) which are extracted
from a whole image [2, 3]. These methods often exhibit poor
classification performance, because they lack an intermediate
image description that is extremely valuable in determin-
ing the scene category. Second, the methods make use of
semantic models [4]. They describe the contents of scene
images by the semantic intermediate representation, which

can be mainly divided into the local semantic concepts based
intermediate representationmethods and the global semantic
concepts based intermediate representation methods.

The local semantic concepts based intermediate represen-
tation methods make use of the features extracted from local
regions in scene images [5, 6]. They generally represent the
scene image by a collection of local descriptors using segmen-
tation, dense sampling patches, or interest point detectors.
These methods are widely used due to their effectiveness,
especially the bag-of-visual-words (BOVW) model [7, 8].
The BOVWmodel extracts local feature descriptors of scene
images and obtains visual words by clustering and then
uses the histograms of visual words to represent images.
The BOVW model has obtained good performance, but this
technique also has some limitations. The BOVWmodel uses
the orderless collection of local descriptors to represent scene
images [9], and therefore any spatial relationships of scene
images are lost.The loss of spatial position information affects
the accuracy of scene classification [10]. The weakness of the
BOVWmodel can be mitigated by a spatial pyramid match-
ing framework [11]. In the pyramid matching framework,
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a scene image is partitioned into increasingly finer grids.
The histogram of visual words inside each subregion is
computed. The pyramid matching framework has obtained
encouraging performance. Nowadays, many of the best scene
categorization methods are based on this scheme.

The global semantic concepts based intermediate rep-
resentation methods take the scene image as a whole for
obtaining global description features. The “Gist” model is
the most prominent one of these methods. It has exhibited
good performance in many applications [12, 13]. In this
model, scene images are convolved by the multiscale and
multiorientation Gabor filters. Then the filtering results are
divided into a 4 ∗ 4 grid and the means of all subregions
are computed and assembled for yielding feature vectors [14].
Lastly, the “Gist” features are used for scene classification.
The “Gist” model is obtained from the sparse grid of the
scene image. Thus, the “Gist” feature is coarse-grained, and
some detailed information of the scene image is lost. When
scene images are complex, the classification performance
of the “Gist” model is not very good. For example, when
some categories of indoor environments are included in scene
datasets, the classification accuracy of the “Gist” model drops
dramatically.

In this study, we will present a newmethod for scene clas-
sification using local Gabor features. The proposed method
not only solves the coarse-grained problem of the “Gist”
feature but also utilizes the spatial information of the pyramid
matching model. In addition, the proposed method extracts
principal components of feature vectors of scene images
by the improved KPCA algorithm, which can retain more
category information. Last, the linear “1-a-r” SVMs are used
for scene classification. For evaluating the performance of
the proposed method, three scene datasets are used for
classification testing. We also investigate the impacts of
different parameters on the performance of the proposed
classificationmethod.Theproposedmethod is also compared
with several well-known methods.

This paper is arranged as follows: In Section 2, our
method of scene classification is described, and the imple-
mentation steps are presented. In Section 3, we evaluate the
proposed method on three different datasets and present
experimental results. In Section 4, the conclusions are given.

2. The Proposed Scene Classification Method

The framework of the proposed method is illustrated in
Figure 1. First, scene images are convolved with a 2D Gabor
filter bank, and then the image patches of 15 ∗ 15 pixels
are obtained from the filter responses by dense sampling.
The local Gabor feature of each sample point is obtained
by computing the Gaussian-weighted mean in the corre-
sponding neighborhoodof each filter channel and assembling
these means in a vector. Accordingly, local Gabor feature
descriptors of dense sampling patches of all scene images
can be extracted, and then visual words can be obtained
by the 𝐾-means clustering algorithm. For exploiting spatial
position information, the pyramid histogram of visual words
(PHOW) based on a spatial pyramid model is used in this
scheme. Owing to the relatively high dimension of PHOW,

the computational costs of training and testing of SVM
classifiers are high. In order to solve this problemand improve
classification accuracy, an improved KPCA method is used
for extracting appropriate principal components. The feature
vectors obtained by the improved KPCAmethod are used for
scene classification by linear SVMs.

2.1. Local Gabor Feature Extraction. Gabor filters are partic-
ularly appropriate for obtaining the texture representation
of scene images [15]. In this paper, we extract local Gabor
features of images for scene classification. Figure 2 illustrates
the procedure of feature extraction. Given a scene image, we
firstly convolve it with 2D Gabor filters. The 2D Gabor filters
[16] are defined as
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where 𝑧 = (𝑦, 𝑥)
𝑇, 𝑘 = 𝑘]exp(𝑖𝜙) = (𝑘]cos(𝜙), 𝑘]sin(𝜙))

𝑇,
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], 𝜙 = 𝜇 ⋅ 𝜋/8, 𝑓 = √2, and 𝜎 = 𝜋. In this
research, we adopt the Gabor filter bank with eight different
orientations (𝜇 = {0, 1, . . . , 7}) and five different scales
(] = {0, 1, . . . , 4}). The magnitude responses are used for
feature extraction. In order to obtain the fine-grained Gabor
feature, we perform dense sampling.We utilize 8 pixels as the
sampling interval of the dense regular grid. The 15 ∗ 15 pixel
neighborhood of each sample point is used for calculating the
local feature descriptor. For each sample point, the Gaussian-
weighted mean of the corresponding neighborhood of every
channel is computed, respectively. The mean is treated as
the feature value of the corresponding filter channel. Then
the local Gabor feature descriptor can be obtained by the
concatenation of feature values of all channels.Thedimension
of the local Gabor feature descriptor is 40 (5 ∗ 8). By dense
sampling, Gabor feature descriptors of 961 sample points can
be extracted from a 256 ∗ 256 scene image.

We use a Gaussian function for weighting calculation
in the neighborhood of each sample point. The Gaussian-
weighted function is

𝑊𝑖,𝑗 = 𝑒
−(𝑖

2
+𝑗

2
)/𝛾

, (2)

where (𝑖, 𝑗) denotes the pixel position in the 15 ∗ 15 neigh-
borhood.The sample point corresponds to (0, 0). The pixel in
the upper left corner of the neighborhood corresponds to (−7,
−7). The pixel in the lower right corner of the neighborhood
corresponds to (7, 7). 𝛾 is the Gaussian width. We let 𝛾 be 100
in this study.

The local Gabor feature descriptors are fine-grained
Gabor features which have sufficient discrimination abilities
for dense sampling patches of scene images. Then we repre-
sent scene images using the bag-of-visual-wordsmodel. First,
we quantize these Gabor feature descriptors into discrete
codewords by the𝐾-means clustering algorithm. Each cluster
center corresponds to a visual word. Scene images can be
represented as histograms of visual words [17] after the Gabor
feature descriptors are mapped into visual words.
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Figure 1: Framework of the proposed scene classification method.
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Figure 2: Illustration of local Gabor feature extraction.
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(a) Scene images
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(b) Histograms of visual words

Figure 3: Histogram representation of scene images.

Figure 3(a) illustrates three scene images. Figure 3(b)
shows the histograms of visual words based on local Gabor
feature descriptors. In this experiment, the vocabulary size
is 300. It can be seen that local Gabor features can yield the
effective histogram representation of scene images.

We evaluate the local Gabor feature descriptors for
scene classification on a 15-category scene dataset [18] and
compare them with scale invariant feature transform (SIFT)
descriptors [6]. The SIFT descriptors are extracted by dense
sampling on a regular grid, which is the same as the grid
used by local Gabor features. We use “1-a-r” RBF-SVMs
for scene classification and randomly select 200 images
of each category as the experiment images. Half of them
are used as training samples and the others are used for
testing. The codebook size is set to be 300. The comparison
results of classification accuracy of all scene categories are
shown in Figure 4. We can see that the local Gabor feature
descriptor obtains good classification performance. In the
same experiment conditions, the classification accuracy of
the local Gabor feature is higher than the SIFT descriptor on
most of scene categories.

2.2. Pyramid Histogram of Visual Words (PHOW). The bag-
of-visual-words model is limited due to the loss of spatial
position information. Thus, we construct a spatial pyramid
and compute the pyramid histogram of visual words. The
pyramid histogram of visual words is suitable for scene
classification because it contains position information of
scene images [19]. In order to construct a spatial pyramid,
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Figure 4: Comparison of classification accuracy using different
descriptors.

a scene image is partitioned into increasingly finer grids by
the quadtree decomposition. A sequence of grids at levels
0, 1, 2, . . . , 𝐿 are obtained.Then the histogram of visual words
inside each subregion is computed, respectively. The PHOW
can be obtained by concatenating histograms of visual words
of all subregions at different levels.
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Figure 5 shows the pyramid histogram of visual words
(PHOW) of a scene image. The number of levels of the
spatial pyramid is three. For three different levels, the number
of visual words of each subregion is counted and shown,
respectively. The size of the vocabulary is 300, and therefore
the dimensionality of the PHOW is 300 × 21 = 6300.

Using pyramid histograms of visual words as feature
vectors for scene classification, a spatial pyramid matching
kernel (PMK) is adopted as follows:

𝐾 (𝑋, 𝑌) =

𝑀

∑

𝑚=1
𝑘 (𝑋𝑚, 𝑌𝑚) , (3)

where𝑋 and𝑌 represent two scene images and𝑚 is the visual
word number. 𝑘(𝑋𝑚, 𝑌𝑚) is defined as
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where 𝐿 is the number of levels and 𝑙 is the current level. Each
level is weighted using 1/2𝐿−𝑙 for the purpose that matched
points from the finer resolution are weighted more highly
than those at the coarser resolution. 𝐼𝑙

𝑚
is the abbreviation of

a histogram intersection function, which is defined as
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where𝐻𝑙
𝑋
𝑚

(𝑖) denotes the count of the𝑚th visual word in the
𝑖th subregion of image 𝑋 at level 𝑙. 𝐻𝑙

𝑌
𝑚

(𝑖) denotes the count
of the𝑚th visual word in the 𝑖th subregion of image𝑌 at level
𝑙.

2.3. Improved Kernel Principal Component Analysis. Pyramid
histograms of visual words of scene images are assumed to
be 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑁), 𝑥𝑖 ∈ 𝑅

𝑑. First, KPCA is to map each
original input vector 𝑥𝑖 into the higher-dimensional feature
space𝐻 and then compute the covariance matrix:

𝐶 =
1
𝑁

𝑁

∑

𝑖=1
𝜙 (𝑥𝑖) 𝜙 (𝑥𝑖)

𝑇
, (6)

where here 𝜙(𝑥𝑖) is the nonlinear mapping of the input
variables 𝑥𝑖. Then we solve the following eigenvalue problem
[20]:

𝜆𝑉 = 𝐶𝑉. (7)

All solutions 𝑉 with 𝜆 ̸= 0 must lie in the span of
[𝜙(𝑥1), 𝜙(𝑥2), . . . , 𝜙(𝑥𝑁)] [21], and 𝑉 = ∑

𝑁

𝑗=1 𝛼𝑗𝜙(𝑥𝑗). Thus,
𝜆𝑉 = 𝐶𝑉 is equivalent to

𝑛𝜆𝛼 = 𝐾𝛼, (8)

where𝐾 is a𝑁×𝑁 kernel matrix defined by 𝑘𝑖𝑗 = 𝐾(𝑥𝑖, 𝑥𝑗) =

(𝜙(𝑥𝑖) ⋅ 𝜙(𝑥𝑗)). By utilizing the kernel function, nonlinear
mapping and inner products computing in the feature space
can be avoided [22]. The principal component ℎ𝑘 can be
extracted by projecting 𝜙(𝑥) onto eigenvector 𝑉𝑘 as follows
[23]:

ℎ𝑘 (𝑥) = (𝑉𝑘 ⋅ 𝜙 (𝑥)) =

𝑁
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𝑗=1
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𝛼
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𝑗
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(9)

Let 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑁 denote the nonzero eigenvalues
of the kernel matrix 𝐾. By using only the first several
eigenvectors sorted in descending order of the eigenvalues,
the number of principal components can be reduced [24].The
choice of the number of principal components is as follows:

(

∑
𝑛

𝑗=1 𝜆𝑗

∑
𝑁

𝑖=1 𝜆𝑖
) > 𝐸, (10)

where 𝐸 is the predefined threshold of the KPCA method.
For simplicity, we have assumed that the observation data

are centered, and this could be done by substituting the kernel
matrix 𝐾 with �̃� = 𝐾 − 𝐿 ∗ 𝐾 − 𝐾 ∗ 𝐿 + 𝐿 ∗ 𝐾 ∗ 𝐿, where 𝐿
is a square matrix. Its elements are all 1/𝑁.

KPCA can retain information as much as possible when
feature vectors are simplified. For pattern classification,
the most important is not the total amount of retained
information but the category information. In view of this,
we further extract appropriate principal components by
evaluating category information of feature vectors.

In this research, we use the interclass separability for
evaluating category information. The separability of the 𝑘th
dimension component of feature vectors between class 𝑖 and
class 𝑗 is defined as follows:

𝛿𝑘𝑖𝑗 =

𝑑𝑘𝑖𝑗

𝜎𝑘𝑖 + 𝜎𝑘𝑗

, (11)

where 𝑑𝑘𝑖𝑗 is the distance between the center of the 𝑘th
dimension component of feature vectors of class 𝑖 and the
center of the 𝑘th dimension component of feature vectors of
class 𝑗. Consider 𝑑𝑘𝑖𝑗 = ‖𝑐𝑘𝑖 − 𝑐𝑘𝑗‖, where 𝑐𝑘𝑖 is the center
of the 𝑘th dimension component of feature vectors of class
𝑖. Consider 𝑐𝑘𝑖 = (1/𝑁𝑖) ∑

𝑁
𝑖

𝑙=1 𝑥𝑘𝑖𝑙, where 𝑁𝑖 is the number
of samples of class 𝑖, and 𝑥𝑘𝑖𝑙 represents the 𝑘th dimension
component of the 𝑙th sample of class 𝑖. 𝜎𝑘𝑖 represents the
standard deviation of the 𝑘th dimension component of class
𝑖. It is formulated as 𝜎𝑘𝑖 = √(1/(𝑁𝑖 − 1)) ∑𝑁𝑖

𝑙=1(𝑥𝑘𝑖𝑙 − 𝑐𝑘𝑖)
2.

The bigger 𝛿𝑘𝑖𝑗 is, the better the separability of the 𝑘th
dimension component between class 𝑖 and class 𝑗 is. When
𝛿𝑘𝑖𝑗 is smaller than 1, there is an overlap between the 𝑘th
dimension component of class 𝑖 and that of class 𝑗.
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Figure 5: Continued.
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Figure 5: Pyramid histogram of visual words. (a) Scene image. (b) Histogram of level 0. (c) Histogram of level 1. (d) Histogram of level 2.

We define the interclass separability of the 𝑘th dimension
component of feature vector as follows:

𝐽𝑘 =

𝐶

∑

𝑖=1

𝐶

∑

𝑗=𝑖+1
𝛿𝑘𝑖𝑗. (12)

Let 𝐽𝑘 represent the category information of the 𝑘th
dimension component. The bigger 𝐽𝑘 is, the more suitable
for classification the 𝑘th dimension component is. Then 𝐽𝑘 is
sorted in descending order, and the components correspond-
ing to the first 𝑝 separability are retained.

The choice of the number of appropriate principal com-
ponents for scene classification is as follows:

(
∑
𝑝

𝑘=1 𝐽𝑘

∑
𝑛

𝑘=1 𝐽𝑘
) > 𝑇, (13)

where 𝑇 is the predefined threshold.
After appropriate principal components are extracted,

linear “1-a-r” SVMs [25] are used for scene image classifica-
tion.The linear SVMs have simple decision function and fast

classification speed.These advantages aremore prominent for
multiclass classification problems.

3. Experiments and Results

The proposed method is evaluated on three datasets.
OT dataset [9, 14]: it contains 2688 images from 8

scene categories, which are coast (360 samples), forest (328
samples), mountain (374 samples), open country (410 sam-
ples), highway (260 samples), inside city (308 samples), tall
buildings (356 samples), and streets (292 samples). The size
of each image is 256 × 256.

FP dataset [4, 16]: it contains 3859 images from 13 scene
categories. FP dataset is an extension of OT dataset by adding
5 new categories, which are bedroom (216 samples), kitchen
(210 samples), living room (289 samples), office (215 samples),
and suburb (241 samples). The image size is approximately
300 × 250.

LS dataset [1, 11]: it contains 4485 images from 15 scene
categories. LS dataset is an extension of FP dataset by adding
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Coast Forest Highway Inside city Mountain Open country Street Tall building

(a) OT dataset

Bedroom Living room Kitchen Office Suburb

(b) FP dataset

Industrial Store

(c) LS dataset

Figure 6: Example images from three datasets.

2 new categories, that is, industrial (311 samples) and store
(315 samples). Figure 6 depicts some example images from
three datasets. These scene datasets are publicly available at
http://www-cvr.ai.uiuc.edu/ponce grp/data/.

We randomly select 125 images of each category as
the experiment images. The fivefold cross-validation is per-
formed for achieving the accurate estimation of classification
performance. First, scene images are filtered by the Gabor
filter bank of 5 scales and 8 directions, and local Gabor feature
descriptors are extracted. Then based on the spatial pyramid
matching model, pyramid histograms of visual words are
obtained. The vocabulary size is 300, and the number of
levels of the spatial pyramid is three. The improved KPCA
method with spatial pyramid matching kernel (PMK) is used
for dimensionality reduction.The threshold𝐸 is set to be 95%
and the threshold𝑇 is set to be 90%. Last, linear “1-a-r” SVMs
are adopted for scene classification. The penalty factor 𝐶 of
the “1-a-r” SVMs is set to be 10.

Figure 7 shows the confusion matrixes of the proposed
method for three different scene datasets. In the confusion
matrix, average classification rates for individual categories
are listed along the diagonal. The entry in the 𝑖th row and
𝑗th column is the percentage of images from category 𝑖

that are misidentified as category 𝑗. For the OT dataset,

the highest classification rate is 100% for the highway cate-
gory, and the lowest classification rate is 72% for the open
country category. The biggest confusion happens between
coast category and open country category. By observing,
we find that the misclassified “coast” images show certain
similarity to the “open country” images at first glance. While
there is no color information to help separate sea water from
grassland, the misclassified “coast” images are very easy to be
confused with “open country” images. For FP dataset and LS
dataset, the biggest confusion happens between the indoor
categories (kitchen, living room, and bedroom). By observing
the misclassified images, we find that some classification
errors are related to the ambiguity of scene images. For
example, some “kitchen” images are confused with “living
room” images. We find most of them depict the furniture
(such as dining table, coffee table, and cabinets) in the
central parts of images and the windows in the edge parts of
images. They are very easy to be confused. In spite of this,
the proposed scheme has achieved good performance. The
classification accuracy of three scene datasets is 87.5%, 82.8%,
and 78.7%, respectively.

In order to test the influence of different factors (such as
kernel functions, scales, and orientations of the Gabor fea-
tures) on classification performance of the proposedmethod,
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Figure 7: Confusion matrixes of the proposed method.
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Table 1: Classification performance of different Gabor features and
kernel functions on OT dataset.

Nonlinear kernel Gabor filter bank
4 orientations 8 orientations 12 orientations

RBF
1 scale 76.82% 77.90% 77.65%
3 scales 78.56% 81.55% 83.06%
5 scales 81.94% 84.22% 82.58%

POLY
1 scale 73.95% 77.64% 76.78%
3 scales 79.32% 84.36% 82.82%
5 scales 81.16% 83.95% 82.78%

PMK
1 scale 80.62% 83.46% 83.35%
3 scales 83.98% 84.70% 86.06%
5 scales 85.84% 87.25% 85.42%

Table 2: Classification performance of different Gabor features and
kernel functions on FP dataset.

Nonlinear kernel Gabor filter bank
4 orientations 8 orientations 12 orientations

RBF
1 scale 73.15% 73.56% 73.26%
3 scales 74.14% 78.53% 77.25%
5 scales 77.82% 79.74% 78.16%

POLY
1 scale 69.42% 73.26% 72.36%
3 scales 74.96% 79.84% 78.44%
5 scales 76.74% 78.55% 78.37%

PMK
1 scale 76.28% 79.16% 78.86%
3 scales 79.54% 80.48% 81.54%
5 scales 81.42% 82.74% 81.08%

we perform experiments with RBF kernel function, POLY
kernel function, and pyramid matching kernel function
for three scene datasets, respectively. Tables 1–3 show the
performance comparison of these experiments.

In this study, we set the Gaussian width 𝜎 of the RBF
kernel function to be 1 and set the parameter 𝑑 of the
POLY kernel function 𝐾(𝑥𝑖, 𝑥𝑗) = [𝑥𝑖 ⋅ 𝑥𝑗 + 1]𝑑 to be 2.
As shown in Tables 1–3, the schemes using the RBF kernel
function for KPCA obtain better classification performance
than the schemes using the POLY kernel function, and
the scheme using the PMK for KPCA obtains the highest
classification accuracy. The experimental results also show
that classification accuracy has an upward trend with the
increasing number of directions and scales of extracted
Gabor features. But the conclusion cannot be drawn that the
more directions and scales of Gabor features are used, the
better classification performance is obtained. Owing to the
meticulous division, the Gabor features with 12 orientations
are not more suitable for scene classification than the Gabor
features with 8 orientations. Consequently, the local Gabor

Table 3: Classification performance of different Gabor features and
kernel functions on LS dataset.

Nonlinear kernel Gabor filter bank
4 orientations 8 orientations 12 orientations

RBF
1 scale 67.42% 69.42% 69.28%
3 scales 70.35% 73.68% 74.83%
5 scales 73.56% 75.94% 74.35%

POLY
1 scale 64.84% 69.35% 68.98%
3 scales 71.15% 76.04% 74.26%
5 scales 72.76% 75.48% 75.32%

PMK
1 scale 72.38% 74.29% 75.25%
3 scales 75.54% 76.46% 77.65%
5 scales 77.42% 78.85% 77.84%

features with 5 scales and 8 orientations are the most
appropriate for scene classification.

In the proposed method, the nonlinear principal compo-
nents of feature vectors are extracted by the improved KPCA,
and linear “1-a-r” SVMs are used for scene classification.
The training time and the testing time decrease relatively
owing to dimensionality reduction of feature vectors, and
the classification performance changes with the number of
retained principal components. Figures 8 and 9 show some
experimental curves of ourmethod.The training time and the
testing time are the runtime of the linear “1-a-r” SVMs. The
experimental environments are given as follows: windows 7,
MATLAB7.10, CPU Intel i3-2330M, 2.20GHz, and 2.00GB
RAM.

Figures 8(a)–8(d) show the experimental curves of the
number of principal components, classification accuracy,
training time, and testing time when the threshold 𝐸 changes
form 95% to 60% (𝑇 = 95%). As shown in Figure 8, the
number of principal components declines rapidly when the
threshold 𝐸 decreases. The training time and testing time of
“1-a-r” SVMs decrease correspondingly with the reduction
of threshold 𝐸, and the classification accuracy also decreases
correspondingly.

Figures 9(a)–9(d) show the experimental curves of the
number of principal components, classification accuracy,
training time, and testing time when the threshold 𝑇 changes
form 95% to 60% (𝐸 = 95%). Because the principal compo-
nents with the bigger interclass separability are used for scene
classification in our method, good classification performance
can be obtained. Figure 9(b) shows the classification accuracy
with the various parameter 𝑇. Initially, the classification
accuracy gradually increases with the decrease of parameter
𝑇, because some components with less category information
are discarded. After reaching themaximum, the classification
accuracy gradually decreases with the decrease of parameter
𝑇, because the number of discarded components increases so
much that some componentswithmore category information
are discarded. The classification accuracy reaches its peak
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Figure 8: Experimental curves (𝑇 = 95%).

when 𝑇 is about 80%–90%. The number of principal com-
ponents, the training time, and testing time of “1-a-r” SVMs
decrease correspondingly with the reduction of threshold 𝑇.

In this study, the image size is approximately 300× 250. If
the images are bigger, the training time and testing time are
not affected. The computational cost for local Gabor feature
extraction of each scene image is linear with the size of
the image. If the images are bigger, the computational cost
for feature extraction is higher. However, the training time
and the testing time measured in this paper are the runtime
of the “1-a-r” SVMs, and therefore the change of the time
for feature vector extraction is not included. Moreover, the
factors that affect the runtime of SVM classifiers (such as the
dimensionality of feature vectors and the number of training

images and test images) are not related to the size of the
image. Even if the images are bigger, the runtime of “1-a-r”
SVMs is unchanged.

The proposedmethod is also compared with several well-
known algorithms, such as the dense SIFT method [11],
the BOVW method [4], and the “Gist” method [14]. We
randomly select 200 scene images of each category from three
different datasets as experiment images. Half of them are
used as training samples and the others are used for testing.
The penalty factor 𝐶 of “1-a-r” SVMs is set to be 10. In
the dense SIFT method, the sampling interval of the dense
regular grid is 8 pixels. SIFT descriptors are computed from
16 ∗ 16 image patches. The vocabulary size is 300, and the
number of levels of the spatial pyramid is three. The other
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Figure 9: Experimental curves (𝐸 = 95%).

parameter settings are the same as the settings in [11]. “1-a-
r” SVMs with the spatial pyramid matching kernel are used
for scene classification. In the BOVW method, Difference of
Gaussian (DoG) detectors are used to automatically detect
key points. SIFT descriptors are adopted for representing
local features of scene images, and “1-a-r” RBF-SVMs are used
for scene classification. We set the Gaussian width 𝜎 of the
RBF kernel function to be 1. The other parameter settings are
the same as the settings in [4]. In the “Gist” method, “Gist”
feature is extracted from a 4 ∗ 4 grid of the filtering output
of a scene image convolved with 40 Gabor filters (5 scales
and 8 orientations), which have been described in Section 2.
“1-a-r” SVMs with the RBF kernel function are used for
scene classification. The Gaussian width 𝜎 of the RBF kernel
function is set to be 1.

Figure 10 shows the classification accuracy of different
methods. For three different scene datasets, the proposed
method is slightly better than the dense SIFT method and
much better than the BOVWmethod and the “Gist” method.
In the proposed method, local Gabor features extracted by
imitating the “Gist” model, which conforms to the mech-
anism of human vision, have good discrimination abilities
for sampling patches of scene images. So the accuracy of
visual words which are obtained by the 𝐾-means cluster-
ing algorithm can be guaranteed. Meanwhile the improved
KPCA is used for extracting nonlinear principal compo-
nents. The principal components containing more category
information, which are suitable for scene classification, are
retained.The proposed method achieves considerably higher
accuracy.
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4. Conclusions

A new scene classification method has been proposed based
on local Gabor features. The local Gabor feature descriptors
which are extracted according to the “Gist” theory have
sufficient discrimination abilities for sampling patches of
scene images. By quantizing local Gabor features into discrete
codewords and employing a spatial pyramidmatchingmodel,
pyramid histograms of visual words which contain spatial
position information of images are obtained for representing
scene images. In addition, the principal components of
PHOW containing more category information are extracted
by an improved KPCA method. These principal components
are suitable for scene classification, and they can improve
both classification accuracy and computational cost. Numer-
ical experiments are conducted on three scene datasets. The
experimental results demonstrate the effectiveness of the
method. The proposed method can also be extended to
different applications such as the classification of commodity
images and the classification of event images.
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