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Peroxisome proliferator-activated receptor-gamma (PPARγ), one of three ligand-activated transcription factors named PPAR, has
been identified as a molecular target for cancer chemopreventive agents. PPARγ was initially understood as a regulator of adipocyte
differentiation and glucose homeostasis while later on, it became evident that it is also involved in cell differentiation, apoptosis,
and angiogenesis, biological processes which are deregulated in cancer. It is now established that PPARγ ligands can induce cell
differentiation and yield early antineoplastic effects in several tumor types. Moreover, several bioactive natural products with
cancer protecting potential are shown to operate through activation of PPARγ. Overall, PPARγ appears to be a prevalent target ally
to cancer chemopreventive agents and therefore pursuing research in this area is of great relevance.

Copyright © 2008 Ioannis Sainis et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Peroxisome proliferator-activated receptors (PPARs) are
ligand-activated nuclear receptors that function as transcrip-
tion factors regulating the expression of genes involved in
lipid biosynthesis, glucose metabolism, as well as cell prolif-
eration, differentiation, and survival [1–4]. Their discovery
was driven by search of a molecular target for peroxisome
proliferators, a group of agents named after their property
to increase peroxisomes in rodent liver [5, 6]. Later on,
activity studies helped elucidate the versatile role of these
molecules in modulating diverse biological functions such as
metabolism, tissue remodeling, inflammation, angiogenesis,
and carcinogenesis [7–11]. Three PPAR gene types have been
identified: α, β/δ, and γ [12, 13]. Between them, PPARγ is
the most intensively investigated [14, 15].

2. THE HUMAN PPARγ GENE

The human PPARγ gene consists of six coding exons located
at chromosome 3p25.2 and extends approximately over
100 kb of genomic DNA [16]. Three major transcriptional
start sites have identified where three mature mRNAs
originate from, differing in their 5′ untranslated regions

[17, 18] . Notably PPARγ1 and PPARγ3 mRNAs code for the
same protein of 475 amino acids, while PPARγ2 transcript
codes for a different protein which contains an additional 28
N-terminal amino acids [19].

2.1. Tissue distribution of different PPARγ isoforms

The PPARγ1 is found in virtually all tissues, such as liver,
skeletal muscle, prostate, kidney, breast, intestine, and the
gonads. The PPARγ2 is the major PPARγ isoform expressed
mainly in adipose tissue where it normally operates as an
adipocyte-specific transcription factor in preadipocytes and
regulates adipose tissue differentiation, and the PPARγ3
isoform is restricted to adipose tissue and large intestine
[18, 20],

2.2. PPARγ protein structure and function

Similar to other members of the nuclear hormone receptors
superfamily, PPARγ protein has three functional domains:
the N-terminal domain, the DNA-binding domain, and a
carboxy-terminal ligand-binding pocket (Figure 1).

PPARγ protein receptor is activated by a num-
ber of endogenous and exogenous ligands of various
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Figure 1: Peroxisome proliferator-activated receptor-γ and ligands: pathways and functions. PPARγ protein exhibits a structural organization
consisting of three functional domains: an N-terminal domain, a DNA-binding domain (DBD) and a carboxy-terminal ligand binding
domain (LBD). PPARγ forms heterodimers with a second member of the nuclear receptor family, the retinoic X receptor (RXR). Unliganded
PPARγ suppresses transcription (pathway A) either by interfering with key transcription factors (pathway A1) or through recruitment
of corepressors (CoRep) on a PPRE element (pathway A2). Ligand binding to PPARγ (pathway B) triggers conformational changes that
lead to dissociation of corepressors (CoRep) and subsequent association of coactivators (CoAct). The complex is binding to PPREs and
triggers transcription (pathway B). PPARs ligands can also exert their action through PPARγ-independent mechanisms also (pathway C).
For instance in NSCLC cell lines activation of TNF-TRAIL induce apoptosis, while PGE2 degradation, trough 15-hydroxyprostagladin
dehydrogenase induction, results in enhanced epithelial differentiation. In endothelial cells PPARγ ligands can markedly boost expression
of CD36 which functions as the receptor of endogenous antiangiogenic molecule thrombospondin-1, thereby potentiating the apoptotic
response. (PFAs: polyunsaturated fatty acids, TZDs: thiazolidinediones, PPRE: peroxisome proliferator response element, TNF: tumor
necrosis factor, TRAIL: TNF-related apoptosis-inducing ligand, NSCLC: non-small cell lung carcinoma).

potencies. Among pharmaceutical compounds, thiazolidine-
dione (TZD) class of insulin-sensitizing drugs (also called
glitazones) are best known to operate as ligands to PPARγ
[21, 22] while long-chain polyunsaturated fatty acids are the
most well-characterized endogenous ligands [23].

The activated PPARγ protein becomes operational fol-
lowing its heterodimerization with retinoid X receptors
(RXR) [24]. The PPARγ/RXR complex translocates to the
nucleus where it binds to target genes which contain a perox-
isome proliferator response element (PPRE). A PPRE consist
of a direct repetition of the consensus sequence AGGTCA
separated by a single nucleotide (Direct repetition; DR1)
[17]. To initiate transcriptional regulation of PPRE-bearing
genes, the PPARγ/RXR complex requires accessory proteins
to bind on. These proteins can either trigger (coactivators)
or represses gene transcription (corepressors) (Figure 1). It
must be noted though that besides their PPARγ-dependent
genomic effects, PPARγ ligands can also influence cellular
biology via nongenomic, PPARγ-independent events [25]
(Figure 1).

As a rule, the transcriptional activity of PPARγ is nega-
tively modulated through phosphorylation by MAPK [26–
28]. Phosphorylation of human PPARγ1 protein at Ser-
84 site restrains its function [27], and phosphorylation of
PPARγ2 modifies the A/B domain and reduces its ligand
binding affinity [29]. However, not all phosphorylation
events are inhibitory. For example, it has been found
that missense mutation which results in the conversion of
proline to glutamine at position 115 can render PPARγ2
constitutively active through modulation of the MAPK-
dependent phosphorylation status of serine 114 [30] while
phosphorylation by protein kinase A (PKA) was shown to
enhance its activity [31].

Until now, three molecular processes have been proposed
for the termination and downregulation of PPARγ signaling:
the phosphorylation of Ser-84/112 of PPARγ1/2 by ERKs
[27], the proteasomal degradation of ligand-activated PPARγ
[32], and the interaction with MEKs, which promotes its
expulsion from the nucleus [33].
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3. PPARγ IN CANCER

Early studies portrayed PPARγ as an important regulator
of preadipocyte differentiation and glucose homeostasis.
Later on, it was identified that PPARγ regulates biological
processes which are considered hallmarks of cancer such
as cell differentiation, apoptosis, and angiogenesis. This
knowledge, coupled with data showing that PPARγ ligands
could yield anticancer effects in several cell types, led
researches postulate a role for PPARγ in carcinogenesis [11,
34, 35].

Apoptosis is believed to be a fundamental molecular
mechanism through which PPARγ activators exert their
action against cells which undergo malignant transformation
[36–38]. Moreover, apart from their direct inhibitory effects
on cancerous transformed cells, PPARγ can also inhibit
angiogenesis which is a prerequisite for tumor formation
and growth [39–41]. It is suggested that the antiangiogenic
activity of PPARγ can be accomplished either by blocking
the production the angiogenic ELR+CXC chemokines by
cancer transformed cells or by inducing expression of the
thrombospondin-1 receptor CD36 in endothelial cells [42–
44] In addition, latest exciting data, which showed that
PPARγ agonists were able to inhibit the canonical WNT
signaling in human colonic epithelium, raises hopes that
such agents can possibly block cancer initiation at a stem cell
level [45].

It must be underlined herein that despite demonstration
of cancer-preventive effects of PPARγ ligands in vitro, clinical
trials and animal models failed so far to show significant
benefits [46]. The fact that PPARγ ligands have been used
in clinic trials at concentrations above those needed to
elicit receptor agonistic activity poses questions for receptor-
independent off-target effects [47].

3.1. PPARγ and gastrointestinal cancer

PPARγ are heterogeneously expressed throughout the gas-
trointestinal epithelium, showing significant differences in
abundance, distribution, and functions. This protein is
principally expressed in differentiated epithelial colonic cells,
preferably in the proximal colon [48]. Sarraf et al. showed
that PPARγ activation could stimulate a program that is
characteristic of colonic cell differentiation [49].

A functional genomics analysis conducted for the iden-
tification of PPARγ gene targets revealed that the majority
of these genes were transcribed throughout the colon, but
their expression varied in cells purified from the proximal
colon and in those from the distal colon. Metabolic functions
of PPARγ were elicited primarily in the proximal colon,
whereas signaling functions were recognized in the distal
colon. Interestingly, TZDs transactivated the PPARγ gene
targets at the proximal colon but repressed them in the
distal colon. TSC22, a TGFβ target gene known to inhibit
colon cell proliferation, was also identified as a PPARγ target
gene [50]. It is worth mentioning that both TGFβ and
PPARγ pathways attenuate during transition from adenoma
to carcinoma [51]. From a pharmacological point of view,
Yamazaki at al. showed that activation of the RXR/PPARγ

heterodimer by their respective ligands could be considered
a useful chemopreventive strategy for colorectal cancer. They
found that a combination of the RXR alpha ligand 9-cis-
retinoic acid with ciglitazone synergistically inhibited the cell
growth and induced apoptosis in Caco2 human colon cancer
cells that expressed high levels of p-RXR alpha protein [52].

In the most widely used preclinical model of sporadic
colon carcinogenesis, the azoxymethane-treated mice, acti-
vation of PPARγ suppressed carcinogenesis but only before
damage to the APC/beta-catenin pathway [53]. However, two
papers published ten years ago reported that troglitazone
and rosiglitazone increased occurrence of colon tumors in
mice-caring mutations in the APC gene [48, 54]. Moreover,
although pioglitazone was later reported to suppresses colon
tumor growth in Apc+/− mice [55], biallelic knockdown
of PPARγ in colonic epithelial cells was associated with an
increase of tumor incidence [56]. It should be reminded,
however, that although TZDs are considered pure PPAR
agonists, they also wield off-target effects not mediated
through linkage to PPAR receptors. An in-depth analysis
of the role of TZDs against colon cancer can be facilitated
through development of tissue-specific PPARγ knockout
mice [57]. Interestingly, a small phase II clinical trial using
troglitazone failed to document tumor responses in patients
with advance stage metastatic colon cancer [58].

Overall, existing evidence indicates that PPARγ agonists
have a potential to inhibit cancer formation in the distal
colon, but they are practically inactive in advanced stages of
colon cancer.

3.2. PPARγ and lung cancer

Lung cancer is a major global health problem because
of its incidence and mortality. It remains the top cancer
killer worldwide to which early-detection strategies and
development of new therapies failed so far to improve its
lethal outcome [59]. This tobacco-related cancer epidemic
persists despite public implementation of tobacco control
measures because the majority of tobacco-smoke users
declare powerlessness to quit. Therefore, the search for
potent chemopreventive agents and the development of
effective chemoprevention strategies for lung cancer is a
viable pursuit highly justified [60, 61].

Several studies have shown that PPARγ agonists can
inhibit growth and induce changes associated with differen-
tiation and apoptosis in lung cancer [62–64]. TZDs induced
upregulation of PTEN and p21, downregulation of cyclins D
and E, and reduced expression of fibronectin and its receptor
integrin α5β1 in human lung carcinoma cell lines [65–68].

A first evidence of clinical efficacy of PPARγ agonists
as cancer chemopreventives in lung cancer was recently
published. A retrospective analysis of a database from
ten Veteran Affairs medical centers revealed a significant
reduction (33%) in lung cancer risk in diabetic patients who
were treated with TZDs compared with nonusers of TZDs
[69]. However, other studies damped early this enthusiasm
by showing that diabetic patients treated with TZDs were at
increased risk for cardiovascular complications [70].
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It is critical to understand that cancer-protecting effects
of PPARγ agonists in lung cancer can be PPARγ depen-
dent but also PPARγ independent [71]. Characteristically,
TZDs suppressed the expression of antiapoptotic mediator
prostaglandin E(2) in NCLC cells through induction of
15-hydroxyprostagladin dehydrogenase [72] and enhanced
TRAIL-induced apoptosis through upregulation of death
receptor 5 DR5 and downregulation of c-FLIP in human lung
cancer cells [73].

The combination of PPARγ agonists with other chemo-
preventive agents emerges as a challenging issue in lung
cancer chemoprophylaxis. Notably, an amazing synergy of
clinically achievable concentrations of lovastatin (an HMG-
CoA reductase inhibitor) and troglitazone was recently
shown against lung cancer cells [74]. This effect was
accompanied by synergistic modulation of E2F-1, p27∧Kip1,
CDK2, cyclin A and RB. In another study, a combination
of low-doses of MK886 (5-lipoxygenase activating protein-
directed inhibitor), ciglitazone and 13-cis-retinoic acid, also
demonstrated synergistic inhibitory activity against lung
cancer cells [75]. These studies provide a framework for
the development of rationally designed drug combinations
aimed to target simultaneously the PPARγ and other cofac-
tors.

3.3. PPARγ and other malignancies

Epidemiological studies suggested that high consumption of
carotenoids (known PPARγ activators) could protect women
from the development of breast cancer [76, 77]. These
findings are also supported by experiments which show that
activation of PPARγ can induce terminal differentiation, cell
cycle arrest, or apoptosis of preneoplastic and cancerous
mammary epithelial cells [78–80]. Unfortunately, this is not
the case for advanced breast cancer: a phase II trial of
troglitazone in patients with breast cancer metastases failed
recently to prove clinical benefits [81].

Prostate cancer appears to be an attractive tumor target
for PPARγ agonists because cancerous prostate cells express
higher levels of PPARγ compared with their normal coun-
terparts [82]. Moreover, it has been shown that PPARγ1/2
activation suppressed the high level of endogenous COX-2
in normal prostate epithelial cells [83] while TZDs mediated
apoptosis in prostate cancer cells through inhibition of Bcl-
xL/Bcl-2 functions [84]. In the clinical setting, reduction
and prolonged stabilization of prostate-specific antigen levels
were demonstrated in patients treated with troglitazone
[82, 85]. The above data provide a rationale to consider
investigating PPARγ ligands for their role in preventive and
possibly therapeutic management of prostate cancer.

In gynecological cancer, Wu et al. reported that rosigli-
tazone could block or delay the development of hyperplasia
and subsequent endometrial cancer. This PPARγ agonist
induced apoptosis in both PTEN intact and PTEN null can-
cer cell lines and decreased proliferation of the endometrial
hyperplastic lesions in a PTEN(+/−) murine model [86].

In human pancreatic cancer cell lines, treatment with
TZDs was found to induce cell cycle arrest and increase
expression of pancreatic differentiation markers [87, 88].

Moreover, activation of PPARγ together with RXR resulted
in suppression of pancreatic cancer cell growth through
suppression of cyclin D1 [89].

Among sarcoma tumors, it is liposarcomas which are
considered targets for PPARγ agonists because they show
a high expression of this nuclear receptor [90]. However,
although pioglitazone was found capable to terminally
differentiate human liposarcoma cells in vitro, it failed an
early phase II trial despite induced changes in relevant target
genes [91].

In thyroid cancer, a functional chromosomal transloca-
tion of part of PAX8 gene which encodes the DNA-binding
domain to the activation domain of the PPARγ gene has
been detected in patients with follicular type carcinoma
[92]. This chimeric fusion protein is resistant to PPARγ
ligands, invalidating any anticancer effects of PPARγ ligands
in this setting. However, it has been suggested that PPARγ
ligands could have activity in combination with retinoids
and/or histone deacetylase inhibitors in thyroid tumors
which express both PPARγ and also RXRγ [93, 94].

4. PPARγ AS A MEDIATOR TO CANCER PROTECTING
NATURAL PRODUCTS

Evidence has accumulated which affirms that bioactive
natural compounds can play an important role in cancer
chemoprevention through modulation of PPARγ. Preclinical
studies and epidemiological data support that tumor growth
and metastasis can be restrained or delayed by several
herbal products [95–98]. Moreover, it is believed that novel
agents derived from bioactive phytochemicals can be used
as adjuncts to enhance therapeutic efficacy of standard
treatments [99, 100]. Among natural products, triterpenoids,
flavononoids, carotenoids, and linoleic acid are the most
extensively studied as cancer chemopreventives and have
invariably been found to operate as PPARγ activators.

Terpenoids of plant origin have shown antitumor activity
which indicates a potential role for these compounds as
cancer chemopreventives [100–102]. Specifically, 2-cyano-
3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), a synthetic
triterpenoid, which was shown to activate PPARγ and
induce growth arrest and apoptosis in treated breast cancer
cells [103]; also, glycyrrhizin the major triterpene gycoside
phytochemical in licorice root and the triterpenoid acid
betulinic acid which is found in the bark of several species of
plants, both have shown pro-PPARγ activities in cancer cells.
These phytochemicals were found to induce expression of
proapoptotic protein caveolin-1 and the tumor-suppressor
gene Kruppel-like factor-4 (KLF-4) in colon and pancreatic
cancer cells [104, 105]. It should though be noted that
although caveolin-1 is generally considered a proapoptotic
molecule, it has also been associated with drug resistance and
possibly metastasis [106]. It is believed that some PPAR-γ
agonists induce whilst others repress caveolin-1 [107].

Isoflavones are well known to function as phytoestrogens.
They bind to the estrogen-related receptors but also to
PPARα and PPARγ [108]. As a result, their biological effects
are determined by the balance between activated ERs and
PPARγ [109]. Liang et al. investigated apigenin, chrysin,
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and kaempferol in mouse macrophages and found that
these flavonoids stimulated PPARγ transcriptional activities
as allosteric effectors rather than pure agonists [110]. In
the clinical setting, purified isoflavones have only been
investigated for safety, bioavailability, and pharmacokinetics
in men with early-stage prostate cancer [111–114].

Carotenoids are another class of phytochemicals found
to activate PPARγ in cancer cells. Hosokawa et al. reported
that the edible carotenoid fucoxanthin, when combined
with troglitazone, induced apoptosis of Caco-2 cells [115].
Moreover, in epidemiological studies, consumption of
carotenoids was shown to protect against breast cancer
[76, 77]. Interestingly, Cui et al. unveiled recently the
molecular mechanisms which underlie the chemopreventive
activity of β-carotene against breast cancer. They found
that β-carotene significantly increased PPARγ mRNA and
protein levels in a time-dependent fashion, while 2-chloro-5-
nitro-N-phenylbenzamide (GW9662), an irreversible PPARγ
antagonist, attenuated apoptosis caused by β-carotene in
cancer-transformed cells [36].

Linoleic acid, a naturally occurring omega-6 fatty acid
which is abundant in many vegetable oils, has been studied
comprehensively for its prophylactic effects against cancer
formation [116]. Conjugated linoleic acid, which is found
especially in eggs and in the meat and dairy products of
grass-fed ruminants, was shown to modulate cell-cell adhe-
sion and invasiveness of MCF-7 cells through regulation of
PPARγ expression [117]. Moreover α-eleostearic acid (ESA),
a linolenic acid isomer, induced apoptosis in endothelial cells
and inhibited angiogenesis, also through activation of PPARγ
[118]. More recent studies brought up additional evidence
and provided insights into molecular mechanisms of the
protective effects of linoleic acid against colon cancer. Yasui
et al. reported that 9trans-11trans-conjugated linoleic acid
inhibited the development of azoxymethane-induced colonic
aberrant crypt foci in rats at preinitiation and postinitiation
level through activation of PPARγ and downregulation of
cyclooxygenase-2 and cyclin D1 [119]. In addition, Sasaki
at al. showed that linoleic acid was capable to inhibit
azoxymethane-induced transformation of intestinal cells and
tumor formation [120]. In most studies, the differentiation-
promoting and carcinogenesis-blocking effects were mostly
attributed to activation of PPARγ by linoleic acid products
[121]. Finally, apart from its direct action as a PPARγ
activator, linoleic acid was found to modulate interactions
between PPARβ/δ and PPARγ isoforms [122].

Finally, in the class of capsaicinoids, capsaicin, the spicy
component of hot peppers, was shown to induce apoptosis
of melanoma as well as colon and prostate cancer cells,
and was associated with activation of the PPARγ in the
case of colon cancer [123–125]. However, controversy exists
regarding cancer-preventing and cancer-promoting effects of
capsaicin [126, 127].

It must be noted that besides their PPARγ-mediated
effects, natural products can also induce transcription of
detoxification enzymes glutathione S-transferases (GST)
which are known to protect cells from chemical-induced
carcinogenesis [128, 129]. Recently, Park et al. exam-
ined GSTA2 gene induction by thiazolidinedione and 9-

cis-retinoic acid and investigated the molecular basis of
PPARγ/RXR-mediated GSTA2 induction in the H4IIE hep-
atocytes. They found that both PPARγ and RXR agonists
could increase the expression of GSTA2 but treatment of cells
with a combination of PPARγ and RXR agonists produced
synergistic increase [130]. This data suggest that cancer-
preventive functions of PPARγ activators may be related to
some extent to a parallel induction of GSTA2.

5. CONCLUSION

Existing data suggest that peroxisome proliferator-activated
receptor-gamma (PPARγ) is a potential target ally to cancer
chemopreventive agents. Although PPARγ was first under-
stood as a key regulator of adipocyte differentiation and
glucose homeostasis, it is now recognized that it is also
involved in cell proliferation, differentiation, apoptosis, and
angiogenesis. Meticulous research for PPARγ agonists with
potency to function as cancer chemopreventive agents is
highly warranted.
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