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The linearizability (or isochronicity) problem is one of the open problems for polynomial
differential systems which is far to be solved in general. A progressive way to find necessary
conditions for linearizability is to compute period constants. In this paper, we are interested in
the linearizability problem of p :−q resonant degenerate singular point for polynomial differential
systems. Firstly, we transform degenerate singular point into the origin via a homeomorphism.
Moreover, we establish a new recursive algorithm to compute the so-called generalized period
constants for the origin of the transformed system. Finally, to illustrate the effectiveness of our
algorithm, we discuss the linearizability problems of 1 :−1 resonant degenerate singular point for
a septic system. We stress that similar results are hardly seen in published literatures up till now.
Our work is completely new and extends existing ones.

1. Introduction

In the qualitative theory of planar polynomial differential equations, the problem of
characterizing isochronous centers has stimulated a great deal of effort but which is also
remarkably intractable. The authors of [1] pointed out that “a center of an analytic system is
isochronous if and only if there exists an analytic change of variables such that the original
system is reduced to a linear system,” thus an isochronous center is also called a linearizable
center. A center is isochronous if the period of all period solutions in a neighborhood of it is
constant.
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The problem of determining isochronous centers for polynomial vector fields with lin-
ear part of center type

dx

dt
= −y +

∞∑

k=2

Xk

(
x, y
)
,

dy

dt
= x +

∞∑

k=2

Yk
(
x, y
)
,

(1.1)

is the subject of much work, where

Xk

(
x, y
)
=
∑

α+β=k

Aαβx
αyβ, Yk

(
x, y
)
=
∑

α+β=k

Bαβx
αyβ. (1.2)

The representative results are quadratic isochronous centers, see [2]; isochronous centers of
a linear center perturbed by third, fourth, and fifth degree homogeneous polynomials, see
[3–5]; complex polynomial systems, see [1]; reversible systems, see [6, 7]; and isochronous
centers of cubic systems with degenerate infinity, see [8, 9].

By means of complex transformation

z = x + iy, w = x − iy, T = it, i =
√
−1, (1.3)

system (1.1) becomes the following complex system:

dz

dT
= z +

∞∑

k=2

Zk(z,w),

dw

dT
= −w −

∞∑

k=2

Wk(z,w),
(1.4)

where

Zk(z,w) =
∑

α+β=k

aαβz
αwβ = Yk

(
z +w
2

,
z −w
2i

)
− iXk

(
z +w
2

,
z −w
2i

)
,

Wk(z,w) =
∑

α+β=k

bαβw
αzβ = Yk

(
z +w
2

,
z −w
2i

)
+ iXk

(
z +w
2

,
z −w
2i

)
.

(1.5)

Clearly, the coefficients of system (1.4) satisfy the conjugate condition, that is,

aαβ = bαβ, α ≥ 0, β ≥ 0, α + β ≥ 2. (1.6)

As in [10], systems (1.1) and (1.4) are said to be concomitant. For isochronous center problem,
we highlight the great contribution of Liu and Huang [11], which gave a new recursive algo-
rithm to compute period constants at the origin of system (1.4).
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At times, the problem is restricted to the following polynomial differential systemwith
linear part of p :−q resonant saddle point type

dx

dt
= px + P

(
x, y
)
,

dy

dt
= −qy +Q

(
x, y
)
, (1.7)

where p, q ∈ Z
+, x, y, t ∈ R, P and Q are polynomials. After a time scaling t → p−1t, system

(1.7) can be equivalently rewritten as

dx

dt
= x + P

(
x, y
)
,

dy

dt
= −λy +Q

(
x, y
)
, (1.8)

where λ = q/p ∈ Q
+. As to the problems of linearizability of system (1.7), systematic research

has been done. In [12], the necessary and sufficient conditions (15 cases) for linearizable
systems of the 1 :−2 resonance were given. For the Lotka-Volterra system

ẋ = x
(
1 + ax + by

)
, ẏ = y

(−λ + cx + dy
)
, (1.9)

necessary and sufficient conditions for linearizability in the case λ ∈ N, that is the 1 :−n reso-
nant cases, were already known in [12]. In [13], some sufficient conditions were given in the
case of general λ, and for the case λ = p/2 or 2/p, p ∈ N

+, necessary and sufficient conditions
for linearizable systems were given. In [14], some new sufficient conditions for linearizable
Lotka-Volterra system were presented. The linearizability was considered for 3 :−4 and 3 :−5
resonance in [15].

Wang and Liu [15] generalized the algorithm in [11]. Linearizability was investigated
for the following general complex polynomial differential systems with a resonant singular
point

dz

dT
= z +

∞∑

k=2

Zk(z,w),

dw

dT
= −λw −

∞∑

k=2

Wk(z,w).
(1.10)

Motivated by the above facts, in this paper, we concentrate on the linearizability
problem for the polynomial differential system with a resonant degenerate singular point

dz

dT
= pzn+1wn +

∞∑

k=2n+2

Zk(z,w),

dw

dT
= −qwn+1zn −

∞∑

k=2n+2

Wk(z,w),
(1.11)

where n ∈ N, p, q ∈ Z
+, (p, q) = 1, z,w, T are complex variables.
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Remark 1.1. (i)When p = q, without loss of generality, taking p = q = 1, system (1.11) becomes

dz

dT
= zn + 1wn +

∞∑

k=2n+2

Zk(z,w),

dw

dT
= −wn + 1zn −

∞∑

k=2n+2

Wk(z,w).
(1.12)

(ii)When n = 0, system (1.11) becomes

dz

dT
= pz +

∞∑

k=2

Zk(z,w),

dw

dT
= −qw −

∞∑

k=2

Wk(z,w),
(1.13)

which is equivalent to system (1.10).
(iii)When p = q = 1, n = 0, system (1.11) becomes system (1.4).
Consequently, the proposed results are new and extend the existing ones with respect

to systems (1.12) and (1.13).

The format of this paper is organized as follows. In Section 2, we recall some back-
ground definitions and lemmas which are very important in the proof of the main results in
Section 3. In Section 3, we transfer degenerate singular point into the origin by a homeomor-
phic transformation and derive a new recursive algorithm for the calculation of generalized
period constants at the origin of the transformed system. In Section 4, as an application of the
new algorithm, we investigate the linearizability problem of 1 :−1 resonant degenerate sin-
gular point for a class of septic system. In the last section, we present the conclusions and
remarks.

Most of the calculations in this paper have been done with the computer algebraic sys-
tem-Mathematica.

2. Preliminaries

Lemma 2.1 (see [12, 13]). System (1.13) is normalizable at the origin if and only if there exists an
analytic change of variables:

ξ = z + Φ(z,w) = z + o(|z,w|), η = w + Ψ(z,w) = w + o(|z,w|) (2.1)

bringing the system to its normal form

dξ

dT
= pξ

(
1 +

∞∑

i=1

piU
i

)
,

dη

dT
= −qη

(
1 +

∞∑

i=1

qiU
i

)
, (2.2)

whereU = ξqηp.

We write μ0 = τ0 = 0, μk = pk − qk, τk = pk + qk, k = 1, 2, . . ..
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Definition 2.2 (see [15]). For any positive integer k, μk is called the kth singular point quantity
of the origin of system (1.13). If system (1.13) is real planar differential system, μk is the kth
saddle quantity. If system (1.13) is the concomitant system of (1.1), μk is the kth focus quanti-
ty. Moreover, the origin of system (1.13) is called a generalized center if μk = 0, k = 1, 2, . . ..

Definition 2.3 (see [15]). For any positive integer k, τk is called the kth generalized period con-
stant of the origin of system (1.13). And the origin of system (1.13) is called a generalized
isochronous center if μk = τk = 0, k = 1, 2, . . ..

Then from Lemma 2.1, and similar to the analytical procedure in [16], we have the
following.

Lemma 2.4. System (1.13) is integrable at the origin if and only if one can derive uniquely the follow-
ing formal series:

ξ = z +
∞∑

k+j=2

ckjz
kwj, η = w +

∞∑

k+j=2

dkjw
kzj , (2.3)

where cqi+1,pi = dpi+1,qi = 0, i = 1, 2, . . ., such that

ξ̇ = ξh
(
ξ, η
)
= pξ

(
1 +O

(∣∣ξ, η
∣∣)), η̇ = −qηh(ξ, η) = −qη(1 +O(∣∣ξ, η∣∣)), (2.4)

namely, pi = qi (i = 1, 2, . . .) in expression (2.2).

Lemma 2.5. System (1.13) is linearizable at the origin if and only if one can derive uniquely the fol-
lowing formal series (2.3), such that

ξ̇ = pξ, η̇ = −qη, (2.5)

namely, pi = qi = 0 (i = 1, 2, . . .) in expression (2.2).

Lemma 2.6. System (1.13) is linearizable at the origin if and only if one can derive uniquely the
change of coordinates (2.3) which linearizes the system, that is, μk = τk = 0, k = 1, 2, . . ..

Obviously, system (1.13) is linearizable at the origin if and only if the origin is a gener-
alized isochronous center.

3. Main Results

Making the transformation

z = z1(z1w1)n+1, w = w1(z1w1)n+1, dT = (2n + 3)(z1w1)−n(2n+3)dT1, (3.1)
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and renaming (z1, w1, T1) by (z,w, T), system (1.11) becomes

dz

dT
= p∗z +

∞∑

α+β=2n+2

[
(n + 2)aαβ + (n + 1)bβ+1,α−1

]
zα+1wβ+1(zw)(α+β−2n−2)(n+1),

dw

dT
= −q∗w −

∞∑

α+β=2n+2

[
(n + 2)bαβ + (n + 1)aβ+1,α−1

]
wα+1zβ+1(zw)(α+β−2n−2)(n+1),

(3.2)

where

p∗ = (n + 1)q + (n + 2)p, q∗ = (n + 1)p + (n + 2)q. (3.3)

Transformation (3.1) enables us to reduce the problem of p : −q resonant degenerate singular
point to that of the p∗ : −q∗ resonant elementary origin.

Theorem 3.1. For system (3.2), one can derive uniquely the following formal series:

f(z,w) = z +
∞∑

k+j=2n+4

c′kjz
kwj, g(z,w) = w +

∞∑

k+j=2n+4

d′
kjw

kzj , (3.4)

where c′q∗i+1,p∗i = d
′
p∗i+1,q∗i = 0, i = 1, 2, . . ., such that

df

dT
= p∗f(z,w) +

∞∑

i=n+2

p∗p′iz
q∗i+1wp∗i,

dg

dT
= −q∗g(z,w) −

∞∑

i=n+2

q∗q′iw
p∗i+1zq

∗i, (3.5)

and when p∗k − q∗j − p∗ /= 0, (i.e., |k − q∗i − 1| + |j − p∗i|/= 0, i = 0, 1, 2, . . .), c′
kj

is determined by
the following recursive formula:

c′kj =
1

q∗j − p∗(k − 1)

×
∞∑

α+β=2n+3

{[
(n + 2)(k − α) − (n + 1)

(
j − β) − (α + β − 2n − 3

)
(n + 1)

]
aα,β−1

−[(n + 2)
(
j − β) − (n + 1)(k − α) − (α + β − 2n − 3

)
(n + 1)

]
bβ,α−1

}

× c′
k−α−(α+β−2n−3)(n+1),j−β−(α+β−2n−3)(n+1),

(3.6)
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and when q∗k − p∗j − q∗ /= 0, (i.e., |k − p∗i − 1| + |j − q∗i|/= 0, i = 0, 1, 2, . . .), d′
kj is determined by

the following recursive formula:

d′
kj =

1
p∗j − q∗(k − 1)

×
∞∑

α+β=2n+3

{[
(n + 2)

(
k − β) − (n + 1)

(
j − α) − (α + β − 2n − 3

)
(n + 1)

]
bβ,α−1

−[(n + 2)
(
j − α) − (n + 1)

(
k − β) − (α + β − 2n − 3

)
(n + 1)

]
aα,β−1

}

× d′
k−β−(α+β−2n−3)(n+1),j−α−(α+β−2n−3)(n+1)

=
1

p∗j − q∗(k − 1)

×
∞∑

α+β=2n+3

{[
(n + 2)(k − α) − (n + 1)

(
j − β) − (α + β − 2n − 3

)
(n + 1)

]
bα,β−1

−[(n + 2)
(
j − β) − (n + 1)(k − α) − (α + β − 2n − 3

)
(n + 1)

]
aβ,α−1

}

× d′
k−α−(α+β−2n−3)(n+1),j−β−(α+β−2n−3)(n+1),

(3.7)

and for any positive integer i, p′i and q
′
i are determined by the following recursive formulae:

p′i =
1
p∗

∞∑

α+β=2n+3

{[
(n + 2)

(
q∗i + 1 − α) − (n + 1)

(
p∗i − β) − (α + β − 2n − 3

)
(n + 1)

]
aα,β−1

−[(n + 2)
(
p∗i − β) − (n + 1)

(
q∗i + 1 − α) − (α + β − 2n − 3

)
(n + 1)

]
bβ,α−1

}

× c′
q∗i+1−α−(α+β−2n−3)(n+1),p∗i−β−(α+β−2n−3)(n+1),

(3.8)

q′i =
1
q∗

∞∑

α+β=2n+3

{[
(n + 2)

(
p∗i + 1 − β) − (n + 1)

(
q∗i − α) − (α + β − 2n − 3

)
(n + 1)

]
bβ,α−1

−[(n + 2)
(
q∗i − α) − (n + 1)

(
p∗i + 1 − β) − (α + β − 2n − 3

)
(n + 1)

]
aα,β−1

}

× d′
p∗i+1−β−(α+β−2n−3)(n+1),q∗i−α−(α+β−2n−3)(n+1)

=
1
q∗

∞∑

α+β=2n+3

{[
(n + 2)

(
p∗i + 1 − α) − (n + 1)

(
q∗i − β) − (α + β − 2n − 3

)
(n + 1)

]
bα,β−1

−[(n + 2)
(
q∗i − β) − (n + 1)

(
p∗i + 1 − α) − (α + β − 2n − 3

)
(n + 1)

]
aβ,α−1

}

× d′
p∗i+1−α−(α+β−2n−3)(n+1),q∗i−β−(α+β−2n−3)(n+1).

(3.9)
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In expressions (3.6)–(3.9), for 1 ≤ k + j ≤ 2n+3, one has defined

c′10 = 1,

c′kj = 0, for other
(
k, j
)
,

d′
10 = 1,

d′
kj = 0, for other

(
k, j
)
,

(3.10)

and if k < 0 or j < 0, let akj = bkj = c′kj = d
′
kj

= 0.

Proof. Denote system (3.2) as

dz

dT
= p∗z +

∞∑

α+β=2n+3

[
(n + 2)aα,β−1 + (n + 1)bβ,α−1

]
zα+1+(α+β−2n−3)(n+1)wβ+(α+β−2n−3)(n+1),

dw

dT
= −q∗w −

∞∑

α+β=2n+3

[
(n + 2)bβ,α−1 + (n + 1)aα,β−1

]
zα+(α+β−2n−3)(n+1)wβ+1+(α+β−2n−3)(n+1).

(3.11)

Differentiating f(z,w)with respect to T along the trajectories of system (3.2) yields

df

dT
=
dz

dT
+

∞∑

k+j=2n+4

c′kj

(
kzk−1wj dz

dT
+ jzkwj−1dw

dT

)

= p∗z +
∞∑

α+β=2n+3

[
(n + 2)aα,β−1 + (n + 1)bβ,α−1

]
zα+1+(α+β−2n−3)(n+1)wβ+(α+β−2n−3)(n+1)

+
∞∑

k+j=2n+4

c′kj

⎧
⎨

⎩kz
k−1wj

⎧
⎨

⎩p
∗z +

∞∑

α+β=2n+3

[
(n + 2)aα,β−1 + (n + 1)bβ,α−1

]

×zα+1+(α+β−2n−3)(n+1)wβ+(α+β−2n−3)(n+1)

⎫
⎬

⎭

− jzkwj−1

⎧
⎨

⎩q
∗w +

∞∑

α+β=2n+3

[
(n + 2)bβ,α−1 + (n + 1)aα,β−1

]

×zα+(α+β−2n−3)(n+1)wβ+1+(α+β−2n−3)(n+1)

⎫
⎬

⎭

⎫
⎬

⎭
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= p∗z + p∗
∞∑

k+j=2n+4

c′kjz
kwj +

∞∑

k+j=2n+4

(
p∗k − q∗j − p∗)c′kjzkwj

+
∞∑

α+β=2n+3

[
(n + 2)aα,β−1 + (n + 1)bβ,α−1

]
zα+1+(α+β−2n−3)(n+1)wβ+(α+β−2n−3)(n+1)

+
∞∑

k+j=2n+4

∞∑

α+β=2n+3

c′kj
{
k
[
(n + 2)aα,β−1 + (n + 1)bβ,α−1

] − j[(n + 2)bβ,α−1 + (n + 1)aα,β−1
]}

× zk+α+(α+β−2n−3)(n+1)wj+β+(α+β−2n−3)(n+1).

(3.12)

For 1 ≤ k + j ≤ 2n + 3, let

c′10 = 1,

c′kj = 0, for other
(
k, j
)
,

(3.13)

then one arrives at

∞∑

α+β=2n+3

[
(n + 2)aα,β−1 + (n + 1)bβ,α−1

]
zα+1+(α+β−2n−3)(n+1)wβ+(α+β−2n−3)(n+1)

=
2n+3∑

k+j=1

∞∑

α+β=2n+3

c′kj
{
k
[
(n + 2)aα,β−1 + (n + 1)bβ,α−1

] − j[(n + 2)bβ,α−1 + (n + 1)aα,β−1
]}

× zk+α+(α+β−2n−3)(n+1)wj+β+(α+β−2n−3)(n+1),
(3.14)

thus

df

dT
= p∗f(z,w) +

∞∑

k+j=2n+4

(
p∗k − q∗j − p∗)c′kjzkwj

+
∞∑

k+j=1

∞∑

α+β=2n+3

{[
(n + 2)k − (n + 1)j

]
aα,β−1 −

[
(n + 2)j − (n + 1)k

]
bβ,α−1

}

× c ′
kjz

k+α+(α+β−2n−3)(n+1)wj+β+(α+β−2n−3)(n+1).

(3.15)
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Subscript transformation k′ = k + α + (α + β − 2n − 3)(n + 1), j ′ = j + β + (α + β − 2n − 3)(n + 1)
implies k′ + j ′ = k + j + (α + β − 2n − 2)(2n + 3) ≥ 2n + 4. Still denoting (k′, j ′) with (k, j), then
one derives

∞∑

k+j=1

∞∑

α+β=2n+3

{[
(n + 2)k − (n + 1)j

]
aα,β−1 −

[
(n + 2)j − (n + 1)k

]
bβ,α−1

}

× c′kjzk+α+(α+β−2n−3)(n+1)wj+β+(α+β−2n−3)(n+1)

=
∞∑

k+j=2n+4

∞∑

α+β=2n+3

{[
(n + 2)(k − α) − (n + 1)

(
j − β) − (α + β − 2n − 3

)
(n + 1)

]
aα,β−1

−[(n + 2)
(
j − β) − (n + 1)(k − α) − (α + β − 2n − 3

)
(n + 1)

]
bβ,α−1

}

× c′
k−α−(α+β−2n−3)(n+1),j−β−(α+β−2n−3)(n+1)z

kwj.

(3.16)

Therefore,

df

dT
= p∗f(z,w)

+
∞∑

k+j=2n+4

⎧
⎨

⎩
(
p∗k − q∗j − p∗)c′kj

+
∞∑

α+β=2n+3

{[
(n + 2)(k − α) − (n + 1)

(
j − β) − (α + β − 2n − 3

)
(n + 1)

]
aα,β−1

−[(n + 2)
(
j − β) − (n + 1)(k − α) − (α + β − 2n − 3

)
(n + 1)

]
bβ,α−1

}

×c′
k−α−(α+β−2n−3)(n+1),j−β−(α+β−2n−3)(n+1)

⎫
⎬

⎭z
kwj.

(3.17)

Denote that

hkj =
(
p∗k − q∗j − p∗)c′kj

+
∞∑

α+β=2n+3

{[
(n + 2)(k − α) − (n + 1)

(
j − β) − (α + β − 2n − 3

)
(n + 1)

]
aα,β−1

−[(n + 2)
(
j − β) − (n + 1)(k − α) − (α + β − 2n − 3

)
(n + 1)

]
bβ,α−1

}

× c′
k−α−(α+β−2n−3)(n+1),j−β−(α+β−2n−3)(n+1).

(3.18)

When p∗k−q∗j −p∗ /= 0, take hkj = 0, else take hkj = p∗p′i (k = q∗i+1, j = p∗i, i = 1, 2, . . .), then
one obtains

df

dT
= p∗f(z,w) +

∞∑

i=n+2

p∗p′iz
q∗i+1wp∗i. (3.19)
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When p∗k − q∗j − p∗ /= 0, from hkj = 0, one gets (3.6); and when p∗k − q∗j − p∗ = 0, from
hkj = hq∗i+1,p∗i = p′i, one gets (3.8).

For g(z,w), in the same way as f(z,w)was done, one can get (3.7) and (3.9).

The relations between pi, qi and p′i, q
′
i (i = 1, 2, . . .) are as follows.

Theorem 3.2. Let p0 = q0 = p′0 = q
′
0 = 0. If there exists a positive integer l, such that

p0 = q0 = p1 = q1 = · · · = pl−1 = ql−1 = 0, (3.20)

then

p′0 = q
′
0 = p

′
1 = q

′
1 = p

′
l−1 = q

′
l−1 = 0, pl = p′l, ql = q′l (3.21)

per contra holds as well.

Proof. Let l be any a positive integer, and

ϕ̃(z,w) = z +
(p∗+q∗)l+1∑

k+j=2n+4

ckjz
kwj, ψ̃(z,w) = w +

(p∗+q∗)l+1∑

k+j=2n+4

dkjw
kzj ,

f̃(z,w) = z +
(p∗+q∗)l+1∑

k+j=2n+4

c′kjz
kwj, g̃(z,w) = w +

(p∗+q∗)l+1∑

k+j=2n+4

d′
kjw

kzj .

(3.22)

When expression (3.20) holds, from (2.3) we have

dϕ̃

dT
= p∗ϕ̃ + p∗plzq

∗l+1wp∗l + h.o.t.,
dψ̃

dT
= −q∗ψ̃ − q∗qlwp∗l+1zq

∗l + h.o.t., (3.23)

where h.o.t. stands for higher order term.
From expression (3.5), we get

df̃

dT
= p∗f̃ +

l∑

i=n+2

p∗p′iz
q∗i+1wp∗i + h.o.t.,

dg̃

dT
= −q∗g̃ −

l∑

i=n+2

q∗q′iw
p∗i+1zq

∗i + h.o.t. (3.24)

Considering the uniqueness in Lemma 2.5 and Theorem 3.1, from expressions (3.23) and
(3.24), it is easy to get expression (3.21) and ϕ̃ = f̃ , ψ̃ = g̃ with mathematical induction.

Theorems 3.1 and 3.2 give a new algorithm to compute the generalized period con-
stants at the origin of system (3.2) by applying the coefficients of system (1.11). For any a
positive integer l, in order to compute τl, we only need to force addition, subtraction, multi-
plication, and division to the coefficients of system (1.11). The algorithm is recursive and then
avoids complex integration operations and solving equations. It is symbolic and easy to real-
ize with computer algebraic system such as Mathematica or Maple.
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Remark 3.3. We cannot use Theorems 3.1 and 3.2 to compute singular point quantities μl =
pl − ql (l = 1, 2, . . .), because the one condition of Theorem 3.2 is expression (3.20), while the
computation of μl is only under the condition μ0 = μ1 = · · · = μl−1 = 0. However, we can apply
directly the two theorems to find necessary conditions for linearizability, needless to solve
firstly the problem of integrability.

4. Application

In this section, we investigate the linearizability problem at degenerate singular point for the
following septic system:

dz

dT
= z2w + b03z5 + b12z4w + b21z3w2 + b30z2w3 + λz4w3,

dw

dT
= −w2z − a03w5 − a12w4z − a21w3z2 − a30w2z3 − λw4z3,

(4.1)

where

bkj = akj ,
(
k, j
) ∈ {(3, 0), (2, 1), (1, 2), (0, 3)}. (4.2)

Factually, the pseudo-isochronous center problem at the degenerate singular point of
system (4.1) has already been solved in [17, 18]. Here the aim that we chose this system as an
illustrative example is just to demonstrate the effectiveness of this theory.

Firstly, let us see the computational method of singular point quantities at 1 :−1
resonant degenerate singular point.

When p = q = 1, by the time scaling T → 1/(2n + 3)T , system (3.2) can be simplified
as

dz

dT
= z +

1
2n + 3

∞∑

α+β=2n+2

[
(n + 2)aαβ + (n + 1)bβ+1,α−1

]
zα+1wβ+1

× (zw)(α+β−2n−2)(n+1) = Z(z,w),

dw

dT
= −w − 1

2n + 3

∞∑

α+β=2n+2

[
(n + 2)bαβ + (n + 1)aβ+1,α−1

]
wα+1zβ+1

× (zw)(α+β−2n−2)(n+1) = −W(z,w).

(4.3)

Definition 4.1 (see [19]). (i) For any positive integer k, μk = (2n + 3)μ′
(2n+3)k is called the kth

singular point quantity at the origin of system (1.12), where μ′
(2n+3)k is the (2n+3)kth singular

point quantity at the origin of system (4.3).
(ii) If μ0 = μ1 = · · · = μk−1 = 0, μk /= 0, the origin is called the kth fine singular point of

system (1.12).
(iii) If for all k, μk = 0, then the origin is called a complex center of system (1.12).

Definition 4.2. Degenerate singular point of system (1.12) or the origin of system (3.2)p=q=1
is called a complex pseudo-isochronous center if the origin of system (4.3) is a complex
isochronous center.
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Lemma 4.3 (see [19]). For system (4.3), one can derive successively the terms of the following formal
series:

M(z,w) = 1 +
∞∑

k=1

f(2n+3)k(z,w), (4.4)

where

f(2n+3)k(z,w) =
∑

α+β=(2n+3)k

cαβz
αwβ, (4.5)

such that

∂M

∂z
Z − ∂M

∂w
W +

(
∂Z

∂z
− ∂W

∂w

)
M =

∞∑

m=1

2mn + 3m + 1
2n + 3

λm(zw)(2n+3)m+1,

λm ∼ μm, m = 1, 2, . . . .

(4.6)

Lemma 4.4 (see [19]). For all pairs (α, β) with α/= β, when α + β = (2n + 3)N, cαβ is given by

cαβ =
1

(2n + 3)
(
β − α)

2n+2+N∑

k+j=2n+3

{[
(n + 2)α − (n + 1)β + 1

]
ak,j−1

−[(n + 2)β − (n + 1)α + 1
]
bj,k−1

}

× cα−(n+2)k−(n+1)j+(n+1)(2n+3),β−(n+2)j−(n+1)k+(n+1)(2n+3),

(4.7)

where, in (4.5), one take c00 = 1 and ckk as an arbitrary constant (k = 1, 2, . . .).
For any positive integerm, λm is given by

λm =
2n+2+2m∑

k+j=1

(
ak,j−1 − bj,k−1

)
c(m+n+1)(2n+3)−(n+2)k−(n+1)j,(m+n+1)(2n+3)−(n+2)j−(n+1)k, (4.8)

where for all pairs (α, β), when α < 0 or β < 0, one take aαβ = bαβ = cαβ = 0.

Performing the transformation (3.1)n=1 and renaming (z1, w1, T1) by (z,w, T), system
(4.1) is reduced to

dz

dT
= 5z + 3b03z8w3 + (2a30 + 3b12)z7w4 + (2a21 + 3b21)z6w5 + (2a12 + 3b30)z5w6

+ 2a03z4w7 + 5λz11w10,

dw

dT
= −5w − 3a03w8z3 − (2b30 + 3a12)w7z4 − (2b21 + 3a21)w6z5 − (2b12 + 3a30)w5z6

− 2b03w4z7 − 5λw11z10.

(4.9)
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By the time scaling T → (1/5)T , system (4.9) can be interpreted to

dz

dT
= z +

3
5
b03z

8w3 +
1
5
(2a30 + 3b12)z7w4 +

1
5
(2a21 + 3b21)z6w5 +

1
5
(2a12 + 3b30)z5w6

+
2
5
a03z

4w7 + λz11w10,

dw

dT
= −w − 3

5
a03w

8z3 − 1
5
(2b30 + 3a12)w7z4 − 1

5
(2b21 + 3a21)w6z5 − 1

5
(2b12 + 3a30)w5z6

− 2
5
b03w

4z7 − λw11z10.

(4.10)

According to Definition 4.1, Lemmas 4.3 and 4.4, we have the following.

Theorem 4.5. The first 9 singular point quantities at degenerate singular point of system (4.1) are as
follows:

μ1 = −a21 + b21,
μ2 = a12a30 − b12b30,

μ3 =
1
8

(
−9a03a230 − a212b03 + a03b212 + 9b03b230

)
,

μ4 = − 1
12

(a21 + b21)
(
a212b03 + 3a03a30b12 − a03b212 − 3a12b03b30

)
,

μ5 = − 1
648

(
a212b03 + 3a03a30b12 − a03b212 − 3a12b03b30

)
(−27a03b03 + 16a12b12 + 216λ),

μ6 = 0,

μ7 = − 1
466560

(
405a203b

2
03 − 8928a03a12b03b12 + 6400a212b

2
12

)

×
(
−a212b03 − 3a03a30b12 + a03b212 + 3a12b03b30

)
,

μ8 =
7

69984
(45a03b03 − 32a12b12)

(
a212b03 + a03b

2
12

)(
−a212b03 − 3a03a30b12 + a03b212 + 3a12b03b30

)
,

μ9=
11

13778100
a212b

2
12(−224181a03b03 + 164000a12b12)

(
a212b03 + 3a03a30b12 − a03b212 − 3a12b03b30

)
.

(4.11)

In the above expression of μk, one has already let μ1 = · · · = μk−1 = 0, k = 2, 3, . . . , 9.

From Theorem 4.5, we get the following.

Theorem 4.6. For system (4.1), the first 9 singular point quantities are zero if and only if one of the
following conditions holds:

(I) a21 = b21, 3a30 − b12 = 0, 3b30 − a12 = 0, a12b12 /= 0;

(II) a21 = b21, a30a12 = b30b12, a212b03 = b
2
12a03, b30a12b03 = a30b12a03, b

2
30b03 = a

2
30a03.
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In order to obtain the center conditions of degenerate singular point, we have to find
out all the elementary Lie invariants of system (4.1); following the technique used in [10], we
have the following.

Lemma 4.7. All the elementary Lie invariants of system (4.1) are as follows:

λ, a21, b21, a30b30, a12b12, a03b03, a30a12, b30b12,
a230a03, a30b12a03, b

2
12a03, b

2
30b03, b30a12b03, a

2
12b03.

(4.12)

Theorem 4.8. For system (4.1), all the singular point quantities at degenerate singular point are zero
if and only if the first 9 singular point quantities are zero, that is, one of the conditions in Theorem 4.6
holds. Correspondingly, the conditions in Theorem 4.6 are the center conditions of degenerate singular
point.

Proof. If condition (I) is satisfied, system (4.1) has the integrating factor (zw)−5; if condition
(II) is satisfied, system (4.1) satisfies the conditions of the extended symmetric principle
(Theorem 2.6 in [10]).

We next discuss the linearizability problem of the origin of system (4.9), according to
Theorems 3.1 and 3.2; we can get the recursive formulae to compute period constants at the
origin. Since transformation (3.1)n=1 is a homeomorphism, the center conditions of the origin
of system (4.9) are identical with those of degenerate singular point of system (4.1). From the
center conditions in Theorem 4.6, we investigate the following two cases.

Case 1 (center condition (I) holds). Substituting center condition (I) into the recursive formu-
lae in Theorem 3.1 we obtain the first 8 period constants

τ1 = 2r21,

τ2 =
1
18

(−9a03b03 − 16a12b12 + 36λ),

τ3 = 0,

τ4 =
1

2592

(
−81a203b203 + 1152a03a12b03b12 − 256a212b

2
12

)
,

τ5 =
7

1944
(−27a03b03 + 32a12b12)

(
a212b03 + a03b

2
12

)
,

τ6 = 0,

τ7 =
14228
10935

a212b
2
12

(
a212b03 + a03b

2
12

)
,

τ8 = − 65
59049

a312b
3
12(−5571a03b03 + 1280a12b12).

(4.13)

In the above expression of τk, we have already let τ1 = · · · = τk−1 = 0, k = 2, 3, . . . , 8.
From τ7 = 0, there exists a complex constant h, such that

a03 = ha212, b03 = −hb212, (4.14)
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putting (4.14) into the expression of τ4, we have

τ4 = − 1
2592

a212b
2
12

(
256 + 1152a12b12h2 + 81a212b

2
12h

4). (4.15)

By virtue of a12b12 /= 0, τ4 = 0 yields

h =
4
3

√
−4 ± √

15
a12b12

, (4.16)

this, together with (4.14), leads to

τ8 =
1040
59049

(
2396 ∓ 619

√
15
)
a412b

4
12 /= 0. (4.17)

Therefore, under center condition (I), the origin is not a complex isochronous center.

Case 2 (center condition (II) holds). When center condition (II) holds, the right hand of sys-
tem (4.9) satisfies the extended symmetric principle (Theorem 2.6 in [10]). Write that 3a30 −
b12 = B, 3b30−a12 = A. Then whenA = B = 0, center condition (I) holds. We next assume that
AB/= 0. Hence, we have from center condition (II) that

a30A − b30B = 0, a03B
2 − b03A2 = 0. (4.18)

It follows that there exist r21, r, s such that

a21 = b21 = r21, a30 = rB, b30 = rA, a03 = sA2, b03 = sB2, (4.19)

then center condition (II) is equivalent to

a21 = b21 = r21, a30 = rB, b30 = rA, a12 = (3r − 1)A, b12 = (3r − 1)B,

a03 = sA2, b03 = sB2.

(4.20)

System (4.9) is brought to

dz

dT
=5z + 3B2sz8w3 + B(11r − 3)z7w4 + 5r21z6w5 +A(9r − 2)z5w6 + 2A2sz4w7 + 5λz11w10,

dw

dT
=−5w − 3A2sw8z3 −A(11r − 3)w7z4 − 5r21w6z5 − B(9r − 2)w5z6 − 2B2sw4z7 − 5λw11z10.

(4.21)

Putting expression (4.20) into the recursive formulae in Theorem 3.1 and calculating
in Mathematica, we have the following.
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Theorem 4.9. The first 6 period constants of the origin of system (4.21) are given by

τ1 = 2r21,

τ2 =
1
2

(
4ABr − 16ABr2 −A2B2s2 + 4λ

)
,

τ3 =
1
4
A2B2(−1 + 6r)s,

τ4 = −2A2B2(−1 + r)r2(−1 + 4r) − 1
288

A3B3s2
(
−16 + 9ABs2

)
,

τ5 = − 1
972

A3B3r
(
−8 + 27ABs2

)
,

τ6 =
1
25
A3B3r2(−1 + 4r)

(
−154 + 715r − 1067r2 + 531r3

)
− 5053
77760

A4B4s2.

(4.22)

In the above expression of τk, one has already let τ1 = · · · = τk−1 = 0, k = 2, 3, . . . , 6.

Theorem 4.10. The first 6 period constants at the origin of system (4.21) are zero if and only if one of
the following conditions holds:

λ = r21 = r = s = 0, AB /= 0, (4.23)

λ = r21 = s = 0, r =
1
4
, AB /= 0. (4.24)

Proof. Being AB/= 0, τ3 = 0 implies r = 1/6 or s = 0.
When r = 1/6, τ4 = −(1/2592)A2B2(40 − 144ABs2 + 81A2B2s4). From τ4 = 0, we have s =

±(1/3)√2(4 ± √
6)/AB, then τ5 = (∓1/729)

√
(1/2)(4 ± √

6)(±8 + 3
√
6)
√
A5B5 /= 0.

When s = 0, τ4 = −2A2B2(−1+r)r2(−1+4r), τ6 = (1/25)A3B3r2(−1+4r)(−154+715r −1067r2+
531r3). From τ4 = τ6 = 0, we get r = 0 or r = 1/4.

Theorem 4.11. Under center condition (II), the origin of system (4.21) is a complex pseudo-isochro-
nous center if and only if one of the conditions in Theorem 4.10 holds.

Proof. When condition (4.23) is satisfied, after the time scaling T → (1/5)T , system (4.21)
becomes

dz

dT
=

1
5
z
(
5 − 3Bz6w4 − 2Az4w6

)
,

dw

dT
= −1

5
w
(
5 − 3Aw6z4 − 2Bw4z6

)
.

(4.25)

There exists a transformation

u =
z
(
1 −Az4w6)1/5
(
1 − Bz6w4

)3/10 , v =
w
(
1 − Bw4z6

)1/5
(
1 −Aw6z4

)3/10 , (4.26)

such that system (4.25) is reduced to du/dT = u, dv/dT = −v.
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When condition (4.24) is satisfied, after the time scaling T → (1/5)T , system (4.21)
becomes

dz

dT
=

1
20
z
(
20 − Bz6w4 +Az4w6

)
,

dw

dT
= − 1

20
w
(
20 −Aw6z4 + Bw4z6

)
,

(4.27)

from the polar coordinate transformation

z = ρeiθ, w = ρe−iθ, T = it, i =
√
−1, (4.28)

and we have for system (4.27) that

dθ

dt
=

1
2

(
1
z

dz

dT
− 1
w

dw

dT

)
= 1. (4.29)

From the above discussion and Definition 4.2, the conclusion of this theorem follows.

We have from Definition 4.2, expression (4.20), Theorems 4.10 and 4.11 the following.

Theorem 4.12. Degenerate singular point of system (4.1) is a complex pseudo-isochronous center if
and only if one of the following conditions is satisfied:

(i) λ = a30 = b30 = a21 = b21 = a03 = b03 = 0, a12b12 /= 0,

(ii) λ = a21 = b21 = a03 = b03 = 0, a30 + b12 = 0, b30 + a12 = 0, a12b12 /= 0.

5. Conclusions and Remarks

In the qualitative theory of ODE, the linearizability (or isochronicity) problem is one of the
open problems for polynomial differential systems which is far to be solved in general. Up to
now, most of the existing literatures are concernedwith elementary singular point. A progres-
sive way to find necessary conditions for linearizability is to compute period constants.

The linearizability problem of degenerate singular point is much more difficult. As far
as the degenerate case is concerned, the classical methods are invalid. As a result, the litera-
tures about linearizability problem of degenerate singular point are limited. One reason is
that the problem itself is very complicated; another is that the problem is subject to limited
methods. Therefore, it is completely natural to develop a ”new” theory to analyze this dynam-
ical behavior for the planar dynamical systems with degenerate singular points.

In our paper, firstly, the degenerate singular point is taken to the elementary origin by a
blow-up; besides, we establish a new recursive algorithm to compute the so-called generalized
period constants, so we can deal with the linearizability problem of degenerate singular point
via the classical theory developed for elementary singular point. Synthesizing the above, we
give an indirect approach regarding to the linearizability problem of the degenerate singular
point.
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