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This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with
jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular
presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set
containing bilinear matrix inequalities (BLIMs) and linear matrix inequalities (LMIs). Numerical examples are given to illustrate
the effectiveness of the proposed methodology.

1. Introduction

Most practical systems, such as missile systems and satellite
systems, possess a typical characterization that their operat-
ing times always have a finite duration. In this case, the main
concern for the researchers is the stability over a fixed finite-
time interval rather than the classical Lyapunov asymptotic
stability, although the Lyapunov theory is pervasive in control
fields from linear methods to nonlinear systems. Usually,
a system is finite-time stability (FTS), if, given a finite
duration at first, its state is contained within some prescribed
bound during this finite duration.The problem of finite-time
stability analysis for the control plants has been extensively
investigated and a great number of results on this topic have
been reported, for example, see [1–6] and the references
therein.

At the same time, there are a number of real evolution
processes in which the states are subjected to rapid changes
at certain time instants. It has been shown that the finite-time
stability of a continuous dynamical system could be destroyed
by such rapid changes. Therefore, it is important to study
the jump’s influence on FTS of the control systems. There
are several research works that appeared in the literature on
control systems with jumps. In [7], the problem of finite-time
stabilization for linear systems via jump control is researched
through Lyapunov functions. In [8], FTS for time-varying

linear systemswith jumps is discussed, where a necessary and
sufficient condition was obtained. Note that this condition
is difficult to test. Considering this, a sufficient condition
involving two coupled differential-difference linear matrix
inequalities for FTS is presented in [8], which is much easier
to be handled.

Recently, the issue of analysis and design of nonlinear
quadratic systems has received increasing interest. The Lya-
punov asymptotic stability of quadratic systems has achieved
great success both in theory and in practice, for example, see
[9–15]. The FTS problem for quadratic systems is considered
and corresponding sufficient conditions via state feedback
controller are derived in terms of LMIs in [15]. However, FTS
analysis of nonlinear quadratic systems with jumps has not
been fully investigated.

In this paper, we are interested in FTS and finite-time
stabilization for nonlinear quadratic systems with jumps.
Based on the Lyapunov function and a particular presentation
of the quadratic terms, sufficient conditions for FTS and
finite-time stabilization are presented for such quadratic
systems in terms of LMIs. Furthermore, two examples are
presented to illustrate its effectiveness.

Throughout this paper, standard notation is adopted.
Given a scalar 𝛼 > 0, [𝛼] denotes the maximum integer
which is less than or equal to 𝛼. The class of jump time
sequences satisfying inf𝑘{𝑡𝑘 −𝑡𝑘−1} ≥ 𝛽 is denoted by 𝛾min(𝛽).
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For real symmetric matrices 𝑋 and 𝑌, the notation 𝑋 ≥

𝑌 (respectively, 𝑋 > 𝑌) means that the matrix 𝑋 − 𝑌 is
positive semidefinite (respectively, positive definite). 𝐴 ⊗ 𝐵
is the Kronecker product of the pair of (𝐴, 𝐵). Matrices, if not
explicitly stated, are assumed to have compatible dimensions.

2. Problem Statement

Consider a class of nonlinear quadratic systems with finite
jumps described as

�̇� (𝑡) = 𝐴𝑐𝑥 (𝑡) + 𝐵𝑐 (𝑥 (𝑡)) + 𝐹𝑐𝑢𝑐 (𝑡) , 𝑡 ̸= 𝑡𝑘,

Δ𝑥 (𝑡) = (𝐴𝑑 − 𝐼) 𝑥 (𝑡
−
) + 𝐵𝑑 (𝑥 (𝑡

−
)) + 𝐹𝑑𝑢𝑑 (𝑡

−
) ,

𝑡 = 𝑡𝑘,

𝑥 (𝑡0) = 𝑥0, 𝑡0 = 0,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛, 𝑢𝑐(𝑡) ∈ 𝑅

𝑚
1 , and 𝑢𝑑(𝑡) ∈ 𝑅

𝑚
2 are

system state, continuous control input, and jump control
input, respectively. Δ𝑥(𝑡𝑘) = 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

−

𝑘
), where 𝑥(𝑡𝑘) =

𝑥(𝑡
+

𝑘
) = limℎ→0+𝑥(𝑡𝑘 + ℎ), 𝑥(𝑡

−

𝑘
) = limℎ→0+𝑥(𝑡𝑘 − ℎ) and

0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ 𝑡𝑟 ≤ 𝑇 < 𝑡𝑟+1 < ⋅ ⋅ ⋅ , lim𝑘→∞𝑡𝑘 = ∞ with 𝑇
as a positive scalar. Denote

𝐵𝑐 (𝑥 (𝑡)) =

[

[

[

[

[

𝑥
𝑇
(𝑡) 𝐵𝑐1𝑥 (𝑡)

𝑥
𝑇
(𝑡) 𝐵𝑐2𝑥 (𝑡)

...
𝑥(𝑡)
𝑇
𝐵𝑐𝑛𝑥 (𝑡)

]

]

]

]

]

,

𝐵𝑑 (𝑥 (𝑡
−
)) =

[

[

[

[

[

𝑥
𝑇
(𝑡
−
) 𝐵𝑑1𝑥 (𝑡

−
)

𝑥
𝑇
(𝑡
−
) 𝐵𝑑2𝑥 (𝑡

−
)

...
𝑥
𝑇
(𝑡
−
) 𝐵𝑑𝑛𝑥 (𝑡

−
)

]

]

]

]

]

,

(2)

where 𝐵𝑐𝑖, 𝐵𝑑𝑖 ∈ 𝑅
𝑛×𝑛, 𝑖 = 1, . . . , 𝑛.

Let us define matrices 𝐵𝑐𝑞, 𝐵𝑑𝑞 ∈ 𝑅
𝑛×𝑛
2

as following

𝐵𝑐𝑞 =
[

[

[

𝐵𝑐1(1) 𝐵𝑐1(2) ⋅ ⋅ ⋅ 𝐵𝑐1(𝑛)

...
... d

...
𝐵𝑐𝑛(1) 𝐵𝑐𝑛(2) ⋅ ⋅ ⋅ 𝐸𝑐𝑛(𝑛)

]

]

]

,

𝐵𝑑𝑞 =
[

[

[

𝐵𝑑1(1) 𝐵𝑑1(2) ⋅ ⋅ ⋅ 𝐵𝑑1(𝑛)

...
... d

...
𝐵𝑑𝑛(1) 𝐵𝑑𝑛(2) ⋅ ⋅ ⋅ 𝐸𝑑𝑛(𝑛)

]

]

]

,

(3)

where 𝐵𝑐𝑖(𝑗) and 𝐵𝑑𝑖(𝑗) denote the 𝑗th row of matrices 𝐵𝑐𝑖 and
𝐵𝑑𝑖, respectively. Then, the system (1) can be read as follows:

�̇� (𝑡) = (𝐴𝑐 + 𝐵𝑐𝑞 (𝑥 (𝑡) ⊗ 𝐼𝑛)) 𝑥 (𝑡) + 𝐹𝑐𝑢𝑐 (𝑡) , 𝑡 ̸= 𝑡𝑘,

Δ𝑥 (𝑡) = (𝐴𝑑 − 𝐼 + 𝐵𝑑𝑞 (𝑥 (𝑡
−
) ⊗ 𝐼𝑛)) 𝑥 (𝑡

−
) + 𝐹𝑑𝑢𝑑 (𝑡

−
) ,

𝑡 = 𝑡𝑘,

𝑥 (𝑡0) = 𝑥0, 𝑡0 = 0.

(4)

In what follows, we introduce two lemmas, which are
essential for the developments in the next section.

Lemma 1 (see [14]). For any matrices𝐴, 𝑃 ∈ 𝑅𝑛×𝑛,𝐷 ∈ 𝑅
𝑛×𝑛
𝑓 ,

𝐸,𝑁 ∈ 𝑅
𝑛
𝑓
×𝑛, and 𝐹 ∈ 𝑅𝑛𝑓×𝑛𝑓 , where 𝑃 > 0, ‖𝐹‖ ≤ 1, and a

scalar 𝜀 > 0, the following inequalities hold

(1) 𝐷𝐹𝑁 +𝑁
𝑇
𝐹
𝑇
𝐷
𝑇
≤ 𝜀
−1
𝐷𝐷
𝑇
+ 𝜀𝑁
𝑇
𝑁,

(2) if 𝑃 − 𝜀𝐷𝐷𝑇 > 0, then

(𝐴 + 𝐷𝐹𝐸)
𝑇
𝑃
−1
(𝐴 + 𝐷𝐹𝐸) ≤ 𝐴

𝑇
(𝑃 − 𝜀𝐷𝐷

𝑇
)

−1

𝐴 + 𝜀
−1
𝐸
𝑇
𝐸.

(5)

Lemma 2 (see [12]). Consider matrix 𝑃 ∈ 𝑅
𝑛×𝑛 with 𝑃 > 0

and a vector ] such that ‖]‖ = 1. Every point on the boundary
of an ellipsoid, 𝜕E(𝑃) = {𝑥 ∈ 𝑅

𝑛
: 𝑥
𝑇
𝑃𝑥 = 1}, can be

parameterized by 𝑥 = 𝑃−1/2𝑄], where 𝑄𝑇𝑄 = 1.

3. Main Results

In this section, we establish sufficient conditions of FTS and
finite-time stabilization for the nonlinear quadratic system (1)
based on Lyapunov functions and a particular presentation
for the quadratic terms.

First, we introduce the definition of FTS for nonlinear
quadratic system (1).

Definition 3 (see [3]). Given a scalar 𝑇 > 0 and matrices 𝑅 >
0, 𝑆 > 0 with 𝑆 < 𝑅; system (1) with 𝑢𝑐(𝑡) = 0 and 𝑢𝑑(𝑡) = 0 is
said to be FTS with respect to (𝑇, 𝑅, 𝑆), if

𝑥
𝑇

0
𝑅𝑥0 ≤ 1 ⇒ 𝑥(𝑡)

𝑇
𝑆𝑥 (𝑡) < 1, ∀𝑡 ∈ [0, 𝑇] . (6)

Now, we provide a sufficient condition for FTS of the
system (1) with 𝑢𝑐(𝑡) = 0 and 𝑢𝑑(𝑡) = 0.

Theorem 4. For a prescribed scalar 𝛽 satisfying 0 < 𝛽 ≤ 𝑇,
assume that there exist scalars 𝜇 ≥ 1, 𝜀𝑖 > 0, and 𝑖 = 1, 2 and a
matrix 𝑃 > 0 such that

[

[

𝐴
𝑇

𝑐
𝑃 + 𝑃𝐴𝑐 + 𝜀1𝐼 +

ln 𝜇
𝛽

𝑃 𝑃𝐵𝑐𝑞

∗ −𝜀1 (𝑆 ⊗ 𝐼𝑛)

]

]

< 0, (7)

[

[

−𝜇𝑃 + 𝜀2𝐼 𝐴
𝑇

𝑑
𝑃 0

∗ −𝑃 𝑃𝐵𝑑𝑞

∗ ∗ −𝜀2 (𝑆 ⊗ 𝐼𝑛)

]

]

≤ 0, (8)

𝑆 ≤ 𝑃, (9)

𝑃 < 𝑅, (10)

then when 𝜇 > 1, system (1) with 𝑢𝑐(𝑡) = 0 and 𝑢𝑑(𝑡) = 0 is
FTS with respect to (T, R, S) over 𝛾min(𝛽); when 𝜇 = 1, system
(1) with 𝑢𝑐(𝑡) = 0 and 𝑢𝑑(𝑡) = 0 is FTS with respect to (T, R, S)
for any jump time sequences {𝑡𝑘}, 𝑘 ∈ [1, 𝑟].

Proof. Note (7) and from the Schur’s complement, we obtain

𝐴
𝑇

𝑐
𝑃 + 𝑃𝐴𝑐 + 𝜀1𝐼 +

ln 𝜇
𝛽

𝑃 + 𝜀
−1

1
𝑃𝐵𝑐𝑞 (𝑆

−1
⊗ 𝐼𝑛) 𝐵

𝑇

𝑐𝑞
𝑃 < 0.

(11)
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Before and after multiplying (8), respectively, by
diag{𝐼, 𝑃−1, 𝐼, ⋅ ⋅ ⋅ , 𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

} and then applying the Schur

complement, we get

−𝜇𝑃 + 𝜀2𝐼 + 𝐴
𝑇

𝑑
(𝑃
−1
− 𝜀
−1

2
𝐵𝑑𝑞 (𝑆

−1
⊗ 𝐼𝑛) 𝐵

𝑇

𝑑𝑞
)

−1

𝐴𝑑 < 0.

(12)

In order to complete the proof, we will first show that the
nonlinear quadratic system (1) is FTSwith respect to (𝑡1, 𝑅, 𝑆).
Indeed, when 𝑡 ∈ [𝑡0, 𝑡1), we can choose the quadratic
Lyapunov function as 𝑉(𝑥(𝑡)) = 𝑥

𝑇
(𝑡)𝑃𝑥(𝑡) for system (1),

where 𝑢𝑐(𝑡) = 0 and 𝑢𝑑(𝑡) = 0. Then, we obtain

�̇� (𝑥 (𝑡)) +

ln 𝜇
𝛽

𝑉 (𝑥 (𝑡))

= 𝑥
𝑇
(𝑡) (𝐴

𝑇

𝑐
𝑃 + 𝑃𝐴𝑐 + 𝑃𝐵𝑐𝑞 (𝑥 (𝑡) ⊗ 𝐼𝑛)

+ (𝑥
𝑇
(𝑡) ⊗ 𝐼𝑛) 𝐵

𝑇

𝑐𝑞
𝑃) 𝑥 (𝑡) .

(13)

By Proposition 1 in [12], it follows that �̇�(𝑥(𝑡)) +

((ln 𝜇)/𝛽)𝑉(𝑥(𝑡)) is negative definite in E(𝑆), if it is
negative definite in 𝜕E(𝑆). By Lemma 2, for 𝑥 ∈ 𝜕E(𝑆), we
can get

�̇� (𝑥 (𝑡)) +

ln 𝜇
𝛽

𝑉 (𝑥 (𝑡))

= 𝑥
𝑇
(𝑡) (𝐴

𝑇

𝑐
𝑃 + 𝑃𝐴𝑐

+ 𝑃𝐵𝑐𝑞 (𝑆
−1/2

⊗ 𝐼𝑛) (𝑄 ⊗ 𝐼𝑛) (V ⊗ 𝐼𝑛)

+ (V𝑇⊗𝐼𝑛) (𝑄
𝑇
⊗𝐼𝑛) ((𝑆

−1/2
)

𝑇

⊗𝐼𝑛)𝐵
𝑇

𝑐𝑞
𝑃

+

ln 𝜇
𝛽

𝑃)𝑥 (𝑡) ,

(14)

where𝑄𝑇𝑄 = 1, ‖V‖2 = 1. From Lemma 1, substituting (11) to
the above inequality, for any 𝜀1 > 0 and 𝑥 ∈ 𝜕E(𝑆), yields to

�̇� (𝑥 (𝑡)) +

ln 𝜇
𝛽

𝑉 (𝑥 (𝑡))

≤ 𝑥
𝑇
(𝑡) (𝐴

𝑇

𝑐
𝑃 + 𝑃𝐴𝑐 + 𝜀1𝐼 + 𝜀

−1
𝑃𝐵𝑐𝑞 (𝐼𝑛 ⊗ 𝑆

−1
) 𝐵
𝑇

𝑐𝑞

+

ln 𝜇
𝛽

𝑃)𝑥 (𝑡)

< 0.

(15)

Thus, for all 𝑥 ∈ E(𝑆), it is easy to see that

�̇� (𝑥 (𝑡)) < −

ln 𝜇
𝛽

𝑉 (𝑥 (𝑡)) < 0, 𝑡 ∈ [0, 𝑡1) . (16)

Divide both sides of (16) by 𝑉(𝑥), and integrate from 0 to 𝑡
with 𝑡 ∈ [0, 𝑡1), it follows that

𝑉 (𝑥 (𝑡)) < 𝑒
−((ln 𝜇)/𝛽)𝑡

𝑉 (𝑥 (0)) . (17)

Therefore, (9) and (10) give that, for all 𝑡 ∈ [0, 𝑡1)

𝑥
𝑇
(𝑡) 𝑆𝑥 (𝑡) ≤ 𝑥

𝑇
(𝑡) 𝑃𝑥 (𝑡)

< 𝑒
−((ln 𝜇)/𝑡)𝛽

𝑉 (𝑥 (0))

< 𝑥
𝑇
(0) 𝑅𝑥 (0)

≤ 1,

(18)

which shows that any trajectory starting from the set 𝑆 cannot
exit in E(𝑆) for 𝑡 ∈ [0, 𝑡1).

When 𝑡 = 𝑡1,

𝑉 (𝑥 (𝑡
−

1
)) = 𝑥

𝑇
(𝑡
−

1
) (𝐴𝑑 + 𝐵𝑑𝑞 (𝑥 (𝑡

−

1
) ⊗ 𝐼𝑛))

𝑇

× 𝑃 (𝐴𝑑 + 𝐵𝑑𝑞 (𝑥 (𝑡
−

1
) ⊗ 𝐼𝑛)) 𝑥 (𝑡

−

1
) .

(19)

Lemmas 1 and 2 yield to

𝑉 (𝑥 (𝑡
−

1
))

≤ 𝑥 (𝑡
−

1
) 𝐴
𝑇

𝑑
(𝑃
−1
− 𝜀
−1

2
𝐵𝑑𝑞 (𝑆

−1
⊗ 𝐼𝑛) 𝐵

𝑇

𝑑𝑞
)

−1

𝐴𝑑𝑥 (𝑡
−

1
) ,

(20)

where 𝜀2 > 0. Substituting (12) into the above inequality, then

𝑉 (𝑥 (𝑡
−

1
)) ≤ 𝜇𝑉 (𝑥 (𝑡

−

1
)) . (21)

Therefore, it follows from (17) and (21) that

𝑉 (𝑥 (𝑡
−

1
)) < 𝜇𝑒

−((ln 𝜇)/𝛽)𝑡
1
𝑉 (𝑥 (0)) . (22)

Since 𝑡𝑘 − 𝑡𝑘−1 ≥ 𝛽 implies that 𝑡1 ≥ 𝛽, it is easy to see that

𝑉 (𝑥 (𝑡
−

1
)) < 𝑉 (𝑥 (0)) . (23)

Thus, using (9) and (10), we have

𝑥
𝑇
(𝑡
−

1
) 𝑆𝑥 (𝑡

−

1
) ≤ 𝑉 (𝑥 (𝑡

−

1
))

< 𝑉 (𝑥 (0))

< 𝑥
𝑇
(0) 𝑅𝑥 (0)

≤ 1.

(24)

Thus, (18) and (24) imply that the nonlinear quadratic system
(1) is FTS with respect to (𝑡1, 𝑅, 𝑆). Based on mathematical
induction, one can easily verify that the nonlinear quadratic
system (1) is FTS with respect to (𝑡𝑘, 𝑅, 𝑆), 𝑘 ∈ [2, 𝑟]. Note
that 𝑉(𝑥(𝑡)) is strictly decreasing along the trajectories of
quadratic system (1) for 𝑡 ∈ [𝑡𝑟, 𝑇]; we have

𝑥
𝑇
(𝑇) 𝑆𝑥 (𝑇) ≤ 𝑉 (𝑥 (𝑇)) < 𝑉 (𝑥 (𝑡𝑟)) ≤ 1.

(25)

The proof is complete.
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Remark 5. When𝜇 > 1, the jumpsmay destroy FTS of system
(1), so it should not occur frequently. In this case, inf𝑘{𝑡𝑘 −
𝑡𝑘−1} ≥ 𝛽 implies that the jump time 𝑟 is satisfying 𝑟 ≤ [𝑇/𝛽].

Remark 6. When 𝜇 = 1, since the conditions in Theorem 4
are not related to 𝛽, the quadratic system with jumps is FTS
regardless of how often or how seldom jumps occur during
the time interval [0, 𝑇].

Remark 7. Compared with the method presented in [8],
the quadratic Lyapunov function used in this paper is not
required to be strictly decreasing along the trajectories of the
nonlinear quadratic system (1).

Now, we extend Theorem 4 to the design context. Con-
sider the following nonlinear control law:

𝑢𝑐 (𝑡) = 𝐾𝑐𝑥 (𝑡) +

[

[

[

[

[

[

𝑥
𝑇
(𝑡) 𝐾𝑐𝑞1𝑥 (𝑡)

𝑥
𝑇
(𝑡) 𝐾𝑐𝑞2𝑥 (𝑡)

...
𝑥
𝑇
(𝑡) 𝐾𝑐𝑞𝑚

1

𝑥 (𝑡)

]

]

]

]

]

]

,

𝑢𝑑 (𝑡
−
) = 𝐾𝑑𝑥 (𝑡

−
) +

[

[

[

[

[

[

𝑥
𝑇
(𝑡
−
)𝐾𝑑𝑞1𝑥 (𝑡

−
)

𝑥
𝑇
(𝑡
−
)𝐾𝑑𝑞2𝑥 (𝑡

−
)

...
𝑥
𝑇
(𝑡
−
)𝐾𝑑𝑞𝑚

2

𝑥 (𝑡
−
)

]

]

]

]

]

]

,

(26)

where 𝐾𝑐 ∈ 𝑅
𝑚
1
×𝑛, 𝐾𝑑 ∈ 𝑅

𝑚
2
×𝑛, 𝐾𝑐𝑞𝑖 ∈ 𝑅

𝑛×𝑚
1 , 𝑖 = 1, . . . , 𝑚1,

and𝐾𝑑𝑞𝑗 ∈ 𝑅
𝑛×𝑚
2 , 𝑗 = 1, . . . , 𝑚2. Based on (26), we define the

matrices𝐾𝑐𝑞 ∈ 𝑅
𝑚
1
×𝑛
2

and𝐾𝑑𝑞 ∈ 𝑅
𝑚
2
×𝑛
2

as follows:

𝐾𝑐𝑞 =
[

[

[

𝐾𝑐𝑞1(1) 𝐾𝑐𝑞1(2) . . . 𝐾𝑐𝑞1(𝑛)

...
... d

...
𝐾𝑐𝑞𝑚

1
(1) 𝐾𝑐𝑞𝑚

1
(2) . . . 𝐾𝑐𝑞𝑚

1
(𝑛)

]

]

]

,

𝐾𝑑𝑞 =
[

[

[

𝐾𝑑𝑞1(1) 𝐾𝑐𝑞1(2) . . . 𝐾𝑑𝑞1(𝑛)

...
... d

...
𝐾𝑑𝑞𝑚

2
(1) 𝐾𝑐𝑞𝑚

2
(2) . . . 𝐾𝑐𝑞𝑚

2
(𝑛)

]

]

]

,

(27)

then the corresponding continuous control law and jump
control law are, respectively,

𝑢𝑐 (𝑡) = (𝐾𝑐 + 𝐾𝑐𝑞 (𝑥 (𝑡) ⊗ 𝐼𝑛)) 𝑥 (𝑡) ,

𝑢𝑑 (𝑡) = (𝐾𝑑 + 𝐾𝑑𝑞 (𝑥 (𝑡
−
) ⊗ 𝐼𝑛)) 𝑥 (𝑡

−
) .

(28)

Then, the corresponding closed-loop system is defined by

�̇� (𝑡) = [ (𝐴𝑐 + 𝐹𝑐𝐾𝑐)

+ (𝐵𝑐𝑞 + 𝐹𝑐𝐾𝑐𝑞) (𝑥 (𝑡) ⊗ 𝐼𝑛)] 𝑥 (𝑡) , 𝑡 ̸= 𝑡𝑘,

Δ𝑥 (𝑡) = [ (𝐴𝑑 − 𝐼 + 𝐹𝑑𝐾𝑑)

+ (𝐵𝑑𝑞 + 𝐹𝑑𝐾𝑑𝑞) (𝑥 (𝑡
−
) ⊗ 𝐼𝑛)] 𝑥 (𝑡

−
) , 𝑡 = 𝑡𝑘,

𝑥 (𝑡0) = 𝑥0, 𝑡0 = 0.

(29)

The following theorem presents a sufficient condition of
finite-time stabilization for the closed-loop system (29).

Theorem 8. For a prescribed scalar 𝛽 > 0, assume that there
exist positive scalars 𝜇 ≥ 1, 𝜆𝑖, 𝑖 = 1, 2 and matrices 𝑋 > 0 ∈

𝑅
𝑛×𝑛,𝐿𝑐 ∈ 𝑅𝑚1×𝑛,𝐿𝑐𝑞 ∈ 𝑅𝑚1×𝑛

2

,𝐿𝑑 ∈ 𝑅𝑚2×𝑛, and𝐿𝑑𝑞 ∈ 𝑅𝑚2×𝑛
2

such that

[

[

Ψ 𝜆1𝐵𝑐𝑞 + 𝐹𝑐𝐿𝑐𝑞 𝑋

∗ −𝜆1 (𝑆 ⊗ 𝐼𝑛) 0

∗ ∗ −𝜆1𝐼

]

]

< 0,

[

[

[

[

−𝜇𝑋 𝑋𝐴
𝑇

𝑑
+ 𝐿
𝑇

𝑑
𝐹
𝑇

𝑑
0 𝑋

∗ −𝑋 𝜆2𝐵𝑑𝑞 + 𝐹𝑑𝐿𝑑𝑞 0

∗ ∗ −𝜆2 (𝑆 ⊗ 𝐼𝑛) 0

∗ ∗ ∗ −𝜆2𝐼

]

]

]

]

≤ 0,

[

−𝑋 𝐼

∗ −𝑆
] ≤ 0,

[

−𝑅 𝐼

∗ −𝑋
] < 0,

(30)

with

Ψ = 𝑋𝐴
𝑇

𝑐
+ 𝐴𝑐𝑋 + 𝐹𝑐𝐿𝑐 + 𝐿

𝑇

𝑐
𝐹
𝑇

𝑐
+

ln 𝜇
𝛽

𝑋. (31)

Then

(1) if 𝜇 > 1, the closed-loop system (29) is finite-time
stabilizable with respect to (𝑇, 𝑅, 𝑆) over 𝛾min(𝛽) and
the stabilizing state feedback controller (28) is given
by 𝐾𝑐 = 𝐿𝑐𝑋

−1, 𝐾𝑐𝑞 = 𝐿𝑐𝑞/𝜆1, 𝐾𝑑 = 𝐿𝑑𝑋
−1, and

𝐾𝑑𝑞 = 𝐿𝑑𝑞/𝜆2;
(2) if 𝜇 = 1, the system (29) is finite-time stabilizable with

respect to (𝑇, 𝑅, 𝑆) for any jump time sequences {𝑡𝑘},
𝑘 ∈ [1, 𝑟] and the stabilizing state feedback controller
(28) is given by 𝐾𝑐 = 𝐿𝑐𝑋

−1, 𝐾𝑐𝑞 = 𝐿𝑐𝑞/𝜆1, 𝐾𝑑 =
𝐿𝑑𝑋
−1, and𝐾𝑑𝑞 = 𝐿𝑑𝑞/𝜆2.

Proof. Since the proof of Theorem 8 is a natural extension
fromTheorem 4, we omit it.

Remark 9. Due to Remark 8 in [5], the quadratic terms
on the presented control law (28) can be explained as a
counteraction to the influence of the quadratic terms of the
system. Especially, when 𝑚1 = 𝑚2 = 𝑛, 𝐹𝑐 and 𝐹𝑑 are
nonsingular matrices; it is possible for the closed system to
eliminate the quadratic terms completely through 𝐾𝑐𝑞 =

−𝐹
−1
𝐵𝑐𝑞 and𝐾𝑑𝑞 = −𝐹

−1
𝐵𝑑𝑞.

4. Numerical Examples

In this section, we will present two examples to illustrate
the effectiveness of our method. In Theorem 4, 𝜇 and 𝑃
are variables, then (7) and (8) are not LMIs. Obviously, the
primary matter is the solvability of the inequalities (7)–(10).
For eliminating the coupling, we directly fix𝜇with a constant;
then (7) and (8) are LMIs and can solved throughMatLab. For
Theorem 8, we have the similar process.
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Example 10. Consider the system (1) with the following
parameters:

𝐴𝑐 = [
2 1

0 1
] , 𝐵𝑐𝑞 = [

0 0 −0.5 0

0 0 −0.5 0
] ,

𝐹𝑐 = [
1

1
] , 𝐴𝑑 = [

1.1 0.02

0 1.1
] ,

𝐵𝑑𝑞 = [
0.6 0 0.3 0

0 0 0 0
] , 𝐹𝑑 = [

1

0
] , 𝛽 = 0.5.

(32)

Our aim is to solve the finite-time stabilization problem by
using nonlinear state feedbackwith respect to (𝑅, 𝑆, 𝑇), where

𝑅 = [

1 0

0 1
] , 𝑆 = [

0.1 0

0 0.1
] , 𝑇 = 2.3. (33)

It is noticed that the jump system may destroy FTS of the
closed-loop system.

Through Theorem 8 with 𝜇 = 1.211, we obtain
the continuous state feedback control law 𝑢𝑐(𝑡) =

([−5.7815 −5.7819] + [0.5 0 0 0] (𝐼2 ⊗ 𝑥(𝑡)))𝑥(𝑡)

and the discrete state feedback control law 𝑢𝑑(𝑡) =

([−1.3987 −0.1241] + [−0.6 0 −0.3 0] (𝑥(𝑡) ⊗ 𝐼2))𝑥(𝑡).

Example 11. Consider the system (1) with the following
parameters:

𝐴𝑐 = [
0 1

1 −2
] , 𝐵𝑐𝑞 = [

0 0 0.2 0

0 0 −0.5 0
] ,

𝐹𝑐 = [
0

1
] , 𝐴𝑑 = [

1.2 0.2

0 0.5
] ,

𝐵𝑑𝑞 = [
0.6 0 0.3 0

0 0 0 0
] , 𝐹𝑑 = [

1

0
] .

(34)

It is noticed that the jump system is helpful to FTS of
closed-loop system by the discrete state feedback control law.
Our goal is to solve the finite-time stabilization problem by
using nonlinear state feedbackwith the same𝑅, 𝑆, and𝑇 given
in Example 10.

Based on Theorem 8 and a given 𝜇 = 1, we
obtain the continuous state feedback control law 𝑢𝑐(𝑡) =

([−10.7383 −81.2935] + [0 0 0.4865 0] (𝑥(𝑡) ⊗ 𝐼𝑛))𝑥(𝑡)

and the discrete state feedback control law 𝑢𝑑(𝑡) =

([−2.2464 0.8832] + [−0.6 0 −0.3 0] (𝑥(𝑡) ⊗ 𝐼𝑛))𝑥(𝑡).

5. Conclusion

In this paper, the problems of FTS and finite-time sta-
bilization for nonlinear quadratic systems with jumps are
investigated. Sufficient conditions of FTS and finite-time
stabilization based on the quadratic Lyapunov function and a
particular presentation for the quadratic terms are established
in terms of BLMIs and LMIs. And two examples have been
provided to explain the effectiveness of our methodology. In
the future, we will continue the study of nonlinear quadratic
systems with jumps, such as the systems subject to jumps and
input saturation or time delay.
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