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We study the cutting and packing (C&P) problems in two dimensions by using phi-functions.
Our phi-functions describe the layout of given objects; they allow us to construct a mathematical
model inwhich C&P problems become constrained optimization problems. Herewe define (for the
first time) a complete class of basic phi-functions which allow us to derive phi-functions for all 2D
objects that are formed by linear segments and circular arcs. Our phi-functions support translations
and rotations of objects. In order to deal with restrictions onminimal ormaximal distances between
objects, we also propose adjusted phi-functions. Our phi-functions are expressed by simple linear
and quadratic formulas without radicals. The use of radical-free phi-functions allows us to increase
efficiency of optimization algorithms. We include several model examples.

1. Introduction

We study the cutting and packing (C&P) problems. Its basic goal is to place given objects
into a container in an optimal manner. For example, in garment industry one cuts figures
of specified shapes from a strip of textile, and one naturally wants to minimize waste.
Similar tasks arise in metal cutting, furniture making, glass industry, shoe manufacturing,
and so forth. In shipping works one commonly needs to place given objects into a container
of a smallest size or volume to reduce the space used or increase the number of objects
transported.

The C&P problem can be formally stated as follows: place a set of given objects
A1, . . . , An into a container Ω so that a certain objective function (measuring the “quality”
of placement) will reach its extreme value.
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In some applications (as in garment industry) objects must be specifically oriented
respecting the structure of the textile, that is, they can only be translated without turnings (or
only slightly rotated within given limits). In other applications objects can be freely rotated.
Some applications involve additional restrictions on the minimal or maximal distances
between certain objects or from objects to thewalls of the containerΩ (one example is packing
of radioactive waste).

While most researchers use heuristics for solving C&P problems, some develop sys-
tematic approaches based on mathematical modeling and general optimization procedures;
see, for example, [1–3]. We refer the reader to recent tutorials [4, 5] presenting the history of
the C&P problem and basic techniques for its solution.

Standard existing algorithms are restricted to 2D objects of polygonal shapes; other
shapes are simply approximated by polygons (a notable exception is [6] which also treats
circular objects). Themost popular andmost frequently cited tools in themodern literature on
the C&P problem are Minkowski sum [7] and the so-called No-Fit Polygon [4], which works
with polygons only and does not support rotations. Rotations of polygons were considered in
[8, 9], and in a very recent paper [10] the concept of No-Fit Polygon was extended to objects
bounded by circular arcs.

In this paper we develop tools that handle any 2D objects whose boundary is formed
by linear segments and/or circular arcs (the latter may be convex or concave). All objects
we had to deal with in real applications, without exception, belong to this category. Our
tools support free translations and rotations of objects and can respect any restrictions on the
distances between objects.

We describe the layout of objects relative to each other by the so-called phi-functions.
For any placement of two objects Ai and Aj on the plane R

2, the corresponding phi-function
ΦAiAj shows how far these objects are from each other, whether they touch each other, or
whether they overlap (in the latter case it shows how large the overlap is). Phi-functions
were introduced in [11–13] and fully described in our recent survey [14]. Phi-functions are
also used for solving 3D packing problems [15] and covering problems [16].

The arguments of the phi-function ΦAiAj are the translation and rotation parameters
of the objects Ai and Aj ; those parameters specify the exact position and orientation of the
objects in the xy plane (or in the xyz space). All these parameters together, for all the given
objects, constitute the solution space. Solving the cutting and packing problem then consists of
minimization of a certain objective function defined on the solution space.

Thus the solution of the C&P problem reduces to minimization of an objective function
on a certain (multidimensional) space, which can be done by mathematical programming.
A detailed description of the solution strategy is given in [14]. We emphasize that the
minimization is performed with respect to all of the underlying variables, that is, all the
objects can move and rotate simultaneously. In this respect our approach differs from
many others that optimize the position of one object at a time. Illustrations and animated
demonstrations of the performance of our methods can be found on our web page [17].

The solution space consists of all admissible (nonoverlapping) positions of our objects,
which correspond to inequalities ΦAiAj ≥ 0 for all i /= j. Our phi-functions ΦAiAj are defined
by a combination of minima and maxima of various basic functions that represent mutual
position of various elements of the underlying objects (their edges, their corner points, etc.)
As a result, the solution space is described by a complicated tree in which each terminal node
consists of a system of inequalities involving translation and rotation parameters of certain
objects. This description is very complex, and one of our goals is to simplify it.
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The above-mentioned inequalities may be expressed via distances between various
points, segments, and arcs on the boundaries of our objects. The resulting formulas often
involve square roots, which may cause unpleasant complications—formulas describing the
solution space develop singularities, and the minimization process becomes prohibitively
slow.

To remedy the situation, we redefine the phi-functions so that the solution space will
be described by simpler formulas without radicals (thus avoiding related singularities), This
speeds up the optimization process. By our rules, phi-functions only need to satisfy certain
flexible requirements, they are not rigidly determined by the shapes of the given objects. In
fact, one can often define phi-functions for fairly complicated objects by simple formulas that
avoid square roots and other irrational functions.

This strategywas employed in our previousworks [14], but here we implement it to an
utmost extent. We will show that for any objects bounded by linear segments and circular arcs
phi-functions can be defined by algebraic formulas without radicals. This is the principal goal
of our paper. It was announced in [14] without much details. Here we give explicit practical
formulas for computing the phi-functions in all possible cases. Our radical-free phi-functions
also incorporate additional constraints on the distances between objects (see Section 4).

We demonstrate the efficiency of our new phi-functions by model examples. For the
description of the solution space via phi-functions we refer the reader to [14]. For further
details of local optimization algorithms used in our programs we refer the reader to [18].

2. Phi-Functions and Decomposition of Objects

Recall that a 2D object is a subset A ⊂ R
2; it is usually specified by some equations or

inequalities in the canonical coordinates x, y. Placing the object in R
2 means moving it

without changing its shape or size. Rigid motions in R
2 consist of rotations and translations.

If we rotateA by angle θA (say, clockwise) and translate it by vector νA = (νAx, νAy), then the
resulting set (placed object) can be described by equation

A(νA, θA) = RθAA + νA, (2.1)

where

Rθ =

[
cos θ sin θ

− sin θ cos θ

]
(2.2)

denotes the standard rotation matrix. We call νA and θA the placement parameters for the object
A.

Now let A,B ⊂ R
2 be two objects. We denote the corresponding placed objects by

A′ = A(νA, θA) and B′ = B(νB, θB). The phi-function

Φ = ΦAB = ΦAB(νA, θA, νB, θB), (2.3)
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describes the mutual position (interaction) of the pair of sets A′ and B′. It must satisfy three
basic requirements:

Φ > 0 if A′ ∩ B′ = ∅,
Φ = 0 if int

(
A′) ∩ int

(
B′) = ∅ and ∂A′ ∩ ∂B′

/= ∅,
Φ < 0 if int

(
A′) ∩ int

(
B′)

/= ∅.
(2.4)

Here int(A′) denotes the interior of A′ and ∂A′ the boundary (frontier) of A′. We always
assume that our objects are canonically closed sets, that is, each object is the closure of its
interior. Also, the boundary ∂A′ should not have self-intersections [11, 14].

Note that ΦAB is a function of six real variables νAx, νAy, θA, νBx, νBy, θB. An important
requirement is that ΦAB is continuous in all these six variables [14]. We will also assume that
ΦAB is “symmetric” in the sense that

ΦAB(νA, θA, νB, θB) = ΦBA(νB, θB, νA, θA) (2.5)

and translation invariant, that is, for any vector ν

ΦAB(νA, θA, νB, θB) = ΦAB(νA + ν, θA, νB + ν, θB). (2.6)

Our phi-functions are also rotation invariant in a natural sense. In our formulas, the
superscripts of Φwill always refer to given objects, while the arguments of Φ (the placement
parameters) will be often omitted for brevity.

The general meaning of (2.4) is that when the placed objects are disjoint, that is, a
positive distance apart, then Φ > 0. When those objects just touch each other (on their
boundaries), but do not overlap, then Φ = 0. When they overlap, then Φ < 0.

We emphasize that the exact value of the phi-function is not subject to any rigid
constraints. If two placed objects A′ and B′ are disjoint, then Φ should just roughly
approximate the distance between them. If they overlap, then the absolute value |Φ| should
just roughly measure the extent of overlap. This flexibility allows us to construct relatively
simple phi-functions for rather complex objects, which is the main goal of our paper.

For example, letC1 andC2 be two circles (disks) of radii r1 and r2, respectively, defined
by

Ci =
{(
x, y

)
: x2 + y2 ≤ r2i

}
. (2.7)

Now by translating C1 and C2 through some vectors ν1 and ν2, we get two placed circles
C′

1 and C′
2 with centers (ν1x, ν1y) and (ν2x, ν2y), respectively, and the same radii r1 and r2

(rotations are redundant for circles). Now the distance between C′
1 and C

′
2 is d = max{φ, 0},

where

φ =
√
(ν1x − ν2x)2 +

(
ν1y − ν2y

)2 − (r1 + r2). (2.8)
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Figure 1: A partition of an object into 15 basic objects: 8 convex polygons, 3 circular segments (marked by
D), 3 hats (marked byH), and one horn (marked by V ).

Note that φ > 0 if the circles are disjoint and φ < 0 if they overlap, thus we could setΦC1C2 = φ.
But we define ΦC1C2 differently:

ΦC1C2 = (ν1x − ν2x)2 +
(
ν1y − ν2y

)2 − (r1 + r2)2. (2.9)

Note that the sign of ΦC1C2 coincides with that of φ (and ΦC1C2 = 0 whenever φ = 0).
But the formula (2.9) allows us to avoid radicals, thus improving the performance of our
optimization algorithms.

Next suppose

A = A1 ∪ · · · ∪Ap, B = B1 ∪ · · · ∪ Bq (2.10)

are two objects, each of which is a union of some smaller (and simpler) components Ai and
Bj , respectively. Those do not have to be disjoint, that is, some Ai’s may overlap, and so may
some of the Bj ’s. When the object A is rotated and translated, all its parts are rotated by the
same angle and translated through the same vector, so the placement parameters for A and
for all its parts Ai are the same. This applies to B and its parts, too.

Now we can define

ΦAB = min
1≤i≤p

min
1≤j≤q

ΦAiBj . (2.11)

This simple fact can be verified by direct inspection, see also [11, 14].
In this paper we consider objects whose boundary is formed by linear segments

and/or circular arcs (the latter may be convex or concave); see an example in Figure 1. Such
objects can be partitioned into simpler components of four basic types: (a) convex polygons,
(b) circular segments, (c) “hats”, and (d) “horns”; see Figure 2.

A convex polygon is an intersection of m ≥ 3 half-planes. More generally, an
intersection ofm ≥ 1 half-planes will be called a generalized convex polygon, or phi-polygon.
It may be a regular (bounded) polygon, or an unbounded region, such as a region between
two rays (half-lines) emanating from a common vertex (see illustrations in [11]).

A circular segment is a region bounded by a circular arc (smaller than a semicircle) and
the respective chord. One can also describe a circular segment as the convex hull of a circular



6 Advances in Operations Research

K

(a)

D

(b)

H

(c)

V

(d)

Figure 2: Basic objects: (a) convex polygon K, (b) circular segment D, (c) hatH, and (d) horn V .

arc. A hat is formed by a circular arc (smaller than a semicircle) and two tangent lines at its
endpoints (Figure 2(c)). A horn is made by two circular arcs (one convex and one concave)
that are tangent to each other at the point of contact and a line crossing both arcs and tangent
to the concave one (Figure 2(d)). We will denote these four types by K, D, H, and V , as in
Figure 2.

Figure 1 shows a division of an object into basic subobjects. It consists of 8 convex
polygons, 3 circular segments, 3 hats, and one horn.

Decomposition of a given object into basic subobjects can be done by a computer
algorithm based on the following steps.

(1) Locate “beaks,” that is, points on the boundary of A where two arcs (one concave
and one convex) terminate with a common tangent line. At each beak, cut off a
small piece that is shaped as a horn (by a line tangent to the concave arc). After the
detachment of horns, the resulting object will have no beaks.

(2) Locate all concave arcs and carve out hats so that each concave arc will be replaced
with a polygonal line. After the detachment of hats, the resulting object will have
no concave arcs.

(3) Locate all convex arcs and cut off circular segments so that each convex arc will be
replaced with one or more chords. After the detachment of segments, the resulting
object will have no convex arcs.

(4) If the resulting phi-polygon is convex, keep it. If not, decompose it into two or more
convex ones.

We note that if the given object A is simple enough, it may not be necessary to divide
it into basic objects. For example, ifA is a circle (or a ring), there is no need to cut it artificially
into some polygons and circular segments, as phi-functions for circles (and rings) are quite
simple; see (2.9) and other formulas below, as well as [11–13].
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Next, recall that our basic goal is to place given objects A1, . . . , An into a container Ω
with respect to a given objective. To ensure that the placed objectsAi(νAi , θAi) do not overlap,
we can just verify that ΦAiAj ≥ 0 for all i /= j. To ensure that Ai(νAi , θAi) ⊂ Ω, we verify that
ΦAiΩ∗ ≥ 0, where Ω∗ = cl(R2 \Ω) is the closure of the complement to the container Ω. This is
a part of our optimization algorithm; see [14].

The necessity of treating Ω∗ = cl(R2 \ Ω) as a (rather special) object leads us to
considering unbounded objects, too. Given a bounded object B, we denote by B∗ = cl(R2 \ B)
the unbounded complementary object. If B∗ is delimited by line segments and circular arcs,
then it can be decomposed into basic objects of the same four types, except one or more basic
objects are unbounded phi-polygons as described above.

3. Basic Phi-Functions

Due to the decomposition principle (2.11) our problem reduces the construction of phi-
functions for all pairs of basic objects. As there are four types of basic objects, there are a total
of 4 +

(
4
2

)
= 10 possible pairs of types of basic objects to treat. These will form a complete

class of basic phi-functions.

3.1. Two Convex Polygons

A convex polygon is an intersection of several half-planes. A half-plane can be defined by
αx + βy + γ ≤ 0 so it is completely specified by three parameters (α, β, γ). Without loss of
generality we assume in what follows that α2 + β2 = 1. A convex polygon (phi-polygon) K
that is the intersection ofm half-planes can be specified by

K =
((
α1, β1, γ1

)
, . . . ,

(
αm, βm, γm

))
. (3.1)

Alternatively, K can be specified by a sequence of vertices

K =
((
x1, y1

)
, . . . ,

(
xm, ym

))
(3.2)

listed in the counterclockwise direction. If the polygon K is moved (rotated and translated),
its parameters αi, βi, γi and xi, yi can be recomputed in terms of the rotation angle θK
and translation vector νK, according to (2.1). Thus the placement parameters of K can be
incorporated into αi, βi, γi, and xi, yi.

Now let K be a convex m-gon and K′ another convex m′-gon whose parameters we
denote by (α′i, β

′
i, γ

′
i) and whose vertices are denoted by (x′

i, y
′
i) for 1 ≤ i ≤ m′. Denote

uij = αix′
j + βiy

′
j + γi, vji = α′ixj + β

′
iyj + γ

′
i . (3.3)

Now we define the “polygon-polygon” phi-function as

ΦKK′
= max

{
max
1≤i≤m

min
1≤j≤m′

uij , max
1≤j≤m′

min
1≤i≤m

vji

}
, (3.4)
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see [14] for a detailed analysis of this formula. We note that ΦKK′
does not involve quadratic

functions. It is defined by linear expressions only if rotational angles are not used.
In particular, if P is a half-plane defined by αx + βy + γ ≤ 0 and K′ a polygon with

vertices (x′
i, y

′
i), then (3.4) takes a much simpler form

ΦPK′
= min

1≤j≤m′
αx′

j + βy
′
j + γ. (3.5)

3.1.1. Convex Polygon and Circle

LetK be a convex polygon with sides Ei and vertices (xi, yi) for 1 ≤ i ≤ m. Let αix+βiy+γi = 0
be the equation of the line containing the side Ei. We assume that α2i + β

2
i = 1 and the vertices

and sides are numbered counterclockwise and the ith side joins the ith and (i + 1)st vertices
(if i = m, then we set i + 1 = 1). Let C be a circle with center (xC, yC) and radius rC. Then we
define

ΦKC = max
1≤i≤m

max
{
χi, ψi

}
, ψi = min

{
ωi, μi

}
, (3.6)

where χi = αixC+βiyC+γi−rC (see Figure 3(a)),ωi = (xi−xC)2+(yi−yC)2−r2C (see Figure 3(b)),
and μi = (αi−1 −αi)(yi −yC)− (βi−1 − βi)(xi −xC) + rC(αi−1βi −αiβi−1) (see Figure 3(b)). See [14]
for more details.

In particular, if P is a half-plane αx + βy + γ ≤ 0 and C a circle with center (xC, yC) and
radius rC, then (3.6) takes a much simpler form

ΦPC = αxC + βyC + γ − rC. (3.7)

3.2. Convex Polygon and Circular Segment

Let K be again a convex polygon. Let D be a circular segment D = C ∩ T , where C is a circle
and T a triangle made by the chord (the base of the segment) and the two tangents drawn at
its endpoints. Now we define

ΦKD = max
{
ΦKC,ΦKT

}
, (3.8)

where ΦKC was defined by (3.6) and ΦKT by (3.4).

3.3. Two Circular Segments

Let D = C ∩ T and D′ = C′ ∩ T ′ be two circular segments. We define

ΦDD′
= max

{
ΦCC′

,ΦTC′
,ΦT ′C,ΦTT ′}

, (3.9)

where ΦCC′
was defined by (2.9), ΦTC′

and ΦT ′C by (3.6), and ΦTT ′
by (3.4).



Advances in Operations Research 9

K

r

Ei

χi = 0

C

(a)

pi

K

ωi = 0

μi = 0

χi = 0

χi−1 = 0

C

(b)

Figure 3: A convex polygon and a circle.

This takes care of all possible pairs of convex basic objects, that is, types (a) and (b). It
remains to deal with concave objects, that is, “hats” and “horns.” We first consider a simple
object with a concave arc—the complement to a circle. This case is practically important
because in many applications one places objects into a circular container.

3.3.1. Convex Objects inside a Circular Container

Let C∗ denote the (closure of the) complement to a circle C with center (xC, yC) and radius
rC. Now let C′ be a circular object with center (xC′ , yC′) and radius rC′ ≤ rC that we want to
place inside the circle C. Then we define

ΦC∗C = (rC − rC′)2 − (xC − xC′)2 − (
yC − yC′

)2
. (3.10)

If rC′ > rC, then we set ΦC∗C = −∞.
Next let K be a polygon (not necessarily convex) with vertices (x1, y1), . . . , (xm, ym)

that we want to place in our circle C. Then we set

ΦC∗K = min
1≤i≤m

{
r2C − (xi − xC)2 −

(
yi − yC

)2}
. (3.11)

IfH = T ∩ C∗
1 is a “hat,” that is, the intersection of a triangle T and the complement to

a circle C1 (see Figure 6), we simply put ΦC∗H = ΦC∗T , where ΦC∗T is given by (3.11).
Now let D = C′ ∩ T be a circular segment, where C′ is a circle with center (xC′ , yC′)

and radius rC′ and T a triangle as before, and qi = (xi, yi), i = 1, 2, the endpoints of the chord
bounding D; see Figure 4(a). We put

ψ0 = min
i=1,2

{
r2C − (xi − xC)2 −

(
yi − yC

)2}
, (3.12)
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Figure 4: Nonoverlapping C∗ and D.

then

ΦC∗D = ψ0 (for rC ≤ rC′). (3.13)

Note that ψ0 = ΦC∗K subject tom = 2, see Figure 4(a). Now we define

ΦC∗D = min
{
ψ0,max

{
ΦC∗C′

, ϕ1, ϕ2

}}
(for rC > rC′), (3.14)

where ψ0 is given by (3.12) and

ϕ1 =
(
y1 − yC′

)
(xC′ − xC) − (x1 − xC′)

(
yC′ − yC

)
,

ϕ2 = −(y2 − yC′
)
(xC′ − xC) + (x2 − xC′)

(
yC′ − yC

)
.

(3.15)

Formula (3.14) results from the following observations: ΦC∗D ≥ 0 if ψ0 ≥ 0 subject to
ΦC∗C′ ≥ 0 (see Figure 4(b)), or ϕ1 ≥ 0 (Figure 4(c)), or ϕ2 ≥ 0 (Figure 4(d)).

To clarify the role of the functions ϕ1 and ϕ2 we introduce vectors e = (xC−xC′ , yC−yC′),
a1 = (x1 − xC′ , y1 − yC′), a2 = (x2 − xC′ , y2 − yC′), e1 = (−(y1 − yC′), x1 − xC′), and e2 = (y2 −
yC′ ,−(x2 − xC′)), as shown in Figure 5(a). Note that a1 ⊥ e1 and a2 ⊥ e2. In these notations,

ϕ1 = 〈e, e1〉, ϕ2 = 〈e, e2〉. (3.16)

We call ϕ1 and ϕ2 “switch” functions. Note that max{ΦC∗C′
, ϕ1, ϕ2} < 0 if ΦC∗C′

< 0 and
ϕ1 < 0 and ϕ2 < 0, see Figure 5(a). However, there exist tree cases, where ΦC∗C′

< 0 but
max{ΦC∗C′

, ϕ1, ϕ2} ≥ 0. First, ϕ1 ≥ 0 and ϕ2 < 0 (see Figure 5(b)). Second, ϕ2 ≥ 0 and ϕ1 < 0
(Figure 5(c)). Lastly, ϕ1 ≥ 0 and ϕ2 ≥ 0 (Figure 5(d)).

3.4. Polygon and Hat

LetH = T ∩C∗ be a hat, that is, the intersection of the complement to a circle C and a triangle
T as shown in Figure 6. Let G denote the domain lying above the circle C and above the line
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Figure 5: Role of the functions ϕ1, ϕ2.

G

T
T2 T1

L

P
(xC, yC)

rC

C

Figure 6: The domain G (grey) and three triangles T , T1, and T2.

L containing the chord forming the base of the triangle T ; see the grey area in Figure 6. Note
thatH = G ∩ T .

Now if B is any convex object, then it overlaps with H if and only if it overlaps with
both T and G; hence, we can define the phi-function as

ΦHB = max
{
ΦTB,ΦGB

}
(3.17)

provided we have properly defined ΦTB and ΦGB. This formula applies when B is either
a convex polygon or a circular segment. In these two cases ΦTB is given by either (3.4) or
(3.8), respectively. Thus it remains to define functionΦGB. Here we assume that B is a convex
polygon.

Let T1 and T2 denote two triangles adjacent to T ; one side of each is a tangent to the
circle C, and another side of each is a segment of the line L adjacent to the chord; see Figure 6
(the choice of the third side is not important). Let the circle C have center (xC, yC) and radius
rC. Let the half-plane P below the line L be defined by inequality αPx + βPy + γP ≥ 0. Note
that G = (C ∪ P)∗ = C∗ ∩ P ∗.
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Now letK be any polygon (not necessarily convex)with vertices (x1, y1), . . ., (xm, ym).
Note that K does not overlap with G if and only if two conditions are met: (i) every vertex
(xi, yi) lies either in the circle C or below the line L; (ii) the polygon K does not overlap with
T1 and T2. Accordingly, we define

ΦGK = min
{
ΦT1K,ΦT2K,Ψ

}
, (3.18)

where

Ψ = min
1≤i≤m

max
{
r2C − (xC − xi)2 −

(
yC − yi

)2
, αPxi + βPyi + γP

}
. (3.19)

Therefore,

ΦHK = max
{
ΦTK,ΦGK

}
, (3.20)

which completes the analysis of the “polygon-hat” pair.

3.5. Circular Segment and Hat

Let H = T ∩ C∗ = T ∩ G be a hat as before and D a circular segment. The above analysis
applies, up to the formula (3.17), because D is a convex object. It remains to define ΦGD.

We again use the notations P,C, and so forth, for objects associated with the hatH, as
defined above. We denote by p1 = (x1, y1) and p2 = (x2, y2) the endpoints of the arc bounding
H, as shown in Figure 8, that is, the points of intersection of ∂C with ∂P = L. The point
pi = (xi, yi) is a vertex of the triangle Ti for i = 1, 2.

The circular segment D = C′ ∩ T ′ is the intersection of a circle C′ and a triangle T ′, as
before. Let rC′ denote the radius of the circle C′ and (xC′ , yC′) its center. Let q1 = (x′

1, y
′
1) and

q2 = (x′
2, y

′
2) denote the endpoints of the chord boundingD (as shown in Figure 4) and L′ the

line passing through these points. Let the half-plane P ′ below the line L′ (away from D) be
defined by inequality α′x + β′y + γ ′ ≥ 0. Note that D = C′ ∩ (P ′)∗.

If rC′ > rC, then we set

ΦGD = max
{
ΦP ∗T ′

,ΦC∗D,ΦGC′
, ϕ1, ϕ2

}
, (3.21)

where ΦP ∗T ′
is defined by (3.5), ΦC∗D by (3.14), and for i = 1, 2 we set

ϕi = min
{
ΦT3−iD, r2C − (

x′
i − xC

)2 − (
y′
i − yC

)2
,

α′xi + β′yi + γ ′,−
(
α′x3−i + β′y3−i + γ ′

)}
.

(3.22)

Thus, ΦGD ≥ 0 if ΦP ∗T ′ ≥ 0 (see Figure 7(a)) or ΦC∗D ≥ 0 (see Figure 7(b)) or ΦGC′ ≥ 0 (see
Figure 7(c)), ϕ1 ≥ 0 (see Figure 7(d)) or ϕ2 ≥ 0 (see Figure 7(e)).
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Figure 7: A circular segment D versus the region G.
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Figure 8: The lines L1 and L2 for a segment-hat pair.

The function ΦGC′
in (3.21) is defined as follows:

ΦGC′
= max

{
ΦC∗C′

,ΦP ∗C′
,min

{
ω1, ψ1, ω2, ψ2

}}
, (3.23)
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Figure 9: A hatH and a circular segment D.

where ΦC∗C′
was defined by (3.10) and ΦP ∗C′

by (3.7). We also denote

ωi = (xi − xC′)2 +
(
yi − yC′

)2 − r2C′ (3.24)

for i = 1, 2, and the functions ψ1, ψ2 are defined so that ψi = 0 is the equation of the line Li (see
Figure 8), and ψi ≥ 0 is the half-plane below that line in Figure 8. The line Li passes through
points pi1 and pi2. The line segment pipi1, i = 1, 2, is perpendicular to the line p1p2, the line
segment pipi2 is perpendicular to the line pip3, and we have ‖pipij‖ = rC′ for all i, j = 1, 2. The
functions ψi, i = 1, 2, come from the application of (3.6) to Ti and C′.

If rC′ ≤ rC, we need to replace ϕi, i = 1, 2, in (3.21)with ϕ′
i defined by

ϕ′
i = min

{
ϕi, α

′(xC′ − xC) + β′
(
yC′ − yC

)}
. (3.25)

Finally, combining (3.17) and (3.21) gives

ΦHD = max
{
ΦTD,ΦGD

}
. (3.26)

Indeed, ΦHD ≥ 0 if ΦTD ≥ 0 (see Figure 9(a)) or ΦGD ≥ 0 (see Figure 9(b)).

3.6. Two Hats

Let H ′ = G′ ⋂ T ′ be a hat and H ′′ = G′′ ⋂ T ′′ another hat. Equivalently, H ′ = (C′)∗
⋂
T ′ and

H ′′ = (C′′)∗
⋂
T ′′. For the hat H ′ we use notation G′, C′, T ′, and so forth, as defined above,

and for the hat H ′′ the respective notation G′′, C′′, T ′′, and so forth. Now our phi-function is
defined by

ΦH ′H ′′
= max

{
ΦT ′H ′′

,ΦG′T ′′
, ω, τ

}
, (3.27)
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Figure 10: Four cases of nonoverlapping hatsH ′ andH ′′.

where ΦT ′H ′′
, ΦG′T ′′

are given by (3.17), (3.18), respectively, and we denote

ω = min
{
α′2x

′′
1 + β

′
2y

′′
1 + γ

′
2, α

′′
2x

′
1 + β

′′
2y

′
1 + γ

′′
2 ,

(rC′)2 − (
xC′ − x′′

3
)2 − (

yC′ − y′′
3
)2
,

(rC′′)2 − (
xC′′ − x′

3
)2 − (

yC′′ − y′
3
)2}

,

τ = min
{
α′1x

′′
3 + β

′
1y

′′
3 + γ

′
1, α

′′
1x

′
3 + β

′′
1y

′
3 + γ

′′
1 ,

(rC′)2 − (
xC′ − x′′

1

)2 − (
yC′ − y′′

1

)2
,

(rC′′)2 − (
xC′′ − x′

1

)2 − (
yC′′ − y′

1

)2}
,

(3.28)

where (x′
i, y

′
i) are the coordinates of the vertices and α′ix + β′iy + γ ′i = 0, i = 1, 2, are the

equations of lines containing the two straight sides of H ′, respectively; (xC′ , yC′) and rC′ are
the coordinates of the center and the radius of the arc boundingH ′. Similar notation applies
to the hatH ′′.

The hats H ′ and H ′′ do not overlap if ΦT ′H ′′ ≥ 0 (see Figure 10(a)), or ΦG′T ′′ ≥ 0
(Figure 10(b)), or ω ≥ 0 (Figure 10(c)), or τ ≥ 0 (Figure 10(d)).

3.7. Horns

A horn V = H ∩ (D ∪ T) is the intersection of a hatH and the union of a circular segment D
and a triangle T ; see Figure 11, where the triangle T has vertices p1, p2, p3, and the hatH has
vertices p1, p2, p4.

Now for any convex polygon K we define

ΦVK = max
{
ΦHK,min

{
ΦKD,ΦKT

}}
. (3.29)
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Figure 11: A horn V (grey) and the respective hat H (with vertices p1, p2, p4), circular segment D, and
triangle T (with vertices p1, p2, p3).

Similarly, for any circular segment D′,

ΦVD′
= max

{
ΦHD′

,min
{
ΦDD′

,ΦTD′}}
(3.30)

and for any hatH ′

ΦVH ′
= max

{
ΦHH ′

,min
{
ΦH ′D,ΦH ′T

}}
. (3.31)

Now let V ′ = H ′ ∩ (D′ ∪ T ′) be another horn. Then we define

ΦVV ′
= max

{
ΦHH ′

,min
{
ΦHD′

,ΦHT ′}
,min

{
ΦH ′D,ΦH ′T

}
,min

{
ΦDD′

,ΦTT ′
,ΦTD′

,ΦT ′D
}}
.

(3.32)

Some formulas for the phi-functions may appear quite complex. Note, however,
that they all can be programmed off-line and stored in a computer library. In practical
applications, one can just call the respective functions, and their evaluation proves to be fast
and efficient.

4. Adjusted Phi-Functions

Some applications involve restrictions on the distances between certain pairs of objects, or
between objects and the walls of the container. For example, when one is packing radioactive
waste, discarded pieces cannot be placed too close together. On the other hand, when one
designs a printed circuit board (PCB), then certain electronic components cannot be placed
too far apart. Cuttingmechanical parts out of ametal sheet is another example whereminimal
distances have to be maintained, because one has to take into account the physical size of the
cutter.
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In other words, some upper and/or lower limits on the distances between certain
placed objects may be set, that is, given two objects A,B, the corresponding placed objects
A′ = A(νA, θA) and B′ = B(νB, θB)must satisfy

dist
(
A′, B′) ≥ ρ−AB or dist

(
A′, B′) ≤ ρ+AB, (4.1)

where

dist
(
A′, B′) = min

X∈A′, Y∈B′
dist(X,Y ). (4.2)

Here ρ−AB denotes the minimal allowable distance and ρ+AB the maximal allowable distance
between A′ and B′.

To fulfil (4.1), it has been a common practice to compute the actual distance between
A′ and B′ at every step during the optimization process and check if (4.1) holds. But the
computation of geometric distances (especially for complex objects) involves complicated
formulas with radicals, see a variety of examples detailed in [11]. We avoid the computation
of geometric distances by using so called adjusted phi-functions defined below.

Suppose we have to maintain a minimal distance ρ = ρ−AB for a pair of objectsA,B. We
will construct an adjusted phi-function Φ̂AB satisfying

Φ̂AB > 0 if dist
(
A′, B′) > ρ,

Φ̂AB = 0 if dist
(
A′, B′) = ρ,

Φ̂AB < 0 if dist
(
A′, B′) < ρ.

(4.3)

Then we work with it a just like with the regular phi-function ΦAB in the previous sections,
where no restrictions on distances were imposed. Indeed, all allowable placements of the
objects A,B now correspond to Φ̂AB ≥ 0 and prohibited placements correspond to Φ̂AB < 0.
Thus our optimization algorithms can proceed the usual routine, but with the new (adjusted)
phi-function Φ̂AB instead of ΦAB.

Given an object A and ρ > 0 we define its ρ-expansion (Figure 12) by

Â = Âρ = A ⊕ Cρ, (4.4)

where (C, ρ) denotes a circle of radius ρ centered on the origin and the symbol ⊕ stands for
the so-called Minkowski sum [19], which is defined by

A1 ⊕A2 =
{(
x1 + x2, y1 + y2

)
:
(
x1, y1

) ∈ A1,
(
x2, y2

) ∈ A2
}

(4.5)

for any two sets A1, A2 ⊂ R
2. In other words, the ρ-expanded object Â in (4.4) consists of

points that are either in A or at distance ≤ ρ from A. We will not need to use Minkowski sum
for computing our phi-functions.

Now we construct the adjusted phi-function by Φ̂AB = ΦÂB, and it will satisfy the
requirements (4.3). Note that instead of expanding the object A we can expand the other
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Figure 12: An object A (a), its ρ-expansion Â (b), and the ρ-expansion δA of its boundary ∂A (c).

object B and define Φ̂AB = ΦAB̂. This extra flexibility can be used in practice to minimize the
cost of computation.

Suppose we have to maintain a maximal allowable distance ρ = ρ+ for a pair of objects
A,B. This means that the objects have to be positioned so that ΦAB ≥ 0 (to avoid overlaps)
and Φ̂AB ≤ 0, where Φ̂AB is the adjusted function constructed above (the latter condition will
keep the distance ≤ ρ). Thus we can define another adjusted phi-function as

Φ̌AB = min
{
ΦAB,−Φ̂AB

}
. (4.6)

Now we have

Φ̌AB > 0 if 0 < dist
(
A′, B′) < ρ,

Φ̌AB = 0 if
(
int

(
A′) ∩ int

(
B′) = ∅ and ∂A′ ∩ ∂B′

/= ∅) or dist
(
A′, B′) = ρ,

Φ̌AB < 0 if int
(
A′) ∩ int

(
B′)

/= ∅ or dist
(
A′, B′) > ρ.

(4.7)

Thus all allowable positions of A and B correspond to Φ̌AB ≥ 0.
We see that the adjusted phi-functions can always be defined as (ordinary) phi-

functions, but for expanded objects. It remains to define phi-functions for expanded objects.
For any object Awe have Â = A ∪ δA, where δA = ∂A ⊕Cρ is the expansion of the boundary
ofA; see Figure 12(b). One can think of δA as a “fattened” boundary ofA (whose “thickness”
is 2ρ). Then by the decomposition principle (2.11)we define

Φ̂AB = ΦÂB = min
{
ΦAB,ΦδAB

}
. (4.8)

Now recall that ∂A consists of linear segments and circular arcs, that is, ∂A = ∪mi=1γi,
where each γi is either a segment of a line or a circular arc. Therefore, δA = ∪mi=1γ̂i, where
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Figure 13: Expansion of boundary components.
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Figure 14: Various domains γ̂ = C1 ∪ C2 ∪ R.

γ̂i = γi ⊕ Cρ denotes the expansion of γi (as described below). Now by the decomposition
principle (2.11)we define

ΦδAB = min
1≤i≤m

Φγ̂iB. (4.9)

The domain γ̂i = γi ⊕Cρ is shown in Figure 13 for three different cases: γi is a line segment (a),
γi is an arc of radius > ρ (b), and γi is an arc of radius ≤ ρ (c); see a detailed analysis below.

In all these three cases we have γ̂i = C1 ∪C2 ∪R, where C1 and C2 are disks of radius ρ
centered on the endpoints of γi. If γi is a line segment, then R is a rectangle (Figure 14(a)). If
γi is a circular arc of radius ri > ρ, then R is a “bent rectangle” (Figure 14(b)). If γi is a circular
arc of radius ri ≤ ρ, then R degenerates to a circular segment (Figure 14(c)). Thus we define

Φγ̂iB = min
{
ΦC1B,ΦC2B,ΦRB

}
, (4.10)

where R denotes the corresponding rectangle, or bent rectangle, or circular segment.
We note that ∂A consists ofm components, so δAwill consist ofm disks of radius ρ and

m rectangles or “bent rectangles” (some of the latter may degenerate to circular segments).
Rectangles and circular segments are objects of basic types, for which phi-functions were
defined in Section 3. Bent rectangles are objects of a new type, so we need to handle them
separately.
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Figure 15: A “bent rectangle” R =W1 ∪W2 ∪H (a) and R =W1 ∪W2 ∪ (H ∩ C) (b).
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Figure 16: A wedgeWi = Ti ∪Di.

We have two cases shown in Figure 15. On (a), the “bent rectangle” is the union of two
“wedges” W1, W2 and a hat H. Every wedge Wi is in turn the union of a triangle Ti and a
circular segment Di (see Figure 16), hence

ΦRB = min
{
ΦHB,ΦT1B,ΦD1B,ΦT2B,ΦD2B

}
. (4.11)

In the second case (Figure 15(b)) the bent rectangle R can be decomposed as R = W1 ∪W2 ∪
(H ∩ C). Accordingly, we define

ΦRB = min
{
ΦW1B,ΦW2B,max

{
ΦHB,ΦCB

}}
. (4.12)

5. Numerical Examples

We illustrate our method by several model examples. In these examples we describe each
object by listing elements of its boundary ∂A = {l1, . . . , ln}. Each boundary element li is
completely described by its numerical code (which is 0 for straight line segments, +1 for
convex arcs, and −1 for concave arcs), the coordinates of the two endpoints (x1, y1) and
(x2, y2), and (for circular arcs only) the coordinates of the center (xC, yC).

Our goal is to place a given object or two given objects into a circle of minimal radius
or into a rectangle of minimal area. The rectangle is always properly oriented, that is, its sides
are parallel to the x and y axes. Accordingly, our objective function (to be minimized) is



Advances in Operations Research 21

A

C

(a)

A

R

(b)

Figure 17: A dolphin-like object placed into (a) a circle of minimal radius and (b) a rectangle of minimal
area.

A

B

C

(a)

A

B

C

(b)

Figure 18: (a) Two dolphin-like objects placed into a circle of minimal radius and (b) two staple-like objects
placed into a circle of minimal radius.

F(u1, u2, . . .) = r in case of a circular container of radius r and F(u1, u2, . . .) = ab in case of a
rectangular container with sides a and b.

The arguments u1, u2, . . . of the objective function include the translation vectors ν =
(ν1, ν2) for all the objects and rotation angles θ, where appropriate; compare (2.1). If we place
a single object into a circle, no rotation is needed. If two objects are placed into a circle, it
is enough to rotate one of them to achieve the optimal placement. When one or two objects
are placed into a rectangle, each of them may have to be rotated in order to find the best
placement.

Example 5.1. The goal is to place a given object into a circle of minimal radius. The object
is a dolphin-like domain A shown in Figure 17(a); its boundary is described in Table 1.
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Table 1: The boundary of the dolphin-like has 13 elements.

Code x1, y1 xC, yC x2, y2

1 3.753993, 2.279451 1.586533, 0.524744 1.233706, 3.291040

1 1.233706, 3.291040 1.197359,−1.021342 −1.57802, 2.279451
1 −1.578020, 2.279451 −0.164213, 0.362623 −1.15153,−1.804929
−1 −1.151532,−1.804929 −5.628434,−17.641177 1.905534,−3.010089
0 1.905534,−3.010089 2.781521,−4.283507
0 2.781521,−4.283507 3.018245,−3.228149
0 3.018245,−3.228149 2.493878,−2.619361
0 2.493878,−2.619361 3.122744,−2.338969
0 3.122744,−2.338969 3.546228,−1.389653
0 3.546228,−1.389653 1.313080,−1.873368
−1 1.313080,−1.873368 1.127739, 0.139935 −0.84345, 0.589527
−1 −0.843455, 0.589527 0.696106,−0.550254 1.384174, 1.237457

1 1.384174, 1.237457 1.595781, 3.972047 3.753993, 2.279451

Table 2: The boundary of the “thick staple” object has 8 elements, all straight line segments.

Code x1, y1 xC, yC x2, y2

0 1.182742, 1.708476 1.278823, 1.694810
0 −1.278823, 1.694810 −1.278823,−1.482497
0 −1.278823,−1.482497 1.175904,−1.482497
0 1.175904,−1.482497 1.175904,−0.635215
0 1.175904,−0.635215 −0.499328,−0.635215
0 −0.499328,−0.635215 −0.499328, 1.175508
0 −0.499328, 1.175508 1.196417, 1.175508
0 1.196417, 1.175508 1.182742, 1.708476

The optimal placement is also shown in Figure 17(a). The radius of the optimal circle is
r∗ = 4.015234. This example took 3.61 sec of the computer running time (we processed our
examples on a PC with an AMD Athlon 64X2 2.6GHz CPU).

Example 5.2. The goal is to place the given object (same as in Example 5.1) into a rectangle
of minimal area. The optimal placement is shown in Figure 17(b). The rectangle has sides
a∗ = 7.132090 and b∗ = 6.416804. We note that our algorithm supports rotation of objects. The
optimal rectangle is found when the object A is rotated by angle θA = 1.31245. This example
took 104 sec.

Example 5.3. The goal is to place two given objects, A and B, into a circle of minimal
radius. The objects are identical copies of the dolphin-like object in Example 5.1. The optimal
placement is shown in Figure 18(a). The radius of the circle is r∗ = 5.251253. Again, the objects
are subject to rotation, and the optimal circle is found when the object B is rotated by angle
θB = 3.141593. This example took 4298 sec.
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Table 3: The object A (Figure 19) bounded by three arcs.

Code x1, y1 xC, yC x2, y2

−1 −2.555404,−2.066713 0.651314,−15.372221 4.266788,−2.171920
1 4.266788,−2.171920 −0.740153,−1.703527 −2.19745, 3.109491
−1 −2.197449, 3.109491 −5.005667, 0.703211 −2.55540,−2.066713

Table 4: The object B = H1 ∪ H2 (Figure 19) is the union of two overlapping hats. Each hat is specified
by the coordinates of the two endpoints (x1, y1) and (x2, y2) and the center (xC, yC) of the circular arc
bounding it and by the coordinates (xv, yv) of its third vertex. We note that both circular arcs boundingH1
andH2 have radius r = 5.0.

Hat x1, y1 x2, y2 xC, yC xv, yv

H1 −2.878715,−1.116315 2.088654, 4.400499 −2.884564, 3.883681 2.661289,−1.109835
H2 −1.442662,−4.818566 −1.442654, 2.605045 −4.792658,−1.106758 2.670029,−1.106765

Example 5.4. The goal is to place two given objects, A and B, into a circle of minimal radius.
The objects have identical shape, they look like thick metal staples and their boundary is
described in Table 2. The optimal placement is shown in Figure 18(b). The radius of the
optimal circle is r∗ = 2.455866. Again, the objects are subject to rotation, and the optimal
circle is found when the object B is rotated by angle θB = 3.141593. This example took 31 sec.

Example 5.5. The goal is to place two given objects, A and B, of different shape into a circle of
minimal radius. The object A is made by three arcs (two concave and one convex) described
in Table 3. The object B = H1 ∪H2 is the union of two overlapping hats specified in Table 4.
The optimal placement is shown in Figure 19(a). The radius of the circle is r∗ = 5.322824.
Again, the objects are subject to rotation, and the optimal circle is found when the object B is
rotated by angle θB = 2.309901. This example took 1147 sec.

Example 5.6. The goal is to place the two given objects,A and B (same as in Example 5.5), into
a rectangle of minimal area. The optimal placement is shown in Figure 19(b). The rectangle
has sides a∗ = 13.294256 and b∗ = 5.603828. Again, the objects are subject to rotation, and
the optimal rectangle is found when the object A is rotated by angle θA = −0.118376 and the
object B is rotated by angle θB = 0.715346. This example took 443 sec.

Example 5.7. The goal is to place two very irregular (star-shaped) objects,A and B, into a circle
of minimal radius. The objects have identical shape, each is the union of four overlapping hats
specified in Table 5. The optimal placement is shown in Figure 20(a). The radius of the circle
is r∗ = 7.031531. Again, the objects are subject to rotation, and the optimal circle is found
when the object B is rotated by angle θB = 0.634543. This example took 996 sec.

Example 5.8. The goal is to place two very irregular (star-shaped) objects, A and B, into a
rectangle of minimal area. The objects are the same as in Example 5.7. The optimal placement
is shown in Figure 20(b). The rectangle has sides a∗ = 8.856350 and b∗ = 14.292623. Again, the
objects are subject to rotation, and the optimal rectangle is found when the objectA is rotated
by angle θA = 0.470376 and the object B is rotated by angle θB = 3.611969. This example took
154 sec.
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Figure 19: (a) Two objects of different shape placed into (a) a circle of minimal radius and (b) a rectangle
of minimal area.
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Figure 20: (a) Two objects of different shape placed into (a) a circle of minimal radius and (b) a rectangle
of minimal area.

Example 5.9. This is a modification of Example 5.5: we place two objects A and B into a
circle C of minimal radius, but now the object A must be at least the distance of 0.7 away
from the object B and from the edge of the circle C; that is, we need dist(A,B) ≥ 0.7 and
dist(A,C∗) ≥ 0.7. In this example we use adjusted phi-functions (Section 4). The optimal
placement is shown in Figure 21. Note that the object A does not touch the object B or the
boundary of C∗, to maintain the required distance from both. The radius of the optimal circle
is r∗ = 5.823507. The objects are subject to rotation, and the optimal circle is found when the
object B is rotated by angle θB = 2.322388. This example took 7725 sec.
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Figure 21: Two objects A and B placed into a circle C of minimal radius, with additional restriction on
distances from A to B and C.

Table 5: The object A = H1 ∪ H2 ∪ H3 ∪ H4 (Figure 20) is the union of four overlapping hats. Hats are
specified as in Table 4. We note that all the circular arcs bounding these four hats have radius r = 5.0.

Hat x1, y1 x2, y2 xC, yC xv, yv

H1 −4.284755,−1.280657 0.682614, 4.236157 −4.290604, 3.719339 1.255249,−1.274177
H2 −2.848702,−4.982908 −2.848694, 2.440703 −6.198698,−1.271100 1.263989,−1.271107
H3 4.249704,−0.281005 −0.717661,−5.79782 4.255557,−5.281 −1.2903,−0.287489
H4 2.813649, 3.421245 2.813646,−4.002366 6.163647,−0.29056 −1.29904,−0.290559
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