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This paper presents a novel metadata management mechanism on the metadata server (MDS) for parallel and distributed file
systems. In this technique, the client file system backs up the sent metadata requests, which have been handled by the metadata
server, so that the MDS does not need to log metadata changes to nonvolatile storage for achieving highly available metadata
service, as well as better performance improvement in metadata processing. As the client file system backs up certain sent metadata
requests in its memory, the overhead for handling these backup requests is much smaller than that brought by the metadata server,
while it adopts logging or journaling to yield highly available metadata service. The experimental results show that this newly
proposed mechanism can significantly improve the speed of metadata processing and render a better I/O data throughput, in
contrast to conventional metadata management schemes, that is, logging or journaling on MDS. Besides, a complete metadata
recovery can be achieved by replaying the backup logs cached by all involved clients, when the metadata server has crashed or gone
into nonoperational state exceptionally.

1. Introduction

Distributed and parallel file systems employ multiple parallel
I/O devices by striping file data across the I/O nodes and
then through using high aggregate bandwidth to meet the
growing I/O requirements of parallel scientific applications
[1, 2]. In addition, decoupling file’s metadata from read
and write operations has been proven to be an effective
strategy to improve the concurrency in the parallel file
systems, since the operations on metadata and real file data
could be processed in parallel [3]. Generally speaking, in a
parallel file system, a client file system (client) communicates
with the active metadata server (MDS), which manages all
properties of the whole file system, to get the permission
to operate on the file and file’s layout information that
indicates the locations of storage servers (OSTs), on which
the stripes belonging to the target file are stored. Then
the client accesses the corresponding OSTs, which handles
management of actual file data on the storage devices, to
perform the real file I/O operations after parsing the file’s
layout information.

The metadata server (MDS) plays an intermediary role
in a parallel file system, and the metadata is essential to the
whole file system. Both interruption of the metadata service
and inconsistent metadata may lead the entire file system to
become unavailable [4].Most of the parallel file systems, such
as Gfarm [5], Ceph [6], and GFS [7], employ logging or jour-
naling metadata updates on the MDS; therefore a complete
and up-to-datemetadata snapshot can be yielded by resorting
to the logs or journals, which have been committed to the
nonvolatile storage devices, when the former active MDS
has crashed. Without doubts, however, logging all metadata
updates slows down the speed of metadata processing on
MDS, which is because the metadata response cannot be sent
until the correspondingmetadata update has been committed
to the nonvolatile storage devices.

In order to eliminate the negative effect of logging
metadata changes conducted by the MDS, based on our
previous work [8, 9] this paper proposes a log-less metadata
management mechanism on the metadata server. To put it
from another angle, the metadata server does not create
any logs to record metadata changes. In the newly proposed

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 813521, 8 pages
http://dx.doi.org/10.1155/2014/813521



2 The Scientific World Journal

Client MDS

(client ID + log ID) into stamp 
field of  the corresponding inode 

the current metadata request 
including transaction number and 
the associated stamp 

MDSClient

MDS

disk or transfer them to the 
standby metadata server 

Last committed IDClient

the received metadata requests 
in the Active Request List 

Metadata request
(Client ID + log ID + request)

(Response + Active Request List)

Metadata response

∙ Create a backup log to record

∙ Remove the corresponding
backup logs

∙ Write the latest metadata to the

∙ Update Active Request List with

∙ Do the transaction, and put

Figure 1: The interaction between client and MDS.

mechanism, all clients back up metadata requests that incor-
poratedwith the requiredmetadata response sent by theMDS
till the associated metadata changes have been committed to
the nonvolatile storage.Once the formerMDShas crashed, all
involved clients are supposed to resend the backup metadata
requests, so that the currentMDS can restore all lostmetadata
changes by replaying these requests. Since every metadata
request is backed up by several clients in this newly proposed
mechanism, the complete and up-to-date metadata recovery
is still achievable even though one or more clients failed to
resend the backup requests. As a result, the MDS is freed
from logging metadata updates to nonvolatile storage; thus,
the speed of metadata processing can be improved to a
great extent, which is the main goal of this newly proposed
metadata management mechanism.

This paper is organized as follows: we first present
the design and implementation of the log-less metadata
management mechanism in Section 2; next, the evaluation
experiments and results are demonstrated in Section 3;
then, Section 4 describes the related work about metadata
management for ensuring metadata consistency; finally, we
make concluding remarks.

2. Design and Implementation
2.1. The Interactivity between Client and MDS. Figure 1 illus-
trates the normal case of interactivity between the client and
the MDS in the log-less metadata management mechanism.
The client sends the request with a log ID and client ID;
after the transaction involving the metadata request, the
MDS reads the stamp field of the associated inode (a data
structure in the file systems that stores all the information
about the file system objects, such as file and directory,
but without data and name) and sends it along with the
metadata response to the client; finally, it puts the client ID
and log ID into the stamp field of the corresponding inode
to indicate the last metadata request related to the inode
and updates Active Request List with the current metadata

request including the sequential number generated by the
MDS (i.e., the corresponding transaction number) and the
relevant stamp.The client, after receiving the response replied
by MDS, creates a backup log in the memory to record all
metadata requests (the requests in the Active Request List)
sent by the MDS with the response.

The backup logs can be removed from memory after the
associated metadata changes have been written to the disk.
Once the active MDS has crashed, the rebooted MDS or the
standbyMDS can restore the lostmetadata by reexecuting the
backup requests stored on the client side.

2.2. Client Caching Metadata Requests. As we mentioned in
Section 2.1, the client file system backs up certain metadata
requests. In fact, responding to every metadata request sent
by the client, the MDS sends the desired metadata response
with the metadata requests in the Active Request List, which
holds certain most recent metadata requests. In fact, every
metadata request in the Active Request List includes the
original request sent by the client, unique sequential number
generated by the MDS, and the relevant stamp. On the other
hand, after receiving the reply from the MDS, the client
creates an in-memory log to cache themetadata requests sent
by the MDS for the possible metadata recovery when the
activeMDShas crashed in the future. Besides, for the purpose
of improving the reliability, each metadata request can be
cached by more than one client; thus, the backup metadata
request is still available though one of the host clients has
failed to resend the backup requests.

We assume that there are 3 clients and they sendmetadata
requests sequentially; besides, the size of Active Request
List is configured as 3, which means 3 metadata requests
handled by the MDS most recently will be cached on the
MDS side. To put it from another angle, there should be
3 metadata requests in each backup log on the client side
and each metadata request will be backed up by 3 clients.
Without doubts, when the MDS has totally received less than
3 metadata requests, the number of metadata requests in
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Figure 2: Backing up multiple requests on client side.
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Figure 3: Stamp-based metadata recovery.

the backup log should be less than 3, as well. Namely, while
the number of dead client is less than the size of Active
Request List, the MDS can still collect a complete metadata
request list resent by other active clients. Figure 2 shows
the instance of caching multiple metadata requests on the
client side in detail (the stamp information is ignored in
this subsection). In Figure 2(a), all 3 clients have their own
backup logs after sending their metadata requests; after client
1 sends a new metadata request, the MDS first updates the
Active Request List and then responds to client 1 with the
corresponding metadata response and the metadata requests
in the Active Request List; next client 1 creates a backup log

to record the received metadata requests, which is illustrated
in Figure 2(b); finally, client 1 works as normal, such as
parsing the metadata response and communicating with
associated storage servers. Figures 2(c) and 2(d), respectively,
demonstrate the situations when client 2 and client 3 have sent
their metadata requests sequentially.

2.3. Stamp-Based Metadata Recovery. A stamp-based meta-
data recovery is employed by the log-less metadata manage-
ment mechanism; Figure 3 describes the main idea of stamp-
based recovery. In fact, each entry in the collected request
list has a metadata request and the previous stamp of the
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associated inode. On the other hand, the MDS first checks
whether the stamp of inodematches the previous stamp of the
collected request or not. If stamps match, the MDS plays the
backup request and then updates the stamp of inode with the
client ID (e.g., client A) and log ID (e.g., request 3) of the last
reexecuted metadata request; in case the stamps mismatch,
all collectedmetadata requests associatedwith the same inode
will be thrown away from the collected request list for keeping
metadata in a clean state though it might not be up-to-date.

2.4. Implementation. We have implemented a prototype
parallel file system from scratch in C and run it in the
Linux environment. The implementation has three modules
running at the user level:

(i) themodule of activemetadata server, whichworks for
providing metadata service;

(ii) the module of storage server which is responsible for
the management of real file data;

(iii) the module of client file system which has been
designed and implemented based on FUSE [10].

Since our implementation is a prototype system used for
illustrating whether the ideas presented in this paper are
feasible or not, for fairness in the comparison experiments,
we have also implemented other parallel file systems with
different properties (such as the parallel file system that
employs log-basedmetadatamanagementmechanism) based
on the source code we have developed as our comparison
counterparts.

3. Experiments and Evaluation

This section describes the experimental methodology for
evaluating our implemented file system and reports the
experimental results. First, we introduce the experimental
platform for conducting all experiments. Then we show
the experimental results related to the overhead associated
with backing up metadata requests on the client side. Next,
the benefit of log-less metadata management mechanism to
metadata processing will be demonstrated and highlighted.
Finally, the I/O throughput will be measured and presented.

3.1. Experimental Platform and Benchmark. We employed
two cluster, which labeled as cluster 1 and cluster 2, to conduct
our evaluation experiments. Consequently, one active MDS,
4 storage servers are deployed on the 5 nodes of cluster
1; the client file systems are installed on the 32 nodes of
cluster 2; these two clusters are connected by 10GbEEthernet.
Tables 1 and 2 show the specifications of the nodes on the two
clusters. Moreover, the following benchmarks are used in the
evaluation experiments.

(i) mdtest HPC Benchmark 1.8.3 is an MPI-coordinated
metadata benchmark. It is the most frequently used
benchmark to test the performance of the metadata
server under intensive create/stat/remove operations
on empty files and directories in parallel file systems
[11].

Table 1: Specification of nodes on cluster 1.

CPU 2 × Intel Xeon E5502 1.86GHz
Memory 6 × 4GB 1066MHz/DDR3 Memory
Disk storage for MDS 3 ∗ 160GB 7200 rpm SATA HDD
Disk storage for OST 5 ∗ 160GB 7200 rpm SATA HDD
Network Intel 82598EB, 10GbE Ethernet
Operating system Debian GNU/Linux 5 (Kernel 2.6.27)

Table 2: Specification of nodes on cluster 2.

CPU AMD Quad-Core Opteron 8356 2.3GHz
Memory 32GB 1066MHz/DDR3 Memory
Local disk storage 250GB 7200 rpm SATA HDD
Network IP over Myrinet
Operating system Centos 5.1 (Kernel 2.6.18)

(ii) NAS-BTIO 3.3 is an extension of NAS BT benchmark.
It is derived from computational fluid dynamics
(CFD) applications and widely used to test the I/O
data output capabilities of parallel systems [12]. NAS-
BTIO is designed to solve 3D compressible Navier-
Stokes equations. Since the access pattern in NAS-
BTIO is noncontiguous inmemory and in the file, the
MPI I/O library is used for its on-disk file access [13].

(iii) MADbench2 is an I/O benchmark derived from
a real world application analyzing massive cosmic
microwave background radiation in the sky from
noisy pixelated datasets from satellites [14]. An
extremely large amount of data is written to a disk
and then read back from the disk as the calcula-
tion progresses. Since MADbench2 performs large,
contiguous mixed read and write patterns as matrix
operations with a variety of parameters (SHARED or
UNIQUE files, POSIX versus MPI I/O, etc.), it has
become a popular and often used benchmark in the
parallel I/O community [15].

3.2. Overhead of Backing up Requests on Client. For the
purpose of metadata recovery, the log-less metadata manage-
ment mechanism adopts backing up sent metadata requests
on the client side; once the former active MDS has crashed,
the clients will then resend the logged, uncommitted meta-
data requests to the rebooted MDS or the standby MDS
for restoring the lost metadata. In order to investigate the
overhead due to backing up requests on the client side in our
mechanism (such as making backup log records), we chose
a benchmark, which simply copies an empty file 10000 times
per minute. Each copy operation contains several metadata
requests. Equation (1) shows the components of the metadata
operations in detail:

1 copy = 1 getattr + 3 lookups + 1 mkmod

+ 2 opens + 1 read.
(1)

For each metadata operation, the client should make
a corresponding backup metadata request. Thus, the client
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Figure 4: The overhead of backing up requests on client side.

should keep a lot of backup metadata requests after the
copy operations. We should mention that there is no write
metadata operation in (1), because the source file is an empty
file. In the case of reading 0 bytes from the source file, our
implemented system does not write any data to the newly
created file.

Figure 4 shows the average execution times on both the
log-based metadata management mechanism and log-less
metadata management mechanisms (with different sizes of
Active Request List, which means each log created by the
client should include different number of backup metadata
requests) for copying 10000 file per minute, which has been
repeated 60 times in sequence (i.e., 60minutes running time).
The 𝑥-axis indicates the duration of time for which metadata
requests are kept on the client side before committing the
metadata changes to the disk on the MDS side. After that,
the corresponding logs kept by the clients can be released. It
is obvious that keeping logs on the client side brings about
no more than 2.9% overhead other than for certain memory
space needed for storing the backed up logs temporarily.

Moreover, it is clear that more time and more memory
space are consumed while the size of Active Request List is
becoming larger, that is because the more requests should be
included in each client log. On the other hand, the larger size
of Active Request List means much more reliability; it can
tolerate more crashes of clients or loss of the backup logs.
Since the size of Active Request List is configurable, it is not
difficult to balance the reliability and performance overhead
with the agreeable size of Active Request List.

3.3. Metadata Processing. To improve the metadata pro-
cessing throughput, all metadata is kept in the memory
of metadata server in the implemented file system. As
a matter of fact, metadata performance is critical to the
whole file system; this information has been used to find
bottlenecks in the important area of metadata processing
as a growing file system performance issue. The mdtest

benchmark [11] was used to test the metadata performance
of our implemented prototype file system, and we measured
metadata performance with various clients from 1 to 16. In
the experiments, we configured one task per client node,
and every task executed the following command: mdtest -u
-d/mnt/pfs/newfs/temp/-b 3 -z 5 -I 100 -i 3.

Figures 5(a) and 5(b) show the results when clients
created and deleted objects (i.e., files), respectively. In these
figures, 𝑥-axis represents the number of clients involved in
the tests, and 𝑦-axis denotes the number of completed I/O
operations per second (called IOPS, higher is better). From
the results reported in Figures 5(a) and 5(b), it is safe to
conclude that log-less mechanisms with different sizes of
Active Request List outperform the log-based mechanism;
namely, in contrast to the conventional metadata manage-
ment mechanism, the newly proposed log-less mechanism
can improve the speed of metadata processing, which is
critical to metadata-intensive applications. In addition, the
log-less mechanism with larger size of Active Request List
performs a little worse than the mechanism with smaller size
of Active Request List since more metadata requests should
be handled.

3.4. I/O Throughput. We also selected BTIO benchmark and
madbench2 benchmark to measure the I/O data rate of the
file systems with different properties. Figures 6(a) and 6(b)
show the results of BTIO benchmark while the subtype is
FULL and SIMPLE, respectively. It is clear that the log-less
mechanism can obtain more I/O data rate than the log-based
mechanism, for example, more than 15% improvement, while
the filetype is SIMPLE and the subclass is D, which is shown
in Figure 6(b). The reason for the less data throughput when
adopting Log-based mechanism is due to making logs to
nonvolatile storage on the MDS must cause negative effect
on I/O data throughput. In addition, the log-less mechanism
with smaller size of Active Request List outperforms the log-
lessmechanismwith larger size ofActiveRequest List because
both clients and the MDS just need to process less backup
metadata requests.

Figures 7(a) and 7(b) demonstrate the experimental
results of MADbench2 with unique and shared filetype,
respectively. As a matter of fact, the results have similar trend
to that of BTIO. From the experimental results presented in
the section, we can safely make a brief summary that log-less
metadata management mechanism on the MDS can improve
not only the speed of metadata processing, but also the I/O
data throughput.

4. Related Work

In this section, we will outline several metadata management
mechanisms for restoring lost metadata updates in the con-
ventional parallel file systems.

(i) Logging Metadata Updates. The traditional logging
metadata updates mean every log should be flushed
to nonvolatile storage before responding to the client
requests. This mechanism is quite straightforward
and can ensure metadata consistency correctly, but it
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may result in quite large overhead for I/O operations,
and then impose negative effect on normal metadata
processing. As a matter of fact, a major part of
conventional distributed and parallel file systems,
such as the Gfarm file system [5] and the Google file
system [7], employs this kind of mechanism to ensure
the metadata consistency even though the former
MDS has crashed unexpectedly.

(ii) Soft Updates. The soft updates mechanism tracks
dependencies among changes to cached (i.e., in-
memory) copies of metadata and enforces these
dependencies, via update sequencing, as the dirty

metadata blocks are written back to nonvolatile stor-
age [16]. Compared with the mechanism of logging
metadata updates, the mechanism of soft update
can yield performance improvements for metadata-
update-intensive applications; however, since certain
changes are cached in the memory, metadata consis-
tency cannot be ensured affirmatively once the MDS
goes into nonoperational state.

(iii) Synchronous Metadata Replication. With the mecha-
nism of synchronous metadata replication, all meta-
data changes are replicated in the standbyMDSbefore
the active MDS responds to the clients. Wang et al.
[17] have designed and implemented a hot standby
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replication mechanism in the Hadoop file system [18]
to provide a highly available metadata service. This
replication mechanism incurs around three times the
delay in metadata responses. In case the active MDS
crashes, the hot standby MDS replaces the failed one
and continues to providemetadata service for the out-
side clients based on its current state, without any lost
metadata changes. However, hot replication model
results in the latency in the responses to the clients,
because every metadata response cannot be delivered
until the corresponding metadata change has been
replicated to the standby one. Consequently, it incurs
performance degradation of I/O data throughput
definitely.

5. Concluding Remarks

This paper has proposed a novel metadata management
scheme on the metadata server for distributed and paral-
lel file systems. In this newly proposed log-less metadata
management mechanism, all client file systems back up the
sent metadata requests till the associated metadata changes
have been committed to the nonvolatile storage by the active
MDS, and the evaluation experiments show that backing up
metadata requests on the involved clients only results in no
more than 2.9% overhead. On the other hand, the log-less
mechanism makes the MDS freed from logging metadata
changes to nonvolatile storage systems; thus, compared with
conventional log-based metadata management mechanisms,
the speed of metadata processing and I/O data throughput
can be improved significantly. As a matter of fact, the log-
less metadata mechanism presented in this paper can be also
applied to other conventional parallel file systems such as the
PVFS file system [19] and the Hadoop file system, or their
extensions, as well.
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