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We propose to study a generalized family of max-type difference equations and then prove the
global attractivity of a particular case of it under some parameter conditions. Through some
numerical results of other cases, we finally pose a generic conjecture.

1. Introduction

The study of max-type difference equations is a hotspot in the area of discrete dynamics
because such equations are often closely related to automatic control theory and competitive
dynamics. For recent advances in this direction see [1–8] and the references therein.

Motivated by [9], Liu et al. [10] studied the following nonautonomous max-type
difference equation:

yn =
p + ryn−s

q + φn
(
yn−1, . . . , yn−m

)
+ yn−s

, n ∈ N0, (1.1)

where p ≥ 0, r, q > 0, s,m ∈ N, and φn : (R+)m → R
+, n ∈ N0 are mappings satisfying

the condition βmin{x1, . . . , xm} ≤ φn(x1, x2, . . . , xm) ≤ βmax{x1, . . . , xm}, for some fixed β ∈
(0,+∞). When p = 0, β ∈ (0, 1), they proved that every positive solution to (1.1) converges to
zero if r ≤ q, while (r − q)/(1 + β) if r > q. If p > 0 and rq ≥ p, then each positive solution

to (1.1) converges to (
√
(q − r)2 + 4p(1 + β) − (q − r))/(2(1 + β)), for some β ∈ (0,+∞), except

for the case q < r, β ∈ (β0,+∞), where β0 = 4p/(q − r)2 + 1. Note that the behavior of positive
solutions to (1.1) for the case q < r, β ∈ (β0,+∞), is still an unsolved open problem as was
mentioned in [10].
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Here, we propose to investigate the asymptotic behavior of positive solutions to the
generalized family of max-type difference equations

xn = max
1≤i≤k

{
pi + rixn−s

qi + xn−s + fi(xn−1, . . . , xn−m)

}
, n ∈ N0, (1.2)

where pi ≥ 0, ri, qi > 0, s,m, k ∈ N, k ≥ 2 and the functions fi : [0,+∞)m → [0,+∞),
i = 1, 2, . . . , k satisfy the condition

βmin{u1, . . . , um} ≤ fi(u1, u2, . . . , um) ≤ βmax{u1, . . . , um}, (1.3)

for some fixed β ∈ (0, 1).
In this paper, we mainly consider the particular case that all pi are zero, and then

obviously (1.2) reduces to the following form:

xn = xn−s × max
1≤i≤k

{
ri

qi + xn−s + fi(xn−1, . . . , xn−m)

}
, n ∈ N0. (1.4)

Let x∗ be a nonnegative equilibrium point of (1.4), then we have

x∗ = x∗ × max
1≤i≤k

{
ri

qi +
(
1 + β

)
x∗

}

. (1.5)

It follows directly from (1.5) that if 0 < ri ≤ qi for all i = 1, 2, . . . , k, then (1.4) has the unique
nonnegative equilibrium x∗ = 0, while if there exists at least one j ∈ {1, 2, . . . , k} such that
rj > qj , then (1.4) has a zero equilibrium x∗ = 0 and a unique positive equilibrium x∗ =
max1≤i≤k{ri − qi}/(1 + β).

Finally, the following two beautiful theorems are derived.

Theorem 1.1. Consider (1.4) with condition (1.3). If 0 < ri ≤ qi for all i = 1, 2, . . . , k, then every
positive solution to (1.4) converges to the unique nonnegative equilibrium zero.

Theorem 1.2. Consider (1.4) with positive initial values and positive ri and qi. Let fi : [0,+∞)m →
[0,+∞) be functions such that for some fixed β ∈ (0, 1), there hold

βmin{u1, . . . , um} ≤ fi(u1, . . . , um) ≤ βmax{u1, . . . , um}, i = 1, 2, . . . , k. (1.6)

If there exists at least one j ∈ {1, 2, . . . , k} such that rj > qj , then the unique positive equilibrium of
(1.4) is a global attractor.

2. Preliminary Lemmas

For the purpose of establishing the main results, some auxiliary lemmas are essential.
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Lemma 2.1. Consider the first-order difference equation

xn = xn−1 × max
1≤i≤k

{
ri

qi + xn−1

}
, n ∈ N0, (2.1)

with positive initial value x−1 and positive ri and qi. If there exists at least one j ∈ {1, 2, . . . , k} such
that rj > qj , then

lim
n→∞

xn = max
{
ri − qi : i = 1, 2, . . . , k

}
. (2.2)

Proof. Suppose that max{ri − qi : i = 1, 2, . . . , k} = rτ − qτ , which is positive, for some τ ∈
{1, 2, . . . , k}. By making the variable change xn = (rτ − qτ)yn into (2.1) and then canceling the
positive term rτ − qτ from the resulting equation, we can derive

yn = yn−1 × max
1≤i≤k

{
ri

qi +
(
rτ − qτ

)
yn−1

}

, n ∈ N0. (2.3)

Note that min{a1/b1, a2/b2} ≤ (a1 + a2)/(b1 + b2) ≤ max{a1/b1, a2/b2} for ai, bi > 0, i = 1, 2.
Then it follows from (2.3) that

yn+1 = max
1≤i≤k

{
qiyn +

(
ri − qi

)
yn

qi +
(
rτ − qτ

)
yn

}

≤ max
1≤i≤k

{
qiyn +

(
rτ − qτ

)
yn

qi +
(
rτ − qτ

)
yn

}

≤ max
{
yn, 1

}
. (2.4)

In addition, the following two inequalities hold:

yn+1 − 1 = max
1≤i≤k

{
riyn

qi +
(
rτ − qτ

)
yn

− 1

}

≥ rτyn

qτ +
(
rτ − qτ

)
yn

− 1 =
qτ
(
yn − 1

)

qτ +
(
rτ − qτ

)
yn
, (2.5)

yn+1 − yn = max
1≤i≤k

{
riyn

qi +
(
rτ − qτ

)
yn

− yn
}

≥ rτyn

qτ +
(
rτ − qτ

)
yn

− yn =

(
rτ − qτ

)
yn

(
1 − yn

)

qτ +
(
rτ − qτ

)
yn

.

(2.6)

In the following, we are confronted with three possibilities.

Case 1. If there exists n0 ≥ −1 such that yn0 = 1, then it follows from (2.4) and (2.5) that yn = 1
holds for all n ≥ n0.

Case 2. If there exists n0 ≥ −1 such that yn0 > 1, then it follows from (2.5) and (2.6) that

yn0 ≥ yn0+1 ≥ yn0+2 ≥ · · · > 1. (2.7)
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Thus there is a finite limit γ = limn→∞yn ≥ 1. By taking the limits on both sides of (2.3) and
canceling the positive factor γ from the resulting equation, we obtain

1 = max
1≤i≤k

{
ri

qi +
(
rτ − qτ

)
γ

}

, (2.8)

which implies γ = 1. Because if γ > 1, then

1 = max
1≤i≤k

{
ri

qi +
(
rτ − qτ

)
γ

}

< max
1≤i≤k

{
ri

qi +
(
rτ − qτ

)

}

= 1, (2.9)

leading to a contradiction.

Case 3. If yn < 1 for all n ≥ −1, then it follows from (2.5) and (2.6) that

y−1 < y0 < y1 < · · · < yn < · · · < 1. (2.10)

Therefore, the limit of yn exists, denoted by 0 < γ = limn→∞yn ≤ 1. By taking the limits on
both sides of (2.3) and canceling the nonzero factor γ from the resulting equation, there hold

1 = max
1≤i≤k

{
ri

qi +
(
rτ − qτ

)
γ

}

, (2.11)

which implies γ = 1. Because if 0 < γ < 1, then

1 = max
1≤i≤k

{
ri

qi +
(
rτ − qτ

)
γ

}

> max
1≤i≤k

{
ri

qi +
(
rτ − qτ

)

}

= 1, (2.12)

which is a contradiction.

In either of the above three cases, we get limn→∞yn = 1, implying limn→∞xn = rτ − qτ .

From Lemma 2.1, we have the following result.

Lemma 2.2. Consider the s-order difference equation

xn = xn−s × max
1≤i≤k

{
ri

qi + xn−s

}
, n ∈ N0, (2.13)

with positive initial values and ri, qi > 0. If there exists at least one j ∈ {1, 2, . . . , k} such that rj > qj ,
then

lim
n→∞

xn = max
{
ri − qi : i = 1, 2, . . . , k

}
. (2.14)
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Proof. Let {xn}n≥−s be an arbitrary positive solution to (2.13). Apparently we know that the
sequence {xn}n≥−s can be divided into s subsequences {xj+sk}k≥0, j = −s,−s + 1, . . . ,−1, which
are, respectively, positive solutions to the first-order equation (2.1) with positive initial values
x−s, x−s+1, . . . , x−1. According to Lemma 2.1, we derive limk→∞xj+sk = max{ri − qi : i =
1, 2, . . . , k} for all j = −s,−s + 1, . . . ,−1, which directly lead to limn→∞xn = max{ri − qi :
i = 1, 2, . . . , k}.

Lemma 2.3. Let a > b > 0, 0 < β < 1, and 0 < ε < ((1 − β)/(1 + β))(a − b). Define two sequences
{mk} and {Mk} in the following way:

M1 = a − b,

mk =M1 − β
(
Mk +

ε

k

)
, k = 1, 2, . . . ,

Mk =M1 − β
(
mk−1 − ε

(k − 1)

)
, k = 2, 3, . . . .

(2.15)

Then limk→∞mk = limk→∞Mk.

Proof. Observe that

M2 −M1 = −β((1 − β)(a − b) − (
β + 1

)
ε
)
< 0,

mk+1 −mk = β
[
Mk −Mk+1 +

ε

k(k + 1)

]
, k = 1, 2, . . . ,

Mk+1 −Mk = −β
[
mk −mk−1 +

ε

k(k − 1)

]
, k = 2, 3, . . . .

(2.16)

It follows by induction that {mk} is increasing and {Mk} is decreasing. Again by induction
we derive mk < a−b and Mk > 0, k = 1, 2, . . . . Hence there are two finite limits ξ = limk→∞mk

and η = limk→∞Mk. By taking limits on both sides of (2.15), we derive

ξ = a − b − βη, η = a − b − βξ, (2.17)

which imply (1 − β)(ξ − η) = 0. Therefore ξ = η = (a − b)/(1 + β).

3. Proofs of Main Theorems

In this section, we are in a position to prove the main theorems presented in Section 1.

Proof of Theorem 1.1. Note that for the case ri < qi, i = 1, 2, . . . , k, the behavior of positive
solutions to (1.4) is quite simple. In this case, we have that

xn ≤ xn−s × max
1≤i≤k

{
ri
qi

}
= μxn−s, (3.1)
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where μ = max1≤i≤k{ri/qi} < 1. Easily the subsequences {xls+j}l∈N0
, j ∈ {0, 1, . . . , s − 1}

converge to zero, hence the sequence {xn} also converges to zero.
For the case ri ≤ qi, i = 1, 2, . . . , k with at least one j ∈ {1, 2, . . . , k} such that rj = qj , we

can obtain that

xn ≤ xn−s × max
1≤i≤k

{
ri
qi

}
= xn−s. (3.2)

In this case, the subsequences {xls+j}l∈N0
, j = 0, 1, . . . , s − 1 are all positive and nonincreasing,

thus they converge, respectively, to some nonnegative limits ψj := liml→∞xls+j , j =0, 1, . . . , s−1.
If we replace n in (1.4) by sl + j, l ∈ N0 for an arbitrary fixed j ∈ {0, 1, . . . , s − 1} and let

l → ∞, we can get

ψj = ψj × max
1≤i≤k

{
ri

qi + ψj + fi
(
ψv1 , . . . , ψvm

)

}

, (3.3)

where vi ∈ {0, 1, . . . , s− 1}, i = 1, . . . , m. Without loss of generality, assume that ψj /= 0, then we
obtain that

1 =
rτ

qτ + ψj + fτ
(
ψv1 , . . . , ψvm

) , (3.4)

with some fixed number τ ∈ {1, 2, . . . , k}. Because rτ ≤ qτ , then it follows from (3.4) that

qτ + ψj + fτ
(
ψv1 , . . . , ψvm

)
= rτ ≤ qτ . (3.5)

Therefore we have

ψj + fτ
(
ψv1 , . . . , ψvm

)
= 0, (3.6)

leading to ψj = 0, which is a contradiction. Hence we have that ψj = 0, j = 0, 1, . . . , s − 1, and
every positive solution to (1.4) converges to zero, if ri ≤ qi for all i = 1, 2, . . . , k.

Proof of Theorem 1.2. Suppose that max{ri − qi : i = 1, 2, . . . , k} = rτ − qτ > 0 for some τ ∈
{1, 2, . . . , k}. Let ε be an arbitrary fixed real number with 0 < ε < ((1 − β)/(1 + β))(rτ − qτ).
Define two sequences {Mk} and {mk} in the way shown in (2.15) with a = rτ , b = qτ .

Let {xn} be an arbitrary positive solution to (1.4). Next, we proceed by proving two
claims.

Claim 1. There exists N1 ∈ N such that m1 − ε ≤ xn ≤M1 + ε for all n ≥N1.

Proof of Claim 1. Note that

xn ≤ xn−s × max
1≤i≤k

{
ri

qi + xn−s

}
, n = 0, 1, 2, . . . . (3.7)
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Consider the following difference equation:

z
(1)
n = z(1)n−s × max

1≤i≤k

{
ri

qi + z
(1)
n−s

}

, n = 0, 1, 2, . . . . (3.8)

Let {z(1)n } be a positive solution to (3.7) with the initial values z(1)−1 = x−1, z(1)−2 = x−2, . . . , z
(1)
−s =

x−s.
Note that the mapping h(x) = rx/(q + x) is strictly increasing on the interval (0,+∞).

It follows by induction that xn ≤ z
(1)
n for all n ≥ −s. By Lemma 2.2, we have limn→∞z

(1)
n =

rτ − qτ =M1. Hence there is an integer N ′
1 ∈ N such that xn ≤M1 + ε for n ≥N ′

1.
Let t = max{s,m}. Note that

xn ≥ xn−s × max
1≤i≤k

{
ri

qi + xn−s + β(M1 + ε)

}
, n ≥N ′

1 + t. (3.9)

Consider the difference equation

y
(1)
n = y(1)

n−s × max
1≤i≤k

{
ri

qi + y
(1)
n−s + β(M1 + ε)

}

, n ≥N ′
1 + t, (3.10)

with y
(1)
N ′

1+t−1 = xN ′
1+t−1, y(1)

N ′
1+t−2 = xN ′

1+t−2, . . . , y
(1)
N ′

1
= xN ′

1
. Note the monotonicity of h(x), it

follows by induction that xn ≥ y(1)
n for all n ≥N ′

1. By Lemma 2.2, we get that limn→∞y
(1)
n = m1.

Thus there exists an integer N1 ≥N ′
1 such that xn ≥ m1 − ε for all n ≥N1.

Working inductively, we will reach the following claim.

Claim 2. For every k ∈ N, there exists Nk ∈ N such that

mk − ε

k
≤ xn ≤Mk +

ε

k
, (3.11)

for all n ≥Nk.

Proof of Claim 2. Obviously, the case k = 1 follows directly from Claim 1. In the following, we
proceed by induction. Assume that the assertion is true for k = ω(ω ≥ 1). Then it suffices to
prove the assertion is also true for k = ω + 1.

Note that

xn ≤ xn−s × max
1≤i≤k

{
ri

qi + xn−s + β(mω − ε/ω)
}
, n ≥Nω + t. (3.12)

Consider the difference equation

z
(ω+1)
n = z(ω+1)

n−s × max
1≤i≤k

{
ri

qi + z
(ω+1)
n−s + β(mω − ε/ω)

}

, n ≥Nω + t, (3.13)
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with z
(ω+1)
Nω+t−1 = xNω+t−1, z(ω+1)

Nω+t−2 = xNω+t−2, . . . , z
(ω+1)
Nω

= xNω . Note the monotonicity of h(x),

it follows by induction that xn ≤ z
(ω+1)
n for all n ≥ Nω. By Lemma 2.2, we have that

limn→∞z
(ω+1)
n = Mω+1. So there is an integer N ′

ω+1 ∈ N such that xn ≤ Mω+1 + ε/(ω + 1)
for all n ≥N ′

ω+1. Then note that

xn ≥ xn−s × max
1≤i≤k

{
ri

qi + xn−s + β(Mω+1 + ε/(ω + 1))

}
, n ≥N ′

ω+1 + t. (3.14)

Consider the following difference equation

y
(ω+1)
n = y(ω+1)

n−s × max
1≤i≤k

{
ri

qi + y
(ω+1)
n−s + β(Mω+1 + ε/(ω + 1))

}

, n ≥N ′
ω+1 + t, (3.15)

with y
(ω+1)
N ′

ω+1+t−1 = xN ′
ω+1+t−1, z(ω+1)

N ′
ω+1+t−2 = xN ′

ω+1+t−2, . . . , z
(ω+1)
N ′

ω+1
= xN ′

ω+1
. By the monotonicity of

h(x), it follows by induction that xn ≥ y
(ω+1)
n for all n ≥ N ′

ω+1. By Lemma 2.2, we have that
limn→∞y

(ω+1)
n = mω+1. So there is an integer Nω+1 ≥N ′

ω+1 such that xn ≥ mω+1 − ε/(ω + 1) for
all n ≥Nω+1.

From Claim 2, we derive

lim
k→∞

mk = lim
k→∞

(
mk − ε

k

)
≤ lim

n→∞
xn ≤ lim

n→∞
xn ≤ lim

k→∞

(
Mk +

ε

k

)
= lim

k→∞
Mk. (3.16)

This plus Lemma 2.3 leads to that

lim
n→∞

xn = lim
k→∞

mk = lim
k→∞

Mk =
rτ − qτ
1 + β

. (3.17)

4. Simulations and Future Work

In the previous section, we proved the global attractivity of (1.2) when all pi are zero. In this
section, we investigate the dynamic behavior of (1.2) provided that all pi are not zero. First,
it is trivial to confirm that when all pi are not zero, (1.2) has the following unique positive

equilibrium point x∗ = max1≤i≤k{
√
(qi − ri)2 + 4pi(1 + β) + ri − qi}/(2(1 + β)). In the following,

some numerical results are presented.

Experiment 1. Consider the first-order difference equation

xn = max
{

0.2 + 0.6xn−1

0.6 + xn−1 + 0.3xn−1
,

rxn−1

q + xn−1 + 0.3xn−1

}
, n ∈ N, (4.1)

where r, q > 0 and the initial value x0 > 0. (See Figures 1 and 2).



Discrete Dynamics in Nature and Society 9

0.2

0.22

0.24

0.26

0.28

0.3

0.32
0.34

0.36

0.38

0.4

0 10 20 30 40 50

(a) Initial value x0 = 0.2

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 10 20 30 40 50

(b) Initial value x0 = 0.7

Figure 1: r = 1, q = 2; x∗ =
√

26/13 ≈ 0.3922.
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Figure 2: r = 2, q = 1; x∗ = 10/13 ≈ 0.7692.

Experiment 2. Consider the second-order difference equation

xn = max
{

0.5 + xn−2

1 + xn−2 + 0.5xn−1
,

0.8 + rxn−2

q + xn−2 + 0.5xn−1

}
, n ≥ 2, (4.2)

where r, q > 0 and the initial values x0, x1 > 0. (See Figures 3 and 4).

Experiment 3. Consider the third-order difference equation

xn = max

⎧
⎪⎨

⎪⎩

0.5 + xn−3

1 + xn−3 + 0.9
√(

x2
n−1 + x

2
n−2

)
/2
,

3xn−3

2 + xn−3 + 0.9
√(

x2
n−1 + x

2
n−2

)
/2

⎫
⎪⎬

⎪⎭
, n ≥ 3,

(4.3)

where the initial values x0, x1, x2 > 0. (See Figure 5).
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(b) Initial values x0 = 0.8, x1 = 0.3

Figure 3: r = 1, q = 2; x∗ =
√

3/3 ≈ 0.5774.
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(b) Initial values x0 = 0.5, x1 = 0.9

Figure 4: r = 2, q = 1; x∗ = (
√

5.8 + 1)/3 ≈ 1.1361.

Inspired by this work and the results of [10], here we pose the following conjecture.

Conjecture 4.1. Consider (1.2) with nonnegative pi and positive ri and qi. Let fi : [0,+∞)m →
[0,+∞), i = 1, 2, . . . , k be k functions such that for some fixed β ∈ (0, 1), there hold

βmin{u1, . . . , uk} ≤ fi(u1, . . . , uk) ≤ βmax{u1, . . . , uk}. (4.4)

If riqi ≥ pi for all i = 1, 2, . . . , k, then every positive solution to (1.2) converges to the equilibrium
point

x∗ =
1

2
(
1 + β

)max
1≤i≤k

{√(
qi − ri

)2 + 4pi
(
1 + β

)
+ ri − qi

}
. (4.5)
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(d) Initial values x0 = 1.1, x1 = 0.8, x2 = 0.6

Figure 5: x∗ = 10/19 ≈ 0.5263.
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[9] B. D. Iričanin, “Dynamics of a class of higher order difference equations,” Discrete Dynamics in Nature
and Society, vol. 2007, Article ID 73849, 6 pages, 2007.

[10] W. Liu, X. Yang, and J. Cao, “On global attractivity of a class of nonautonomous difference equations,”
Discrete Dynamics in Nature and Society, vol. 2010, Article ID 364083, 13 pages, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


