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This paper investigates asymptotic stabilization for linear systems over networks based on event-driven communication. A new
communication logic is proposed to reduce the feedback effort, which has some advantages over traditional ones with continuous
feedback. Considering the effect of time-varying transmission delays, the criteria for the design of both the feedback gain and the
event-triggering mechanism are derived to guarantee the stability and performance requirements. Finally, the proposed techniques
are illustrated by an inverted pendulum system and a numerical example.

1. Introduction

Traditional control theory is built on the idea of perfect infor-
mation flow from the sensor to the controller and from the
controller to the actuator, that is, there is no delay and the
transmitted signals are equal to received signals. However,
this is not true for control loop closed over networks, where
the actuators, sensors, and controllers are distributed in a
wide geographical area, operating via some communication
networks, such as DeviceNet, Ethernet, and FireWire, to
name a few [1]. Because of the network uncertainties, data
packets can be delayed, dropped, or reordered which make
closed-loop control very difficult. Therefore, control over
networks appears and has been drawing more and more
attention in recent years from researchers working in the
areas of systems and control [2–5]. A typical feature in the
literature lies in the periodic execution of the control task
due to the ease of analysis and design. However, the time
synchronization problem presents a challenge in digital con-
trol applications when dealing with multiple sampling rates
and systems with distributed computing devices; sampling
jitter, time-varying delays, and coding errors introduced by
networked distributed systems may degrade the performance
or even cause closed-loop instability. On the other hand,
periodic sampling only considers the system dynamics at

every sampling instance triggered by a clock, and it does not
take into account the constraints of both computer resources
and communication bandwidth. Hence, the communication
resources usage in this control scheme is inefficient.

To relax the periodicity assumption, event triggering
tech-niques are proposed. Various terms are used to express
event-based sampling strategy: the level crossing sampling
[6], the magnitude-driven sampling, and, sometimes, sam-
pling in the amplitude domain, Lebsegue sampling [7]. In
the sensor network community, the magnitude-driven or
level crossing sampling is known as send-on-delta [8] or
deadbands [9]. By contrast, event-based communication
mechanisms use resources more efficiently by invoking oper-
ation only when a specific event occurs in the system, which
guarantees relatively little communication effort. Due to easy
implementation, event-based control mechanisms have been
used in industry for some time, ranging in sectors from oil
and gas, power and utility, to manufacturing. Unfortunately
there is little methodology available for event-based control
at the beginning. This could be explained as the mathemat-
ical difficulties since event-based control integrates discrete
logic functions with continuously evolving system dynamics.
However, most existing control design methods focus only
on dynamic systems, while ignoring logic constraints. Early
results on discontinuous systems and impulsive control were
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used to solve problems concerning event-based control.
Event-based control can also be viewed as a special case
of hybrid systems from the viewpoint of the continuous
variables and discrete transition associated with events.
Recently, a few fundamental results have been reported for
event-based control [10–18] and estimation [19]. Overall,
the research of event-based control is still in its infancy, and
the results obtained are still very limited, contrasting to its
wider applications in practical control problems. The various
benefits of event-based control necessitate overcoming the
difficulties in the analysis and design of this type of control
strategies.

In this paper, further results on event-based control
recently dealt with in [10] are presented, where an event
generation condition based on the control error is proposed
rather than the state error considered in [10]. This is achieved
by adopting the topology that the sensor, controller, and
event detector reside on the same node in the network.
The event detector contains sophisticated logic devices to
trigger an event when the control error norm reaches a
certain proportion of the state norm, and then send the
current control signal to the actuator node. The effect
of time-varying network transmission delays is considered
instead of a constant computational delay as in [10]. The
defined events guarantee that the controller designed can
stabilize the event-based control system. The relationships
between the parameters of the event detector, the upper
bound of transmission delays, and the feedback gain are
also established. Moreover, the feasibility of this event-
based scheme is verified by estimating the lower bound of
the difference between two consecutive event times. Two
simulation examples are presented to illustrate the proposed
approach.

The rest of this paper is organized as follows. Section 2
presents the event-triggered problem with consideration of
time-varying transmission delays. Based on a control error
event-triggered scheme, design for both the controller and
the parameter of the event detector for event-based control
systems is proposed in Section 3. Two simulation examples
are given in Section 4 to demonstrate the advantage of the
event-triggered algorithm. Finally, Section 5 concludes the
paper.

2. Problem Statement

Consider the following continuous-time linear system
described by

ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ Rn and u(t) ∈ Rm denote the system
state vector, and control input, respectively. We make the
assumption that all state variables are measurable. The
parameter matrices A and B are known with appropriate
dimensions.

Different from traditional control systems that the inter-
connection between the plant and the actuator is transparent,
the actuator considered is connected to the system in (1)
through a communication link. In this case, the usual
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Figure 1: Event-based control loop.

assumption that the transmitted signals are equal to received
signals is no longer applicable. As is well known, the periodic
sampling mechanism has been used implicitly for a few
decades due to the ease of analysis and design. However,
the communication resources may be used unnecessarily in
some situations. The event-based control scheme is used in
this paper to avoid the overload of the network transmission
and reduce the network bandwidth usage.

The topological structure of the considered event-based
control system consisting of a continuous-time linear time-
invariant system, a sensor, a continuous-time state-feedback
controller, an event detector, and an actuator is shown in
Figure 1. The signal is transmitted continuously along the
solid lines among the actuator, the plant, and the smart
event detector; whereas the communication link denoted by
the dash line is only used after an event has been generated.
As Figure 1 suggests, the sensor, controller, and event
detector reside on the same node in the network. The sensor
samples the plant continuously, then the sampled signals
are sent to the controller and the event detector. The event
detector determines whether the control signal will be sent
out through the network by using the event condition. Under
the event condition, a sequence of time instants, t0, t1, t2, . . .,
is determined as the event time, where t0 = 0 is the initial
time. The inter-event time is defined as tk+1 − tk which
corresponds to the release period given by the event detector.
Throughout this paper, it is assumed that the elapsed time
between the sensor measurement and the event detector
decision is negligible, the data is transmitted with a single
packet, and packet loss does not occur in transmission. Thus
the only effect considered for network uncertainties is the
transmission delays on the system. Suppose the delay τk
in the network communication is time varying and τk ∈
[0, τ], where τ is a constant scalar representing the maximum
delay. The control signal u(t0),u(t1),u(t2), . . . will arrive at
the actuator side at the instants t0 + τ0, t1 + τ1, t2 + τ2, . . .,
respectively. Moreover, the actuator will hold the control
value u(tk) and drive the controlled plant until a new
message arrives. Therefore, the output of the actuator can be
expressed as

u(t) = Kx(tk), for t ∈ [tk + τk, tk+1 + τk+1), (2)

where K is a state feedback gain matrix of appropriate
dimension to stabilize A + BK .
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Based on the above analysis, the system model under
the controller in (2) with event-based communication over
networks can be described by

ẋ(t) = Ax(t) + BKx(tk), for t ∈ [tk + τk, tk+1 + τk+1).
(3)

The purpose of this paper is to design an event condition ren-
dering the event-based control system in (3) asymptotically
stable.

3. Main Results

Inspired by [10], the event detector has the following form:

‖ek(t)‖ < σ‖x(t)‖, (4)

where ek(t) is defined as the control error between the cur-
rently computed control value and the previously submitted
one

ek(t) = K(x(tk)− x(t)), for t ∈ [tk, tk+1) (5)

and σ is a positive scalar to be determined later.

Remark 1. In the literature, event generation is usually based
on the difference between the current plant state and the
previously submitted plant state or the difference between
the plant state and the state of a reference model. The results
presented in this paper are based on the assumption that the
event detector is implemented with respect to control errors.
This does make sense in a networked control setting where
the shared resource is the transmission medium.

Remark 2. To reduce communication bus load, the com-
puted control signal satisfying the event condition in (4)
will not be sent to update the actuator. Only the one that
violates the inequality in (4) will be transmitted, but the
communication will not be invoked when the system is
in steady state. Intuitively, decreasing the value of σ has
the effect of shrinking the average inter-event time since
the ratio between the control error and the state will
need less time to reach the threshold as the value of σ
decreases. Particularly, the event-triggered scheme reduces to
a continuous communication case when σ = 0.

Combining the definition of ek(t), the dynamic of the
digitally implemented control system for t ≥ tk + τk can be
described by

ẋ(t) = Ax(t) + BKx(tk)

= (A + BK)x(t) + BK(x(tk)− x(t))

= (A + BK)x(t) + Bek(t).

(6)

If we consider the control error as a perturbation, it
is natural to apply the perturbation method [20]. The
input-to-state stable Lyapunov function candidate V(x, t) =
xT(t)Px(t) with respect to control errors e(t) is used to
investigate the stability for the event-based control system.

The derivative of V(x, t) along the trajectories of (6) is giv-
en by

∂V(x, t)
∂t

= ∂V(x, t)
∂x(t)

((A + BK)x(t) + Bek(t))

= xT(t)
(

(A + BK)TP + P(A + BK)
)
x(t)

+ xT(t)PBek(t) + eTk (t)BTPx(t)

= −xT(t)Qx(t) + 2xT(t)PBek(t),

(7)

where Q is a symmetric matrix defined by

(A + BK)TP + P(A + BK) + Q = 0. (8)

From (7), it can be obtained that

∂V(x, t)
∂t

≤ −λmin(Q)‖x‖2 + 2‖PB‖‖x‖‖ek‖. (9)

Thus based on the Lasalle’s invariance principle, a sufficient
condition to guarantee the asymptotic stability is

‖ek(t)‖ < σ1‖x(t)‖, (10)

where

σ1 = λmin(Q)
2‖PB‖ . (11)

The next event instant is given by

tk+1 = inf{t > tk | ‖ek(t)‖ ≥ σ‖x(t)‖}. (12)

Choose σ ≤ σ1, which implies the asymptotic stability of the
system in (3) for t ∈ [tk +τk, tk+1) since the inequality in (10)
is satisfied.

Now consider the interval [tk+1, tk+1 + τk+1). First look at
the dynamic of ‖ek(t)‖/‖x(t)‖:

d

dt

‖ek(t)‖
‖x(t)‖ =

d

dt

[
eTk (t)ek(t)

]1/2

[xT(t)x(t)]1/2

= − eTk (t)Kẋ(t)

‖ek(t)‖‖x(t)‖ −
x(t)T ẋ(t)

‖x(t)‖2
‖ek(t)‖
‖x(t)‖

≤ ‖ek(t)‖‖K‖‖ẋ(t)‖
‖ek(t)‖‖x(t)‖ +

‖x(t)‖‖ẋ(t)‖
‖x(t)‖‖x(t)‖

‖ek(t)‖
‖x(t)‖

=
(
‖K‖ +

‖ek(t)‖
‖x(t)‖

)‖ẋ(t)‖
‖x(t)‖

≤
(
‖K‖ +

‖ek(t)‖
‖x(t)‖

)

× ‖A + BK‖‖x(t)‖ + ‖B‖‖ek(t)‖
‖x(t)‖

= ‖K‖‖A + BK‖ + (‖K‖‖B‖ + ‖A + BK‖)

× ‖ek(t)‖
‖x(t)‖ + ‖B‖

(‖ek(t)‖
‖x(t)‖

)2

.

(13)

The comparison lemma in [20] as a tool to compute
bounds on a solution without computing the solution itself
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can be used to estimate the bound on ‖ek(t)‖/‖x(t)‖.
Consider the scalar differential equation

ϕ̇(t) = αϕ2(t) +
(
αβ + γ

)
ϕ(t) + βγ, (14)

where

α = ‖B‖, β = ‖K‖, γ = ‖A + BK‖. (15)

Let [tk+1, tk+1 + τ) be the interval of existence of the solution
ϕ(t). Recall that (12) implies ek(t) = σx(t) at event instant
t = tk+1 and thus ‖ek(tk+1)‖/‖x(tk+1)‖ = σ . Let

σ ≤ ϕ(tk+1) = σ2 < σ1. (16)

Then ‖ek(t)‖/‖x(t)‖ ≤ ϕ(t) for all t ∈ [tk+1, tk+1 +τ). Rewrite
(14) as

ϕ̇(t) = αϕ2(t) +
(
αβ + γ

)
ϕ(t) + βγ

= α

(
ϕ2(t) +

αβ + γ

α
ϕ(t) +

βγ

α

)

= α

⎡
⎣
(
ϕ(t) +

αβ + γ

2α

)2

−
(
γ − αβ

)2

4α2

⎤
⎦.

(17)

Denote (γ − αβ)2/4α2 as q2, and take the transform

ϕ(t) +
αβ + γ

2α
= s(t), dϕ = ds, (18)

then

τ =
∫ tk+1+τ

tk+1

dt = 1
α

∫ ϕ(tk+1+τ)

ϕ(tk+1)

1
ϕ2 +

((
αβ + γ

)
/α
)
ϕ + βγ/α

dϕ

= 1
α

∫ ϕ(tk+1+τ)+((αβ+γ)/2α)

ϕ(tk+1)+((αβ+γ)/2α)

1
s2 − q2

ds

= 1
2qα

ln
s− q

s + q
|ϕ(tk+1+τ)+((αβ+γ)/2α)
ϕ(tk+1)+((αβ+γ)/2α)

= 1
γ − αβ

ln

(
ϕ(tk+1 + τ) + β

)(
ϕ(tk+1) + γ/α

)
(
ϕ(tk+1 + τ) + γ/α

)(
ϕ(tk+1) + β

) .
(19)

The desired upper bound for σ is obtained by solving the last
equation in (19) with

ϕ(tk+1 + τ) = σ1, ϕ(tk+1) = σ2, (20)

that is,

σ2 = γ
(
σ1 + β

)− β
(
ασ1 + γ

)
e(γ−αβ)τ

(
ασ1 + γ

)
e(γ−αβ)τ − α

(
σ1 + β

) . (21)

The inequality σ ≤ σ2 < σ1 implies that (10) can be
guaranteed for t ∈ [tk+1, tk+1 + τk+1) by generating an event
at time instant tk+1.

In addition, another constraint needs to be enforced on
σ to guarantee that there is no event being generated for the
time t ∈ [tk+1, tk+1 + τk+1), that is, ‖ek+1(t)‖/‖x(t)‖ < σ . At
t = tk+1, an event occurs, and the control error changes from
ek(t) = K(x(tk)−x(t)) to ek+1(t) = K(x(tk+1)−x(t)). To avoid

the out-of-order transmission for t ∈ [tk+1, tk+1 + τk+1), the
dynamic of ‖ek+1(t)‖/‖x(t)‖ should be bounded by σ . Follow
the same arguments as (13) to get

d

dt

‖ek+1(t)‖
‖x(t)‖ = d

dt

[
eTk+1(t)ek+1(t)

]1/2

[xT(t)x(t)]1/2

= − eTk+1(t)Kẋ(t)

‖ek+1(t)‖‖x(t)‖ −
xT(t)ẋ(t)

‖x(t)‖2
‖ek+1(t)‖
‖x(t)‖

≤ ‖ek+1(t)‖‖K‖‖ẋ(t)‖
‖ek+1(t)‖‖x(t)‖

+
‖x(t)‖‖ẋ(t)‖
‖x(t)‖‖x(t)‖

‖ek+1(t)‖
‖x(t)‖

=
(
‖K‖ +

‖ek+1(t)‖
‖x(t)‖

)‖ẋ(t)‖
‖x(t)‖

≤
(
‖K‖ +

‖ek+1(t)‖
‖x(t)‖

)

× ‖A + BK‖‖x(t)‖ + ‖B‖‖ek(t)‖
‖x(t)‖

=
(
‖K‖ +

‖ek+1(t)‖
‖x(t)‖

)

×
(
‖A + BK‖ + ‖B‖‖ek(t)‖

‖x(t)‖
)

,

(22)

where ‖ek(t)‖/‖x(t)‖ is bounded by ϕ(t), which can be
found by solving the last equation in (19) with ϕ(tk+1) =
σ2. By the comparison principle, an upper bound for the
evolution of the ratio ‖ek+1(t)‖/‖x(t)‖ can be immediately
obtained by solving

φ̇(t) = (‖K‖ + φ(t)
)(‖A + BK‖ + ‖B‖ϕ(t)

)
, (23)

with ‖ek+1(t)‖/‖x(t)‖ ≤ φ(t). Furthermore, it follows from
(23) and φ(tk+1) = 0 that

φ(tk+1 + τ)

= ‖K‖
(

exp

(∫ tk+1+τ

tk+1

(‖A + BK‖ + ‖B‖ϕ(t)
)
dt

)
− 1

)

≤ ‖K‖
(

exp

(∫ tk+1+τ

tk+1

(‖A+BK‖ + ‖B‖σ1)dt

)
−1

)

= ‖K‖(exp((‖A + BK‖ + ‖B‖σ1)τ)− 1
)

= σ3,
(24)

which implies that there is no another event being triggered
before the termination of the previous one if σ ≥ σ3. The
lower bound of the difference between two consecutive event
times is described by τk + η, where η is the time for ϕ(t) to
evolve from σ3 to σ . Substituting the corresponding values in
(19), thus

η = 1
γ − αβ

ln

(
σ + β

)(
σ3 + γ/α

)
(
σ + γ/α

)(
σ3 + β

) (25)

is obtained.
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Hence, the following theorem can be concluded.

Theorem 3. For a given parameter τ and any k ∈ N, the event
condition in (4) with

σ3 ≤ σ ≤ σ2 (26)

enforced for any t ∈ [tk, tk+1) and the control law in (2) with
K given by (8) executed for any t ∈ [tk + τk, tk+1 + τk+1)
guarantee that the system in (1) under the event-based control
is asymptotically stable, and the inter-event intervals are lower
bounded by τk + η, where η is given in (25).

Remark 4. Theorem 3 provides a useful way of design for
both the feedback gain K and the trigger parameter σ .
Moreover, the information of the transmission delays is also
involved. Therefore, the method can be used to tackle the
case with time-varying network transmission delays. For
given upper bound τ on the transmission delays, by solving
(8), (21), (24), the corresponding feedback gain and trigger
parameter can be obtained, which can be used to guarantee
the required performance even though the transmission
delays exist in the network communication.

Remark 5. The maximum τ can be solved by maximizing σ1

in terms of (8) and letting σ2 = σ3. However, how to find the
optimal value of σ1 is still open. Appropriately selecting the
value of σ1 will lead to a relatively larger value of the upper
bound τ.

Note that if τk = 0, that is, no transmission delay or the
effect of the transmission delay can be omitted, Theorem 3
reduces to the result in the following corollary.

Corollary 6. For any k ∈ N, the event condition in (4) with

σ ≤ σ1 (27)

enforced and the control law in (2) withK given by (8) executed
for any t ∈ [tk, tk+1) guarantee that the system in (1) under the
event-based control is asymptotically stable, and the inter-event
intervals are lower bounded by η, where η satisfies

η = 1
γ − αβ

ln

(
σ + β

)
γ(

ασ + γ
)
β
. (28)

Proof. The inequality σ ≤ σ1 implies that (10) can be
guaranteed, thus the controller renders the closed-loop
system asymptotically stable for any t ∈ [tk, tk+1) and for
any k ∈ N. To estimate the inter-event time, the dynamic
of ‖ek(t)‖/‖x(t)‖ should be bounded by ϕ(t). Following the
same arguments for t ∈ [tk, tk+1), we have

η = 1
γ − αβ

ln

(
ϕ
(
tk + η

)
+ β

)(
ϕ(tk) + γ/α

)
(
ϕ
(
tk + η

)
+ γ/α

)(
ϕ(tk) + β

) . (29)

Substituting the corresponding values ϕ(tk) and ϕ(tk + η) by
0 and σ , thus (28) is obtained.

Remark 7. The lower bound of the inter-event intervals
provided in (28) is always positive if γ /=αβ. It can be shown

in the following. Without loss of generality, suppose γ < αβ,
then

γ < αβ ⇐⇒ σγ < σαβ ⇐⇒ σγ + βγ

< σαβ + βγ ⇐⇒
(
σ + β

)
γ(

σα + γ
)
β
< 1.

(30)

Thus both terms γ − αβ and ln((σ + β)γ/(ασ + γ)β) are
negative. Similarly, the positiveness can be proved for the case
γ > αβ.

Remark 8. For the case γ = αβ, go back to (17), which can be
written as

ϕ̇(t) = α
[
ϕ(t) + β

]2
. (31)

Take the transform

ϕ(t) + β = s(t), dϕ = ds, (32)

then

η =
∫ tk+η

tk
dt = 1

α

∫ ϕ(tk+η)

ϕ(tk)

1[
ϕ + β

]2 dϕ

= 1
α

∫ ϕ(tk+η)+β

ϕ(tk)+β

1
s2
ds

= − 1
α

1
s

∣∣∣∣
ϕ(tk+η)+β

ϕ(tk)+β

= 1
α

[
1

ϕ(tk) + β
− 1

ϕ
(
tk + η

)
+ β

]
.

(33)

The desired lower bound η for the inter-event times is
obtained when ϕ(tk) = 0 and ϕ(tk + η) = σ , that is,

η = σ

αβ
(
σ + β

) . (34)

4. Simulation Examples

The event-based control strategy proposed in this paper is
now applied to solve practical and numerical problems.

Example 9. Consider the unstable inverted pendulum sys-
tem. This process, which was nonlinear, had been analyzed
theoretically to obtain a linearized process model

ẋ(t) = Ax(t) + Bu(t) (35)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 −mg

M
0

0 0 0 1

0 0
g

l
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1
M

0

− 1
Ml

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (36)

where M = 10 is the cart mass, m = 1 is the mass of the
pendulum bob, l = 3 is the length of the pendulum arm, and
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Table 1: The comparison in terms of inter-event intervals for several values of σ .

Event condition parameter σ 0.01 0.02 0.03 0.04 0.05 0.06 0.07

The average inter-event interval 0.0073 0.0123 0.0183 0.0234 0.0282 0.0338 0.0389

The maximum inter-event interval 0.6569 0.9188 1.4787 1.2648 1.0860 1.4672 1.3987

The number of total events 5466 3250 2183 1709 1417 1183 1028

g = 10 is the gravitational acceleration. The states x(t) =
[x1(t), x2(t), x3(t), x4(t)]T are the cart position and velocity,
the pendulum angular position and velocity, respectively.
The initial state of the system is chosen as x0 = [ 0.98 0 0.2 0 ]T .

Since the eigenvalues of the matrix A are−
√
g/l, 0, 0,

√
g/l, the

open-loop system is unstable. The following feedback gain

K =
[

2 12 378 210
]

(37)

is chosen in the design of the event-triggered scheme.
Consider the case when τk = 0. Applying Corollary 6

with feedback gain in (37) and Q = I , the corresponding P is
given by

P = 103 ×

⎡
⎢⎢⎢⎣

0.0046 0.0089 0.0589 0.0343
0.0089 0.0251 0.1694 0.0988
0.0589 0.1694 1.1536 0.6726
0.0343 0.0988 0.6726 0.3926

⎤
⎥⎥⎥⎦. (38)

The value of σ1 is solved by (11) as 0.0781. It can be con-
cluded that system stability is guaranteed for any parameter
σ ≤ 0.0781. In this case, taking σ = 0.0781, and using the
event triggering condition in (4), a simulation is conducted
for t ∈ [0, 40]. It can be calculated that the event-based
control algorithm in this paper leads to a maximum inter-
event interval 1.0414, and the average inter-event time is
0.0428. Comparing with the average inter-event interval less
than 10−5 in [21], the improvement over the result in [21]
on the average inter-event time is obvious. Under the same
conditions, the event instants and the inter-event intervals
are shown in Figure 2, and the state responses of the system
in (3) are shown in Figure 3. In addition, the comparison
for different values of σ chosen from the feasible range
is reported in Table 1. From Table 1, it can be found that
increasing the value of σ has the effect of increasing the
average inter-event interval but not the maximum inter-
event interval. The intuition behind the statement is that the
ratio between the norms of the control error and the state
will need more time to reach the threshold as the value of σ
increases.

Example 10. Consider a second-order linear control system
described by

[
ẋ1(t)
ẋ2(t)

]
=
[

0 1
−2 3

][
x1(t)
x2(t)

]
+

[
0
1

]
u(t), (39)

and the controller

u(t) = x1(tk)− 4x2(tk) (40)
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Figure 2: The event instants and inter-event intervals with event
triggering condition in (4).

is designed to stabilize the closed-loop system. Choose

Q =

⎡
⎢⎢⎢⎣

1
2

1
4

1
4

1
2

⎤
⎥⎥⎥⎦, (41)

then P is obtained via solving the Lyapunov equation:

P =

⎡
⎢⎢⎢⎣

1
1
4

1
4

1

⎤
⎥⎥⎥⎦. (42)

Using σ2 = σ3 with α = 1, β = 4.1231, γ = 1.618,
and σ1 = 0.2139, the upper bound for the random delays
τk is computed as 0.014, that is, the closed-loop system
can tolerate the transmission delays bounded by 0.014. For
τ = 0.005 s and according to Theorem 3, any σ satisfying
0.0379 ≤ σ ≤ 0.1748 can be selected. The theoretical
value for the minimum inter-event interval corresponding
to σ = 0.1064 is 0.0097. The evolution of the Lyapunov
function V(t) based on the event condition in (4) is depicted
in Figure 4. From the simulation result, it can be seen that
the event-based control system is robust to time-varying
transmission delays. Figure 5 shows the evolution of ‖e(t)‖
based on the event condition in (4) in the presence of
time delays. In this figure, an event is generated when the
control error norm reaches the dash-dot line, and the control
signal is transmitted to the actuator node via the network.
Therefore, the error will never go beyond the dash line which
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Figure 3: The state responses of the system in (3) with event
triggering condition in (4).
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Figure 4: Evolution of V(t) for σ = 0.1064 and initial condition
(x1(0), x2(0)) = (10, 20).

guarantees the asymptotic stability. The comparison between
the estimated and the simulated evolution of ‖e(t)‖/‖x(t)‖
is provided over one of the shortest inter-event intervals
[0.1468, 0.1625] in Figure 6. The gap between the simulated
and the estimated is relatively small. Thus, the equation
developed in (25) guarantees a tight lower bound of the inter-
event intervals.

5. Conclusions

To save communication bandwidth, a new event-triggered
communication strategy has been developed for control
over networks, which can be used to determine when the
control signals will be transmitted. The event detector is
based on the control error; the control is implemented via
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Figure 5: Evolution of ‖e‖, σ‖x‖, σ1‖x‖.
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Figure 6: Evolution of ‖e(t)‖/‖x(t)‖ obtained by simulation and
its estimation according to (19) for σ = 0.1064.

sample and hold devices. Notice that the results consider
the effect of the random time-varying network-induced
delays. Two examples detail the advantages of event-based
implementation. However, this approach has some limita-
tions. It can be seen that the constructed event detector
requires delicate hardware to monitor the control signal
and test the logic condition continuously. To overcome
this disadvantage, the strategy of discrete detection will be
proposed in our future work, where the event detector
only needs a supervision of the event condition at discrete
sampling instants. Moreover, the parameter of the event
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detector is chosen with the assumption that the controller
gain is designed to guarantee the global asymptotic stability
of the closed-loop system in advance without considering
the effect of network transmission delays. The method of
jointly designing the parameter of the event detector and the
controller gain will also be considered in our future work to
give higher resource utilization and better performance.
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