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Scheduling policy based onmodel prediction error is presented to reduce energy consumption and network conflicts at the actuator
node, where the characters of networked control systems are considered, such as limited network bandwidth, limited node energy,
and high collision probability. The object model is introduced to predict the state of system at the sensor node. And scheduling
threshold is set at the controller node. Control signal is transmitted only if the absolute value of prediction error is larger than
the threshold value. Furthermore, the model of networked control systems under scheduling policy based on predicted error is
established by taking uncertain parameters and long time delay into consideration. The design method of 𝐻

∞
guaranteed cost

controller is presented by using the theory of Lyapunov and linear matrix inequality (LMI). Finally, simulations are included to
demonstrate the theoretical results.

1. Introduction

Networked control systems (NCS) are frequently encoun-
tered in practice for widespread fields of applications due
to their suitable and flexible structure [1, 2]. Nevertheless,
networked control systems have various equipments, com-
plicated structure, and large scale, and they require a high
level for safety and reliability. Meanwhile, the characteristics
of NCS, such as authorization of the spectrum, dynamic
mobile, limited channels, and broadcast transmission, make
themselves inevitably existing transmission delay and data
packet loss, which could cause adverse effect to system and
even lead to instability. Therefore, concerning how to reduce
the negative influence on the system control performance,
energy consumption of nodes has become one of the hot
issues in the control field.

Literatures in the aspects of NCS have got plenty of
achievements on stability analysis and controller design
considering uncertain parameters, time delay, noise, and
other factors [3–7]. All of the above have not involved
the scheduling problems of networked control systems. For
example, the problem of integrated design of controller and

communication sequences is addressed for NCS with simul-
taneous consideration of medium access limitations and
network-induced delays, packet dropouts, and measurement
quantization in [6]. However, only relying on the controller
design is difficult to improve the control performance of
system effectively if a large number of data share the limited
bandwidth. Reasonable network scheduling strategies to
reduce the conflict and the energy consumption of controller
nodes are introduced in [8–12]. In order to satisfy timeliness
of messages and improve system’s flexibility in NCS based
on controller area network (CAN), a distributed dynamic
message scheduling method based on deadline of message
(DM) is proposed in [8]. A receding-horizon control and
scheduling (RHCS) problem with a quadratic performance
criterion is formulated and solved by (relaxed) dynamic
programming in [9], but it is not considering the guaranteed
cost problem. Zhao et al. [10] proposed a predictive control
and scheduling codesign approach to deal with the controller
and scheduler design for a set of networked control systems
which are connected to a shared communication network.
In [11], the scheduling of sensor information towards the
controller is ruled by the classical Round-Robin protocol
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and the induced 𝐿
2
-gain of NCS is analyzed, which is

subject to time-varying transmission intervals, time-varying
transmission delays, and communication constraints, but not
referring to the affect of interference input and the guaranteed
cost problem.

With the rapid development of computer technology,
sensors sampling frequency and the processing speed of the
controller are being improved continually; network conflict
is becoming more and more serious at actuators side because
of the limited channels of network during the transmission
of information. So, it is important to explore a reasonable
scheduling policy to reduce the network conflict at actuator
node and to avoid the loss of important information. This
motivates us to conduct the research work.

In this paper, scheduling policy based on model pre-
diction error is presented to reduce energy consumption
and network conflicts at the actuator node, in which the
characters of NCS are considered, such as limited network
bandwidth, limited node energy, and high collision probabil-
ity. The prediction model is introduced to predict the state
of system at the sensor node, and then referential value of
control signal is obtained after the predicted value of state is
calculated by the controller. And scheduling threshold is set
at the controller node. Control signal is not transmitted if the
absolute value of prediction error is lower than the threshold
value. Moreover, the design method of 𝐻

∞
guaranteed cost

controller is presented by using the theory of Lyapunov and
linearmatrix inequality (LMI) theory. Finally, simulations are
included to demonstrate the theoretical results.

The paper is organized in 5 sections including the intro-
duction. Section 2 presentsmodels forNCS under scheduling
policy based on predicted error and main assumptions.
Section 3 presents the controller design of NCS under
scheduling policy based on predicted error. There are some
simulations to illustrate the results in Section 4. Section 5
summarized this paper.

2. Modeling for Networked Control Systems

The structure of networked control systems under scheduling
policy based on predicted error is shown in Figure 1, where
𝑥(𝑘), 𝑥(𝑘), and �̃�(𝑘) represent state value sampled by sensors,
state value predicted by model, and prediction error at time 𝑘
separately, while 𝑘 represents the 𝑘th sampling period.

Consider the NCS model with uncertain parameters as
follows:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝐻𝜔 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(1)

where 𝑥 ∈ 𝑅
𝑛, 𝑢 ∈ 𝑅

𝑚, 𝑦 ∈ 𝑅
𝑟, and 𝜔(𝑡) ∈ 𝑅

𝑝

represent state value, input, output, and interference input
separately; 𝐴 = 𝐴 + Δ𝐴, 𝐵 = 𝐵 + Δ𝐵, 𝐻 = 𝐻 + Δ𝐻,
𝐴, 𝐵, 𝐻, and 𝐶 are matrices with appropriate dimensions;
Δ𝐴, Δ𝐵, and Δ𝐷 are matrices with uncertain time-varying
parameters, satisfying [Δ𝐴 Δ𝐻 Δ𝐵] = Ω𝐹[𝐸

1
𝐸
2
𝐸
3
];

𝐹 is an unknown matrix function with Legesgue measurable
properties, satisfying 𝐹𝑇𝐹 ≤ 𝐼;Ω, 𝐸

1
, 𝐸
2
, and 𝐸

3
are constant

matrices with appropriate dimensions.
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Figure 1: The structure of networked control systems under
scheduling policy based on predicted error.

To facilitate discussion, some assumptions are employed
as follows.

(A1) The state of NCS is completely measurable.
(A2) The cache devices are not used both at actuators end

and at sensors end.
(A3) Sensors, controllers, and actuators are all time driv-

ing. Before the first controlled input reaches the
actuator, controlled input always maintains 𝑢(𝑘) = 0.

(A4) Forward channel delay caused by the network is
denoted by 𝑙

1
, while backward channel delay is

denoted by 𝑙
2
, and 𝑑 = 𝑙

1
+ 𝑙
2
is an integer in any case.

Remark 1. Based on assumption 2, system information
obtained by controller is only the state of system object,
namely, 𝑥(𝑘 − 𝜏).

2.1. Analysis on Time Delay for Networked Control Systems
under Scheduling Policy Based on Predicted Error. Based on
assumption 4, the feedback information received by system
controller at time 𝑘 is the state of system object at time
𝑘 − 𝑙

2
without considering the data packet loss. Controlled

input is obtained after controller calculates the information
transmitted by sensor and then is transmitted to the actuator
through network. The controlled input reaches actuator and
work at time 𝑘 + 𝑙

1
. Hence, for the sensor node, the entire

network delay becomes 𝑑 = 𝑙
1
+ 𝑙
2
. System (1) can be written

as

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘 − 𝑑) + 𝐻𝜔 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) .

(2)

Based on assumption 1 and Figure 1, state feedback is intro-
duced as follows:

𝑢


(𝑘) = 𝐾𝑥 (𝑘) . (3)

2.2.The Description of Model Prediction Error. The controller
nodes use the 𝑘th received data packets which are sampled
and transmitted by sensor to predict the state of the model at
next time, and then the predicted value of state is transmitted
to controller. The predictive control signal is obtained after
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the predicted value of the state is calculated. After getting
the prediction error by comparing predicted value of control
signal with the true value at time 𝑘 + 1, the state value
is updated spontaneously. In addition, to trace the state
trajectory of system, we use certain parameters of the object
model (1) to predict and calculate the referential value of
control signal. The prediction model can be described as
follows:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) , 𝑢


(𝑘) = 𝐾𝑥 (𝑘) , (4)

where 𝐴, 𝐵, and𝐾 refer to (1) and (3) and 𝑢 is the referential
value of control signal.

The predicted error of control signal produced by the
model is shown as follows:

�̃� (𝑘) = 𝑢


(𝑘) − 𝑢


(𝑘) . (5)

2.3. The Description of Scheduling Policy. With the rapid
development of computer technology, sensors sampling fre-
quency and the processing speed of the controller are being
improved continually; network conflict is becoming more
and more serious at actuators side because of the limited
channels of network during the transmission of informa-
tion. So it is important to introduce reasonable scheduling
policy to reduce the network conflict at actuator node.
Here we introduce the restrained condition of transmission
as |�̃�

𝑖
(𝑘)| ≤ 𝜗

𝑖
(𝜗
𝑖
represents scheduling threshold, 𝑖 =

[1, 2, . . . , 𝑚], and 𝑚 is the dimension of the control signal).
Controller will not send the control signal 𝑢

𝑖
(𝑘) taken as

unimportant information to actuator and the actuator keeps
the value of control signal at time 𝑘 − 1 if the restrained
condition is satisfied, which helps to reduce the transmission
frequency of unimportant information at actuator node.

According to the description above, piecewise function as
follows is introduced:

𝑢
𝑖
(𝑘) =

{

{

{

𝑢


𝑖
(𝑘 − 1) ,





�̃�
𝑖
(𝑘)




≤ 𝜗

𝑖
,

𝑢


𝑖
(𝑘) ,





�̃�
𝑖
(𝑘)




> 𝜗

𝑖
.

(6)

Moreover, we introduce

𝛿
𝑖
(𝑘) =

{

{

{

0,




�̃�
𝑖
(𝑘)




≤ 𝜗

𝑖
,

1,




�̃�
𝑖
(𝑘)




> 𝜗

𝑖
,

𝑖 = [1, 2, . . . , 𝑚] , (7)

where 𝛿
𝑖
= 0 represents that 𝑢

𝑖
should not be transmitted,

while 𝛿
𝑖
= 1 represents that 𝑢

𝑖
should be transmitted. We

define Φ = diag(𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑚
). Obviously, equality (6) is

equivalent to

𝑢 (𝑘) = [Φ
𝑗
, 𝐼
𝑚×𝑚

− Φ
𝑗
] [𝑢


𝑇

(𝑘) , 𝑢

𝑇

(𝑘 − 1)]

𝑇

. (8)

Remark 2. According to the description about Φ above, the
total number of cases thatΦ could appear should be 2𝑚 in the
whole scheduling process; that is to say,

Φ = Φ
𝑗
∈ {Φ

1
, Φ
2
, . . . , Φ

2
𝑚} , 𝑗 = 1, 2, . . . , 2

𝑚

. (9)

Remark 3. Obviously, different from the previous method,
such as [8], in which referential value of scheduling policy
based on deadline of message is a fixed value. The referential
value in Section 2.2 of scheduling policy based on predicted
error obtained by using certain parameters of the object
model (1) to predict the value of system is varied with the
change of the system state trajectory. In this way, a bigger
chance for losses of unimportant information in NCS is
offered than the previous method as [8]; that is to say,
scheduling policy based on predicted error is more effective
to avoid the network conflict and save energy of nodes.

2.4. Augmented System Model of NCS under Scheduling
Policy Based on Predicted Error. Based on the description of
equalities (3) and (8) and Remark 2, it can be obtained that

𝑢 (𝑘) = Φ
𝑗
𝐾𝑥 (𝑘) + (𝐼 − Φ

𝑗
) 𝑢 (𝑘 − 1) . (10)

The augmented matrix is defined as

𝑧 = [𝑥
𝑇

(𝑘) , 𝑥
𝑇

(𝑘 − 1) , . . . , 𝑥
𝑇

(𝑘 − 𝑑 − 1) , 𝑥
𝑇

(𝑘 − 𝑑) ,

𝑢
𝑇

(𝑘 − 𝑑 − 1)]

𝑇

.

(11)

Therefore, the augmented NCS model becomes

𝑧 (𝑘 + 1) =

_
𝐴 𝑧 (𝑘) +

_
𝐻 𝜔 (𝑘) , 𝑦 (𝑘) =

_
𝐶 𝑧 (𝑘) , (12)

where

_
𝐴=

[

[

[

[

[

[

[

[

[

[

[

𝐴 0 ⋅ ⋅ ⋅ 0 0 𝐵Φ
𝑗
𝐾 𝐵(𝐼 − Φ

𝑗
)

𝐼 0 ⋅ ⋅ ⋅ 0 0 0 0

0 𝐼 ⋅ ⋅ ⋅ 0 0 0 0

...
... d

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝐼 0 0 0

0 0 ⋅ ⋅ ⋅ 0 𝐼 0 0

0 0 ⋅ ⋅ ⋅ 0 0 Φ
𝑗
𝐾 𝐼 − Φ

𝑗

]

]

]

]

]

]

]

]

]

]

]
(𝑑+2)×(𝑑+2)

,

_
𝐻= [𝐻

𝑇

0 ⋅ ⋅ ⋅ 0 0 0 0]

𝑇

,

_
𝐶 = [𝐶 0 ⋅ ⋅ ⋅ 0 0 0 0] ,

𝑗 = [1, 2, . . . , 2
𝑚

] .

(13)

Obviously, (12) is a switchingmodel; the number of switching
modes is 2𝑚.
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3.𝐻
∞

Guaranteed Cost Control for NCS

For the systemmodel established above, performance indica-
tor is given as follows:

𝐽
∞
=

∞

∑

𝑖=0

{

{

{

[𝐾𝑥 (𝑖 − 𝑑)]
𝑇

𝑅 [𝐾𝑥 (𝑖 − 𝑑)]

+ 𝑢
𝑇

(𝑖 − 𝑑 − 1)𝑄𝑢 (𝑖 − 𝑑 − 1)

+

𝑑

∑

𝑗=0

[𝑥
𝑇

(𝑖 − 𝑗)𝑄𝑥 (𝑖 − 𝑗)]

}

}

}

=

∞

∑

𝑖=0

[𝑧
𝑇

(𝑖)

_
𝑄 𝑧 (𝑖) + (

_
𝐾 𝑧 (𝑖 − 𝑑))

𝑇 _
𝑅 (

_
𝐾 𝑧 (𝑖 − 𝑑))] ,

(14)

where
_
𝑄= diag(𝑄, 𝑄, . . . , 𝑄, 𝑄, 𝑄, 𝑄),

_
𝑅 = diag(𝑅, 𝑅, . . . , 𝑅,

𝑅, 𝑅, 𝑅),
_
𝐾= diag(0, 0, . . . , 0, 0, 𝐾, 0),𝑄, and 𝑅 are symmetric

positive definite matrices.

Definition 4. For system (2) and system (12), it satisfies that (1)
the closed-loop system is asymptotically stable if𝜔(𝑘) = 0; (2)
under any zero initial condition, given 𝛾 > 0, for any nonzero
vector 𝜔(𝑘) ∈ 𝐿

2
[0,∞), the output 𝑦(𝑘) satisfies ‖𝑦(𝑘)‖

2
≤

𝛾‖𝜔(𝑘)‖
2
. It is called that system (2) and (12) is asymptotically

stable with𝐻
∞

norm bound 𝛾.

Lemma 5 (Schur complement). For a symmetric matrix 𝑆 =
[
𝑆
11
𝑆
12

𝑆
21
𝑆
22

], where 𝑆
11
= 𝑆

𝑇

11
, 𝑆𝑇
12
= 𝑆

21
, and 𝑆

22
= 𝑆

𝑇

22
, the

following three conditions are equivalent:

(1) 𝑆 < 0;

(2) 𝑆
11
< 0, 𝑆

22
− 𝑆

𝑇

12
𝑆
−1

11
𝑆
12
< 0;

(3) 𝑆
22
< 0, 𝑆

11
− 𝑆

12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma6 (see [3]). 𝑊,𝑀,𝑁, and𝐹 arematrices with suitable
dimensions, satisfying 𝐹𝑇𝐹 ≤ 𝐼, and𝑊 is symmetric matrix;
then𝑊+𝑀𝐹𝑁 +𝑁𝑇𝐹𝑇𝑀𝑇

< 0 is equivalent to

𝑊+ 𝜀𝑀𝑀
𝑇

+ 𝜀
−1

𝑁
𝑇

𝑁 < 0, (15)

where scalar 𝜀 > 0.

Lemma 7 (see [13]). For matrices Ψ
𝑐
, 𝑀

𝑐
, and 𝑁

𝑐
with

appropriate dimensions, where𝑁
𝑐
= diag(𝑁

𝑐1
, 𝑁
𝑐2
, . . . , 𝑁

𝑐𝑚
),

satisfying 𝑁𝑇
𝑐𝑖
𝑁
𝑐𝑖
≤ 𝐼 (𝑖 = 1, 2, . . . , 𝑚). If there exists 𝐿 =

diag(𝜎
1
𝐼, 𝜎

2
𝐼, . . . , 𝜎

𝑚
𝐼) > 0, where 𝜎

𝑖
is a set of scalars (𝑖 =

1, 2, . . . , 𝑚), it satisfies that

Ψ
𝑐
𝑁
𝑐
𝑀
𝑐
+𝑀

𝑇

𝑐
𝑁
𝑇

𝑐
Ψ
𝑇

𝑐
≤ Ψ

𝑐
𝐿Ψ

𝑇

𝑐
+𝑀

𝑇

𝑐
𝐿
−1

𝑀
𝑐
. (16)

3.1. Stability Analysis of NCS under Scheduling Policy Based on
Predicted Error

Theorem 8. Given symmetric positive definite matrices𝑄 and
𝑅, if there exist symmetric positive definite matrix 𝑃, the gain
matrix 𝐾, and constant 𝛾 > 0, satisfying

[

[

[

[

[

[

[

[

[

[

−

_
𝑅

−1

0 0

_
𝐾 0

∗ −(

_
𝐶

𝑇 _
𝐶 +

_
𝑄)

−1

0 𝐼 0

∗ ∗ −𝑃
−1

_
𝐴

_
𝐻

∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

< 0, (17)

then it is called that system (2) and (12) is asymptotically stable
with𝐻

∞
normbound 𝛾. And its performance indicator satisfies

𝐽
∞
< 𝑧

𝑇

(0)𝑃𝑧(0), where ∗ represents the symmetry blocks of
matrix;

_
𝐴,

_
𝐶, and

_
𝐻 are shown as (12); and

_
𝑄,

_
𝑅, and

_
𝐾 are

shown as (14).

Proof. Because system (12) is the equivalent system of system
(2), system (2) must satisfy the condition if and only if system
(12) satisfies the asymptotically stable condition. Consider the
following Lyapunov function:

𝑉 (𝑘) = 𝑧
𝑇

(𝑘) 𝑃𝑧 (𝑘) . (18)

Conducting subtract operating along arbitrary trajectory of
system (12) is given by

Δ𝑉 (𝑘) = 𝑉 (𝑘 + 1) − 𝑉 (𝑘)

= 𝑧
𝑇

(𝑘 + 1) 𝑃𝑧 (𝑘 + 1) − 𝑧
𝑇

(𝑘) 𝑃𝑧 (𝑘) .

(19)

Submitting (12) into (19) yields

Δ𝑉 (𝑘)

= [

_
𝐴 𝑧 (𝑘) +

_
𝐻 𝜔 (𝑘)]

𝑇

𝑃 [

_
𝐴 𝑧 (𝑘) +

_
𝐻 𝜔 (𝑘)]

− 𝑧
𝑇

(𝑘) 𝑃𝑧 (𝑘)

= 𝑧
𝑇

(𝑘) (

_
𝐴

𝑇

𝑃

_
𝐴 −𝑃)𝑧 (𝑘) + 𝑧

𝑇

(𝑘)

_
𝐴

𝑇

𝑃

_
𝐻 𝜔 (𝑘)

+ 𝜔
𝑇

(𝑘)

_
𝐻

𝑇 _
𝐴 𝑧 (𝑘) + 𝜔

𝑇

(𝑘)

_
𝐻

𝑇

𝑃

_
𝐻 𝜔 (𝑘) .

(20)

Plus 𝑦𝑇(𝑘)𝑦(𝑘)−𝛾2𝜔𝑇(𝑘)𝜔(𝑘) at two ends of equality (20), we
have

Δ𝑉 (𝑘) + 𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘)

= 𝑧
𝑇

(𝑘) (

_
𝐴

𝑇

𝑃

_
𝐴 −𝑃)𝑧 (𝑘) + 𝑧

𝑇

(𝑘)

_
𝐴

𝑇

𝑃

_
𝐻 𝜔 (𝑘)

+ 𝜔
𝑇

(𝑘)

_
𝐻

𝑇 _
𝐴 𝑧 (𝑘) + 𝜔

𝑇

(𝑘)

_
𝐻

𝑇

𝑃

_
𝐻 𝜔 (𝑘)

+ 𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘)
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= 𝑧
𝑇

(𝑘) (

_
𝐴

𝑇

𝑃

_
𝐴 −𝑃 +

_
𝐶

𝑇 _
𝐶)𝑧 (𝑘) +𝑧

𝑇

(𝑘)

_
𝐴

𝑇

𝑃

_
𝐻 𝜔 (𝑘)

+ 𝜔
𝑇

(𝑘)

_
𝐻

𝑇

𝑃

_
𝐴 𝑧 (𝑘) + 𝜔

𝑇

(𝑘)

_
𝐻

𝑇

𝑃

_
𝐻 𝜔 (𝑘)

− 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘)

= [𝑧
𝑇

(𝑘) , 𝜔
𝑇

(𝑘)]Θ[𝑧
𝑇

(𝑘) , 𝜔
𝑇

(𝑘)]

𝑇

,

(21)

where

Θ =
[

[

_
𝐴

𝑇

𝑃

_
𝐴 −𝑃 +

_
𝐶

𝑇 _
𝐶

_
𝐴

𝑇

𝑃

_
𝐻

∗

_
𝐻

𝑇

𝑃

_
𝐻 −𝛾

2

𝐼

]

]

. (22)

If

[

[

_
𝐴

𝑇

𝑃

_
𝐴 −𝑃 +

_
𝐶

𝑇 _
𝐶 +

_
𝑄 +

_
𝐾

𝑇 _
𝑅

_
𝐾

_
𝐴

𝑇

𝑃

_
𝐻

∗

_
𝐻

𝑇

𝑃

_
𝐻 −𝛾

2

𝐼

]

]

< 0

(23)

it can be obtained that Θ < 0. Based on equality (21), it is
known that

Δ𝑉 (𝑘) + 𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘) < 0. (24)

If 𝜔(𝑘) ≡ 0, obviously, there is Δ𝑉(𝑘) < 0.
From zero initial condition, we know 𝑉(0) = 0. And it

can be obtained that 𝑉(∞) ≥ 0. Therefore,

∞

∑

𝑘=0

[Δ𝑉 (𝑘) + 𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘)]

= 𝑉 (∞) − 𝑉 (0)+

∞

∑

𝑘=0

[𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘)] < 0.

(25)

Moreover,

∞

∑

𝑘=0

[𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘)] < −𝑉 (∞) ≤ 0. (26)

Therefore, we have

∞

∑

𝑘=0

𝑦
𝑇

(𝑘) 𝑦 (𝑘) <

∞

∑

𝑘=0

𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘) . (27)

Namely, ‖𝑦(𝑘)‖
2
< 𝛾‖𝑤(𝑘)‖

2
. Based on Definition 4, it is

known that system (2) and (12) is asymptotically stable with
𝐻
∞

norm bound 𝛾. Inequality (23) can be written as

[

[

_
𝐴

𝑇

𝑃

_
𝐴 −𝑃 +

_
𝐶

𝑇 _
𝐶

_
𝐴

𝑇

𝑃

_
𝐻

∗

_
𝐻

𝑇

𝑃

_
𝐻 −𝛾

2

𝐼

]

]

< −[

_
𝑄 +

_
𝐾

𝑇 _
𝑅

_
𝐾 0

∗ 0

] .

(28)

Namely,

Δ𝑉 (𝑘)

= [𝑧
𝑇

(𝑘) , 𝜔
𝑇

(𝑘)]
[

[

_
𝐴

𝑇

𝑃

_
𝐴 −𝑃 +

_
𝐶

𝑇 _
𝐶

_
𝐴

𝑇

𝑃

_
𝐻

∗

_
𝐻

𝑇

𝑃

_
𝐻 −𝛾

2

𝐼

]

]

× [𝑧
𝑇

(𝑘) , 𝜔
𝑇

(𝑘)]

𝑇

< − [𝑧
𝑇

(𝑘) , 𝜔
𝑇

(𝑘)] [

_
𝑄 +

_
𝐾

𝑇 _
𝑅

_
𝐾 0

∗ 0

] [𝑧
𝑇

(𝑘) , 𝜔
𝑇

(𝑘)]

𝑇

.

(29)

It can be obtained that
∞

∑

0

Δ𝑉 (𝑘)

<

∞

∑

0

− [𝑧
𝑇

(𝑘) , 𝜔
𝑇

(𝑘)] [

_
𝑄 +

_
𝐾

𝑇 _
𝑅

_
𝐾 0

∗ 0

][𝑧
𝑇

(𝑘) , 𝜔
𝑇

(𝑘)]

𝑇

= −𝐽
∞
.

(30)

Namely, 𝐽
∞
< −∑

∞

0
Δ𝑉(𝑘) = 𝑉(0) − [𝑉(0) + ∑

∞

0
Δ𝑉(𝑘)] =

𝑉(0) − 𝑉(∞).
Because the process above elucidated that the system is

asymptotically stable, we have 𝑉(∞) = 0. Therefore, 𝐽
∞
<

𝑉(0) = 𝑧
𝑇

(0)𝑃𝑧(0) is verified.
Inequality (23) can be written as

[
−𝑃 +

_
𝐶

𝑇 _
𝐶 +

_
𝑄 +

_
𝐾

𝑇 _
𝑅

_
𝐾 0

∗ −𝛾
2

𝐼

] +
[

[

[

_
𝐴

𝑇

_
𝐻

𝑇

]

]

]

𝑃 [

_
𝐴

_
𝐻] < 0.

(31)

Using Lemma 5, we have

[

[

[

−𝑃
−1

_
𝐴

_
𝐻

∗ −𝑃 +

_
𝐶

𝑇 _
𝐶 +

_
𝑄 +

_
𝐾

𝑇 _
𝑅

_
𝐾 0

∗ ∗ −𝛾
2

𝐼

]

]

]

< 0. (32)

Using Lemma 5, inequality (32) is equivalent to inequality
(17); thus, Theorem 8 is verified.

Remark 9. Uncertain system forms like Δ𝐴 are contained in
matrix inequality (17), so the problem cannot be solved by
using LMI toolbox. The next work is conducting appropriate
deformation to eliminate the uncertainties in the matrix and
convert it to linear matrix inequality (LMI), in which variable
parameters are contained.

3.2. The Controller Design of NCS under Scheduling Policy
Based on Predicted Error

Theorem 10. Given symmetric positive definite matrices 𝑄
and𝑅, if there exist a set of symmetric positive definite matrices
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𝑋
𝑖
(𝑖 = 1, 2, . . . , 𝑑 + 2), matrix 𝑌, and a set of constants 𝜎

1
> 0,

𝜎
2
> 0, 𝜀

1
> 0, 𝜀

2
> 0, and 𝜇 > 0, satisfying

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝜀
1
𝐼 + 𝜎

1
𝐵𝐵
𝑇

+ 𝜎
2
𝐸
3
𝐸
𝑇

3
0 0 Δ

1
Δ
2

0 0 0 0

∗ −

_
𝑅

−1

0 0

←→

𝑌 0 0 0 0

∗ ∗ −(

_
𝐶

𝑇 _
𝐶 +

_
𝑄)

−1

0 𝑋 0 0 0 0

∗ ∗ ∗ Π
1
+ (𝜀

1
+ 𝜀
2
)

←→

Ω

←→

Ω

𝑇

Π
2

←→

𝐻 0 0 0

∗ ∗ ∗ ∗ −𝑋 0 0 Δ
𝑇

3
Δ
𝑇

4

∗ ∗ ∗ ∗ ∗ −𝜇𝐼 𝐸
𝑇

2
0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜎
1
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜎
2
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (33)

where

←→

𝑌 = diag (0 0 ⋅ ⋅ ⋅ 0 0 𝑌 0) , 𝑋 = diag (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑑−1
, 𝑋
𝑑
, 𝑋
𝑑+1
, 𝑋
𝑑+2
) ,

Δ
1
= [𝜎

1
𝐵𝐵
𝑇

+ 𝜎
2
𝐸
3
𝐵
𝑇

0 ⋅ ⋅ ⋅ 0 0 0 𝜎
1
𝐵 + 𝜎

2
𝐸
3
] , Δ

2
= [𝐸

1
𝑋
1
0 ⋅ ⋅ ⋅ 0 0 0 0] ,

Δ
3
= [0 0 ⋅ ⋅ ⋅ 0 0 𝑌 0] , Δ

4
= [0 0 ⋅ ⋅ ⋅ 0 0 0 𝑋

𝑑+2
] ,

Π
1
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑋
1
+ (𝜎

1
+ 𝜎

2
) 𝐵𝐵

𝑇

0 ⋅ ⋅ ⋅ 0 0 0 (𝜎
1
+ 𝜎

2
) 𝐵

0 −𝑋
2
⋅ ⋅ ⋅ 0 0 0 0

...
... d

...
...

...
...

0 0 0 −𝑋
𝑑−1

0 0 0

0 0 ⋅ ⋅ ⋅ 0 −𝑋
𝑑

0 0

0 0 ⋅ ⋅ ⋅ 0 0 −𝑋
𝑑+1

0

0 0 ⋅ ⋅ ⋅ 0 0 0 −𝑋
𝑑+2
+ (𝜎

1
+ 𝜎

2
) 𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Π
2
=

[

[

[

[

[

[

[

[

[

[

[

𝐴𝑋
1
0 ⋅ ⋅ ⋅ 0 0 0 0

𝑋
1

0 ⋅ ⋅ ⋅ 0 0 0 0

0 𝑋
2
⋅ ⋅ ⋅ 0 0 0 0

...
... d

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝑋
𝑑−1

0 0 0

0 0 ⋅ ⋅ ⋅ 0 𝑋
𝑑
0 0

0 0 ⋅ ⋅ ⋅ 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

,

←→

Ω =

[

[

[

[

[

[

[

[

[

[

[

Ω

0

...
0

0

0

0

]

]

]

]

]

]

]

]

]

]

]

,

←→

𝐻 =

[

[

[

[

[

[

[

[

[

[

[

𝐻

0

...
0

0

0

0

]

]

]

]

]

]

]

]

]

]

]

,

(34)

_
𝐶 and

_
𝐻 are shown as (12) and

_
𝑄 and

_
𝑅 are shown as (14).

It is called that system (2) and (12) is asymptotically stable
with 𝐻

∞
norm bound 𝛾; the gain matrix of feedback control

is 𝐾 = 𝑌𝑋
−𝑇

𝑑+1
. And its performance indicator satisfies 𝐽

∞
<

𝑧
𝑇

(0)𝑃𝑧(0). ∗ represents the symmetry blocks of matrix.

Proof. The proof is based on a suitable congruence trans-
formation and a change of variables allowing us to obtain
inequality (17).

_
𝐴 and

_
𝐻 can be written as

_
𝐴= Ψ +

←→

Ω𝐹

←→

𝐸 ,
_
𝐻=

←→

𝐻 +

←→

Ω𝐹𝐸
2
, where

Ψ =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝐴 0 ⋅ ⋅ ⋅ 0 0 𝐵Φ
𝑗
𝐾 𝐵(𝐼 − Φ

𝑗
)

𝐼 0 ⋅ ⋅ ⋅ 0 0 0 0

0 𝐼 ⋅ ⋅ ⋅ 0 0 0 0

...
... d

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝐼 0 0 0

0 0 ⋅ ⋅ ⋅ 0 𝐼 0 0

0 0 ⋅ ⋅ ⋅ 0 0 Φ
𝑗
𝐾 𝐼 − Φ

𝑗

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

←→

𝐸 = [𝐸
1
0 ⋅ ⋅ ⋅ 0 0 𝐸

3
Φ
𝑗
𝐾 𝐸

3
(𝐼 − Φ

𝑗
)] .

(35)
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Inequality (17) can be written as

[

[

[

[

[

[

[

[

[

[

[

−

_
𝑅

−1

0 0

_
𝐾 0

∗ −(

_
𝐶

𝑇 _
𝐶 +

_
𝑄)

−1

0 𝐼 0

∗ ∗ −𝑃
−1

Ψ

_
𝐻

∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

0

0

←→

Ω

0

0

]

]

]

]

]

]

]

]

𝐹

[

[

[

[

[

[

[

[

[

0

0

0

←→

𝐸

𝑇

0

]

]

]

]

]

]

]

]

]

𝑇

+

[

[

[

[

[

[

[

[

[

0

0

0

←→

𝐸

𝑇

0

]

]

]

]

]

]

]

]

]

𝐹
𝑇

[

[

[

[

[

[

[

[

0

0

←→

Ω

0

0

]

]

]

]

]

]

]

]

𝑇

< 0.

(36)

Based on Lemma 6, we have

[

[

[

[

[

[

[

[

[

[

[

−

_
𝑅

−1

0 0

_
𝐾 0

∗ −(

_
𝐶

𝑇 _
𝐶 +

_
𝑄)

−1

0 𝐼 0

∗ ∗ −𝑃
−1

Ψ

_
𝐻

∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

+ 𝜀
1

[

[

[

[

[

[

[

[

0

0

←→

Ω

0

0

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

0

0

←→

Ω

0

0

]

]

]

]

]

]

]

]

𝑇

+ 𝜀
−1

1

[

[

[

[

[

[

[

[

[

0

0

0

←→

𝐸

𝑇

0

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

0

0

0

←→

𝐸

𝑇

0

]

]

]

]

]

]

]

]

]

𝑇

< 0.

(37)

Based on Lemma 5, inequality (37) is equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝜀
1
𝐼 0 0 0

←→

𝐸 0

∗ −

_
𝑅

−1

0 0

_
𝐾 0

∗ ∗ −(

_
𝐶

𝑇 _
𝐶 +

_
𝑄)

−1

0 𝐼 0

∗ ∗ ∗ −𝑃
−1

+ 𝜀
1

←→

Ω

←→

Ω

𝑇

Ψ

_
𝐻

∗ ∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0.

(38)

And it can be written as

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝜀
1
𝐼 0 0 0

←→

𝐸 0

∗ −

_
𝑅

−1

0 0

_
𝐾 0

∗ ∗ −(

_
𝐶

𝑇 _
𝐶 +

_
𝑄)

−1

0 𝐼 0

∗ ∗ ∗ −𝑃
−1

+ 𝜀
1

←→

Ω

←→

Ω

𝑇

Ψ

←→

𝐻

∗ ∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

0

0

0

←→

Ω

0

0

]

]

]

]

]

]

]

]

𝐹

[

[

[

[

[

[

[

[

0

0

0

0

0

𝐸
𝑇

2

]

]

]

]

]

]

]

]

𝑇

+

[

[

[

[

[

[

[

[

0

0

0

0

0

𝐸
𝑇

2

]

]

]

]

]

]

]

]

𝐹
𝑇

[

[

[

[

[

[

[

[

0

0

0

←→

Ω

0

0

]

]

]

]

]

]

]

]

𝑇

< 0.

(39)

Using Lemma 6 again, it can be obtained that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝜀
1
𝐼 0 0 0

←→

𝐸 0

∗ −

_
𝑅

−1

0 0

_
𝐾 0

∗ ∗ −(

_
𝐶

𝑇 _
𝐶 +

_
𝑄)

−1

0 𝐼 0

∗ ∗ ∗ −𝑃
−1

+ 𝜀
1

←→

Ω

←→

Ω

𝑇

Ψ

←→

𝐻

∗ ∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

+ 𝜀
2

[

[

[

[

[

[

[

[

0

0

0

←→

Ω

0

0

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

0

0

0

←→

Ω

0

0

]

]

]

]

]

]

]

]

𝑇

+ 𝜀
−1

2

[

[

[

[

[

[

[

[

0

0

0

0

0

𝐸
𝑇

2

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

0

0

0

0

0

𝐸
𝑇

2

]

]

]

]

]

]

]

]

< 0.

(40)

Using Lemma 5 again, inequality (40) is equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝜀
1
𝐼 0 0 0

←→

𝐸 0 0

∗ −

_
𝑅

−1

0 0

_
𝐾 0 0

∗ ∗ −(

_
𝐶

𝑇 _
𝐶 +

_
𝑄)

−1

0 𝐼 0 0

∗ ∗ ∗ −𝑃
−1

+ (𝜀
1
+ 𝜀
2
)

←→

Ω

←→

Ω

𝑇

Ψ

←→

𝐻 0

∗ ∗ ∗ ∗ −𝑃 0 0

∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝐸
𝑇

2

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0.

(41)
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By denoting 𝑃 = diag(𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑑−1
, 𝑃
𝑑
, 𝑃
𝑑+1
, 𝑃
𝑑+2
), natu-

rally, we have 𝑃−1 = diag(𝑃−1
1
, 𝑃
−1

2
, . . . , 𝑃

−1

𝑑−1
, 𝑃
−1

𝑑
, 𝑃
−1

𝑑+1
, 𝑃
−1

𝑑+2
).

By premultiplying and postmultiplying inequality
(41) by diag(𝐼, 𝐼, 𝐼, 𝐼, 𝑃−1, 𝐼, 𝐼), with the change of
variables 𝑃

𝑖

−1

= 𝑋
𝑖
(𝑖 = 1, 2, . . . , 𝑑 + 2), 𝑋 =

diag(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑑−1
, 𝑋
𝑑
, 𝑋
𝑑+1
, 𝑋
𝑑+2
), 𝑌 = 𝐾𝑋

𝑑+1
, 𝜇 = 𝛾2,

it can be obtained that

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝜀
1
𝐼 0 0 0

←→

𝐸 𝑋 0 0

∗ −

_
𝑅

−1

0 0

←→

𝑌 0 0

∗ ∗ −(

_
𝐶

𝑇 _
𝐶 +

_
𝑄)

−1

0 𝑋 0 0

∗ ∗ ∗ −𝑃
−1

+ (𝜀
1
+ 𝜀
2
)

←→

Ω

←→

Ω

𝑇

Ψ


←→

𝐻 0

∗ ∗ ∗ ∗ −𝑋 0 0

∗ ∗ ∗ ∗ ∗ −𝜇𝐼 𝐸
𝑇

2

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(42)

where
←→

𝐸 𝑋 = [𝐸
1
𝑋
1
0 ⋅ ⋅ ⋅ 0 0 𝐸

3
Φ
𝑗
𝑌 𝐸

3
(𝐼 − Φ

𝑗
)𝑋

𝑑+2
] ,

Ψ


=

[

[

[

[

[

[

[

[

[

[

[

[

𝐴𝑋
1
0 ⋅ ⋅ ⋅ 0 0 𝐵Φ

𝑗
𝑌 𝐵 (𝐼 − Φ

𝑗
)𝑋

𝑑+2

𝑋
1

0 ⋅ ⋅ ⋅ 0 0 0 0

0 𝑋
2
⋅ ⋅ ⋅ 0 0 0 0

...
... d

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝑋
𝑑−1

0 0 0

0 0 ⋅ ⋅ ⋅ 0 𝑋
𝑑

0 0

0 0 ⋅ ⋅ ⋅ 0 0 Φ
𝑗
𝑌 (𝐼 − Φ

𝑗
)𝑋

𝑑+2

]

]

]

]

]

]

]

]

]

]

]

]

.

(43)

Inequality (42) can be written as

Ξ +I
1
Φℵ

1
+ ℵ

𝑇

1
Φ
𝑇

I
𝑇

1
+I

2
(𝐼 − Φ

𝑗
)ℵ

2

+ ℵ
𝑇

2
(𝐼 − Φ

𝑗
)

𝑇

I
𝑇

2
< 0,

(44)

where

Ξ =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝜀
1
𝐼 0 0 0 Δ

2
0 0

∗ −

_
𝑅

−1

0 0

←→

𝑌 0 0

∗ ∗ −(

_
𝐶

𝑇 _
𝐶 +

_
𝑄)

−1

0 𝑋 0 0

∗ ∗ ∗ −𝑃
−1

+ (𝜀
1
+ 𝜀
2
)

←→

Ω

←→

Ω

𝑇

Ψ

←→

𝐻 0

∗ ∗ ∗ ∗ −𝑋 0 0

∗ ∗ ∗ ∗ ∗ −𝜇𝐼 𝐸
2

𝑇

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

I
1
=

[

[

[

[

[

[

[

[

[

[

𝐵

0

0

Γ
1

0

0

0

]

]

]

]

]

]

]

]

]

]

, ℵ
1
=

[

[

[

[

[

[

[

[

[

[

0

0

0

0

Δ
𝑇

3

0

0

]

]

]

]

]

]

]

]

]

]

𝑇

, I
2
=

[

[

[

[

[

[

[

[

[

[

𝐸
3

0

0

Γ
2

0

0

0

]

]

]

]

]

]

]

]

]

]

, ℵ
2
=

[

[

[

[

[

[

[

[

[

[

0

0

0

0

Δ
𝑇

4

0

0

]

]

]

]

]

]

]

]

]

]

𝑇

, Γ
1
= Γ

2
=

[

[

[

[

[

[

[

[

[

[

[

𝐵

0

...
0

0

0

𝐼

]

]

]

]

]

]

]

]

]

]

]

,

Ψ


=

[

[

[

[

[

[

[

[

[

[

[

𝐴𝑋
1
0 ⋅ ⋅ ⋅ 0 0 0 0

𝑋
1

0 ⋅ ⋅ ⋅ 0 0 0 0

0 𝑋
2
⋅ ⋅ ⋅ 0 0 0 0

...
... d

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝑋
𝑑−1

0 0 0

0 0 ⋅ ⋅ ⋅ 0 𝑋
𝑑
0 0

0 0 ⋅ ⋅ ⋅ 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

.

(45)

From Lemma 7, it can be obtained that

Ξ+I
1
Φ
𝑗
ℵ
1
+ ℵ

𝑇

1
Φ
𝑇

𝑗
I
𝑇

1
+I

2
(𝐼 − Φ

𝑗
)ℵ

2
+ ℵ

𝑇

2
(𝐼 − Φ

𝑗
)

𝑇

I
𝑇

2

≤ Ξ + 𝜎
1
I
1
I
𝑇

1
+ 𝜎

−1

1
ℵ
𝑇

1
ℵ
1
+ 𝜎

2
I
2
I
𝑇

1
+ 𝜎

−1

2
ℵ
𝑇

2
ℵ
2
.

(46)

Namely, if

Ξ + 𝜎
1
I
1
I
𝑇

1
+ 𝜎

−1

1
ℵ
𝑇

1
ℵ
1
+ 𝜎

2
I
2
I
𝑇

1
+ 𝜎

−1

2
ℵ
𝑇

2
ℵ
2
< 0 (47)

there is
Ξ +I

1
Φ
𝑗
ℵ
1
+ ℵ

𝑇

1
Φ
𝑇

𝑗
I
𝑇

1
+I

2
(𝐼 − Φ

𝑗
)ℵ

2

+ ℵ
𝑇

2
(𝐼 − Φ

𝑗
)

𝑇

I
𝑇

2
< 0.

(48)
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Inequality (47) can be written as

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝜀
1
𝐼 + 𝜎

1
𝐵𝐵
𝑇

+ 𝜎
2
𝐸
3
𝐸
𝑇

3
0 0 Δ

1
Δ
2
0 0

∗ −

_
𝑅

−1

0 0

←→

𝑌 0 0

∗ ∗ −(

_
𝐶

𝑇 _
𝐶 +

_
𝑄)

−1

0 𝑋 0 0

∗ ∗ ∗ Π
1
+ (𝜀

1
+ 𝜀
2
)

←→

Ω

←→

Ω

𝑇

Π
2

←→

𝐻 0

∗ ∗ ∗ ∗ −𝑋 0 0

∗ ∗ ∗ ∗ ∗ −𝜇𝐼 𝐸
𝑇

2

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

+ 𝜎
−1

1

[

[

[

[

[

[

[

[

[

[

0

0

0

0

Δ
𝑇

3

0

0

]

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

0

0

0

0

Δ
𝑇

3

0

0

]

]

]

]

]

]

]

]

]

]

+ 𝜎
−1

2

[

[

[

[

[

[

[

[

[

[

0

0

0

0

Δ
𝑇

4

0

0

]

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

0

0

0

0

Δ
𝑇

4

0

0

]

]

]

]

]

]

]

]

]

]

< 0.

(49)

Based on Lemma 5, inequality (49) is equivalent to inequality
(33).

From 𝑌 = 𝐾𝑋
𝑑+1

, we have 𝐾 = 𝑌𝑋−1
𝑑+1

; thus, Theorem 8
is verified.

𝛾 > 0 exists not only in Definition 4 but also in
Theorem 10; this paper gets the value of 𝛾 by solving the
following optimization problem:

min 𝜇

s.t. Inequality (33) .
(50)

4. Simulations

Consider the parameters of system (2) as follows:

𝐴 = [

−0.079 0.1

0.1 −1.01
] , 𝐵 = [

−0.08 −0.3

−0.7 1.7
] ,

Ω = [

0.1 0

0.1 0.1
] , 𝐶 = [

−1.0860 0

−0.0053 0
] ,

𝐻 = [

−0.0400 0.4100

−0.3000 0.6390
] , 𝐹 = [

sin 𝑘 0

0 sin 𝑘] ,

Δ𝐴 = [

0.01 sin 𝑘 0

0.01 sin 𝑘 0.012 sin 𝑘] ,

Δ𝐵 = [

0.05 sin 𝑘 0

0.05 sin 𝑘 0.03 sin 𝑘] ,

Δ𝐻 = [

0.04 sin 𝑘 0

0.04 sin 𝑘 0.02 sin 𝑘] ,

𝜔 (𝑡) = {

[1.7, 1.8]
𝑇

, 15 ≤ 𝑘 ≤ 30,

0, others.
(51)

Here select the sampling period 𝑇 = 0.1ms, 𝑑 = 2𝑇.

It can be obtained that

𝐸
1
= [

0.1000 0

0 0.1200
] , 𝐸

2
= [

−0.4000 0

0 0.2000
] ,

𝐸
3
= [

0.5000 0

0 0.3000
] .

(52)

Consider

𝜎
1
= 2.1000 × 10

−5

, 𝜎
2
= 4.1000 × 10

−5

,

𝑄 = [

0.0250 0

0 0.0560
] , 𝑅 = [

0.0500 0.0100

0.0100 0.0200
] .

(53)

By taking advantage of inequality (33) in Section 3, it can
be obtained that

𝛾 = √𝜇 = 90.8413, 𝐾 = 𝑌𝑋
−𝑇

3
= [

0.0273 −0.0001

0 0.0656
] .

(54)

The following two group thresholds of restrained trans-
mission will be selected for simulation experiments.

(1) Select 𝛿
1
= 0.0062, and 𝛿

2
= 0.0012, in other words,

when the prediction error produced by model (4)
meets the following:

(a) if |�̃�
1
(𝑘)| < 0.0062, the controller does not send

𝑢
1
(𝑘) to the actuator;

(b) if |�̃�
2
(𝑘)| < 0.0012, the controller does not send

𝑢
2
(𝑘) to the actuator.
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Figure 2: The state response curves of NCS.

(2) Select 𝛿
1
= 0.0162, and 𝛿

2
= 0.0112, in other words,

when the prediction error produced by model (4)
meets the following:

(a) if |�̃�
1
(𝑘)| < 0.0162, the controller does not send

𝑢
1
(𝑘) to the actuator;

(b) if |�̃�
2
(𝑘)| < 0.0112, the controller does not send

𝑢
2
(𝑘) to the actuator.

The initial states of system are as follows: 𝑥(0) = [ 9.8
−5
], 𝑥(𝑘) =

[
0

0
], (𝑘 < 0); it can be obtained that

(1) the performance index of the system in the threshold
condition (1) is 𝐽 = 9.7135;

(2) the performance index of the system in the threshold
condition (2) is 𝐽 = 7.5000.

The system under scheduling policy based on predicted
error is stable according to the state response curve shown in
Figure 2. However, due to the characteristics of the schedul-
ing model based on the prediction error and the system’s
uncertainties, the state is not keeping zero all the time but
in dynamic equilibrium.The simulation results show that the
changeable range of system in a state of equilibrium in the
threshold condition (1) is lower than that in the threshold
value condition (2). Therefore, the stability of system in the
threshold condition (1) is better. It manifests that the stability
of system under scheduling policy based on predicted error
relates to restrained transmission threshold.

After entering the steady state, data will stop being
transmitted and calculated unless interference makes the
value of prediction error surpass the value of threshold. In
order to facilitate comparison, the number of data packet
losses at time 𝑘 is obtained by calculating the total number of
packet losses from time 𝑘−19 to time 𝑘 as Figure 3. Obviously,

at the beginning stage, very few packets are dropped.With the
system getting closer to steady state, data transmission and
calculating are terminated gradually. By the calculation, the
average packet loss rate of NCS is 35.45% in the threshold
value condition (1) during the whole simulation, while it
can achieve 54.08% in the threshold value condition (2).
Actually, because of larger value of threshold, the packet loss
probability of system in the threshold value condition (2) is
larger than that in the threshold value condition (1), which
manifests that setting a bigger threshold value is more helpful
to save energy at the actuator nodes.

In addition, we apply themethod proposed by Longo et al.
[12] into the same problem. The average packet loss rate of
NCS is 4.72% in the threshold value condition (1) and is 6.53%
in the threshold value condition (2). And the design of control
fails with 𝐾 = [

−0.1375 0.0401

0.1646 0.0243
] shown in Figure 4. Thus, it

sufficiently demonstrates the effectiveness and feasibility of
this paper.

5. Conclusions

In this paper, scheduling policy based on model prediction
error is presented to reduce energy consumption andnetwork
conflicts at the actuator node, where the characters of NCS
are considered, such as limited network bandwidth, limited
node energy, and high collision probability.The object model
is introduced to predict the state of system at the sensor
node. And scheduling threshold is set at the controller node.
Control signal is transmitted only if the absolute value of
prediction error is larger than the threshold value. And the
model of NCS under scheduling policy based on predicted
error is established by taking uncertain parameters and long
time delay into consideration. The design method of 𝐻

∞

guaranteed cost controller is presented by using the theory of
Lyapunov and linear matrix inequality (LMI).The stability of
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(a) Packet losses of NCS in the threshold condition (1)
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(b) Packet losses of NCS in the threshold condition (2)

Figure 3: The packet losses curves of NCS.
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Figure 4: The state response curves of NCS.

NCS under scheduling policy based on predicted error relates
to restrained transmission threshold. And setting different
restrained transmission threshold, the number of dropped
packets is obviously different. After all, the feasibility and
effectiveness of method in this paper are demonstrated. The
next research task will be choosing reasonable parameters
𝜎
𝑖
(𝑖 = 1, 2) to reduce the conservative.
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