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An analytic approximation to the solution of wave equation is studied. Wave equation is in radial form with indicated initial
and boundary conditions, by variational iteration method it has been used to derive this approximation and some examples are
presented to show the simplicity and efficiency of the method.

1. Introduction

Wave equation has attracted much attention and solving
these kind of equations has been one of the interesting tasks
for mathematicians. Variational iteration method is known
as a powerful device for solving functional equations [1–
7]. Numerical methods which are commonly used as finite-
difference methods and characteristics method need large
size of computational works and usually the effect of round-
off error causes the loss of accuracy in the results. Analytical
methods commonly used for solving wave equation are very
restricted and can be used in special cases, so they cannot be
used to solve equations resulted by mathematical modeling
of numerous realistic scenarios. In this article, the variational
iteration method has been applied to solve more general
forms of wave equation.

2. He’s Variational Iteration Method

The variational iteration method [8–13], which is a modified
of general Lagrange multiplier method [14], has been shown
to solve effectively, easily, and accurately large class of
nonlinear problems with approximations which converge
rapidly to accurate solutions. To illustrate the method,
consider the following nonlinear equation:

Lu(t) + Nu(t) = g(t), (1)

where L is a linear operator, N is a nonlinear operator,
and g(t) is a known analytic function. According to the

variational iteration method, we can construct the following
correction functional:

un+1(t) = un(t) +
∫ t

0
λ(ξ)

(
Lun(ξ) + Nun(ξ)− g(ξ)

)
dξ,

(2)

where λ is general Lagrange multiplier which can be identi-
fied via variational theory, u0(t) is an initial approximation
with possible unknowns, and ũn is considered as restricted
variation [15] (i.e., δũn = 0). Therefore, we first determine
the Lagrange multiplier λ that will be identified optimally
via integration by parts. The successive approximations
un+1(t) of the solution u(t) will be readily obtained upon
using the obtained Lagrange multiplier and by using any
selective function u0. Consequently, the exact solution may
be obtained by u = limn→∞un.

3. Numerical Results

To illustrate the method and to show ability of the method,
some examples are presented.

Example 1. Let us have one-dimensional wave equation in
radial form with initial condition:

∂2u

∂t2
= ∂2u

∂r2
+

1
r

∂u

∂r
,

u(ri, 0) = r.
(3)
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Its correction functional can be expressed as follows:

un+1(r, t) = un(r, t)

+
∫ t

0
(ξ − t)

(
∂2un
∂ξ2

− ∂2ũn
∂r2

− 1
r

∂ũn
∂r

)
dξ.

(4)

To make this correct functional stationary, δun(r, 0) = 0,

δun+1 = δun +
(
λ1 (δun)′

)t
0
− (λ′1 δun

)t
0

+
∫ t

0
λ′′1 δundξ = 0.

(5)

Its stationary conditions can be obtained as follows:

δun : 1− λ′1(t) = 0,

δu′n : λ1(t) = 0,

δun : λ′′1 (ξ) = 0,

(6)

from which Lagrange multiplier can be identified as λ1 = ξ−
t, and the following iteration formula will be obtained:

un+1(r, t) = un(r, t)

+
∫ t

0
(ξ − t)

(
∂2un
∂ξ2

− ∂2un
∂r2

− 1
r

∂un
∂r

)
dξ.

(7)

Beginning with u0(r, t) = r, by iteration formula (7), we have

u1(r, t) = r +
1

2!r
t2,

u2(r, t) = r +
1

2!r
t2 +

12

4!r3
t4,

u3(r, t) = r +
1

2!r
t2 +

12

4!r3
t4 +

12 × 32

6! × r5
t6,

...

(8)

from which the general term and so the solution will be
determined as follows:

u(r, t) = r +
∞∑
n=1

12 × 32 × · · · × (2n− 3)2

(2n)!r2n−1
t2n. (9)

Example 2. Let us solve two-dimensional wave equation in
radial form with the boundary conditions:

∂2u

∂t2
= ∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
,

ur(1, θ, t) = −1, ur(10, θ, t) = 0, uθ(r, 1, t) = 1.
(10)

Its correction functional can be expressed as follows:

un+1(r, θ, t) = un(r, θ, t)

+
∫ r

1
λ2

(
∂2un
∂ξ2

+
1
ξ

∂un
∂ξ

+
1
ξ2

∂ũn
∂θ2

− ∂2ũn
∂t2

)
dξ.

(11)

Making the above correct functional stationary, notice that
δun(1, θ, t) = 0:

δun+1 = δun +
(
λ2(δun)′

)r
1
− (λ′2δun)r1

+
∫ r

1
λ′′2 δundξ +

(
λ2

ξ
δun

)r

1

−
∫ r

1

ξλ′2 − λ2

ξ2
δundξ = 0.

(12)

Its stationary conditions can be obtained as follows:

δun : λ′′2 −
ξλ′2 − λ2

ξ2
= 0,

δu′n : λ2(r) = 0,

δun : 1− λ′2(r) +
λ2(r)
r

= 0,

(13)

from which the Lagrange multiplier would be identified as
follows:

λ2(ξ) = ξ(ln ξ − ln r). (14)

Substituting (14) into (11) leads to the following iteration
formula:

un+1(r, θ, t) = un(r, θ, t)

+
∫ r

1
ξ(ln ξ − ln r)

(
∂2un
∂ξ2

+
1
ξ

∂un
∂ξ

+
1
ξ2

∂un
∂θ2

− ∂2un
∂t2

)
dξ.

(15)

Starting with

u0(r, θ, t) = Ar2 + Bθ2 + Ct2, (16)

we have

u1(r, θ, t) = Ar2 + Bθ2 + Ct2

+
∫ r

1
ξ (ln ξ − ln r)

(
4A +

2
ξ2
B − 2C

)
dξ

= A (1 + 2 ln r) + B
(
θ2 − (ln r)2

)

+ C

(
t2 +

r2

2
− 1

2
− ln r

)
.

(17)

Imposing the boundary conditions yields to A = −1/2, B =
1, C = 1 + ln 10/99.

Thus, we have

u1(r, θ, t) = 1
198

(
−100− ln 10 + (1 + ln 10)r2 − 99(ln r)2

− (200 + 2 ln 10) ln r + 99θ2

+2(1 + ln 10)t2
)

,

(18)

which is an exact solution.
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Example 3. Consider Example 1 with boundary conditions
following:

u(1, t) = 1, ur(1, t) = t. (19)

Similar to Example 2, the Lagrange multiplier can be iden-
tified as λ3(ξ) = ξ(ln ξ − ln r) and the following iteration
formula will be obtained:

un+1(r, t) = un(r, t)

+
∫ r

1
ξ(ln ξ − ln r)

(
∂2un
∂ξ2

+
1
ξ

∂un
∂ξ

− ∂2un
∂t2

)
dξ.

(20)

Starting with

u0(r, t) = r +
∫ r

1
t dξ = 1 + t(r − 1), (21)

by iteration formula (20), we have

u1(r, t) = 1 + t ln r, (22)

which is an exact solution.

4. Conclusion

In this work, we present an analytical approximation to the
solution of wave equation in radial form in different cases.
We have achieved this goal by applying variational iteration
method. The small size of computations in comparison with
the computational size required in numerical methods and
the rapid convergence shows that the variational iteration
method is reliable and introduces a significant improvement
in solving the wave equation over existing methods. The
main advantage of the VIM over A.D.M. is that this
method provides the solution without a need for calculating
Adomian’s polynomials [16].
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