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Optimal configurations of spatial scale
for grid cell firing under noise and
uncertainty

Benjamin W. Towse1,2,†, Caswell Barry1,2,3,4,†, Daniel Bush2,3

and Neil Burgess2,3

1UCL Institute of Behavioural Neuroscience, 2UCL Institute of Neurology, 3UCL Institute of Cognitive
Neuroscience, and 4UCL Department of Cell and Developmental Biology, University College London, London
WC1N 3AR, UK

We examined the accuracy with which the location of an agent moving

within an environment could be decoded from the simulated firing of sys-

tems of grid cells. Grid cells were modelled with Poisson spiking

dynamics and organized into multiple ‘modules’ of cells, with firing pat-

terns of similar spatial scale within modules and a wide range of spatial

scales across modules. The number of grid cells per module, the spatial scal-

ing factor between modules and the size of the environment were varied.

Errors in decoded location can take two forms: small errors of precision

and larger errors resulting from ambiguity in decoding periodic firing pat-

terns. With enough cells per module (e.g. eight modules of 100 cells each)

grid systems are highly robust to ambiguity errors, even over ranges much

larger than the largest grid scale (e.g. over a 500 m range when the maxi-

mum grid scale is 264 cm). Results did not depend strongly on the precise

organization of scales across modules (geometric, co-prime or random).

However, independent spatial noise across modules, which would occur if

modules receive independent spatial inputs and might increase with spatial

uncertainty, dramatically degrades the performance of the grid system. This

effect of spatial uncertainty can be mitigated by uniform expansion of grid

scales. Thus, in the realistic regimes simulated here, the optimal overall

scale for a grid system represents a trade-off between minimizing spatial

uncertainty (requiring large scales) and maximizing precision (requiring

small scales). Within this view, the temporary expansion of grid scales

observed in novel environments may be an optimal response to increased

spatial uncertainty induced by the unfamiliarity of the available spatial cues.
1. Introduction
Grid cells recorded in the medial entorhinal cortex (mEC) of freely moving

rodents fire whenever the animal enters any one of an array of locations arranged

at the vertices of a triangular grid across the environment [1]. The spatial scale of

the grid-like pattern increases at more ventral recording locations along the mEC

[1]. Grid cells are organized into discrete modules such that the cells within each

module have firing patterns of similar spatial scale, with a sharp transition in

spatial scale between modules [2] (see also [3]). The grid-like firing patterns

within a module also have a similar orientation, and grid orientation is clustered

(i.e. more similar than expected by chance) across modules within the mEC of a

single hemisphere [2,3] (figure 1).

The approximate range of grid scales recorded in rats runs from around

25 cm, i.e. the smallest scale recorded in dorsal mEC, to 500 cm recorded in

intermediate/ventral mEC [3,4]. The maximum number of modules recorded

within this range is approximately five or six, indicating that there might be

5–10 modules in total [3,4]. It has been suggested that each successive grid

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2013.0290&domain=pdf&date_stamp=2013-12-23
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Figure 1. Grid cells exist in modules of discrete scale but similar orientation.
(a) A grid cell in mEC fires action potentials or ‘spikes’ at the vertices of a
triangular grid as the rat forages in a square arena ( path shown in black,
spikes superimposed), adapted from [2]. (b) The grid scales (spacing between
neighbouring firing peaks) of the grid cells in each of five rats are clustered
around discrete values, adapted from [2]. (c) The orientations of the grid-like
firing patterns in each module were also significantly clustered, in all five rats.
Grid orientations are shown for rat 217 for the small (black), medium (light
grey) and large (dark grey) grids, adapted from [2]. (d ) Differences in the
orientations of grids are greater between modules than within modules,
but are still significantly clustered between modules (compared with the uni-
form distribution between 08 and 308 expected for independent modules),
adapted from [3] with permission. (Online version in colour.)
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scale increases by a fixed factor, producing a geometric series

of scales, with scale factors reported in the range between 1.3

and 1.7 [2,3]. However, given the high variability of grid

scales within each animal and the difficulty in concurrently

observing neighbouring grid modules [3], it is not clear

whether this geometric arrangement is precise or just a

rough approximation.

The firing of grid cells within a single module represents

the location of the animal within each repeating cell of the

grid firing pattern, but does not distinguish between the cor-

responding locations in different cells of the firing pattern.

The precision of this representation depends on the level of

noise in neural firing, the shape of the spatial distribution

of firing and the density of spatial coverage of the grids

within the module. Because different modules have different

spatial scales, the firing of a population of grid cells contain-

ing multiple modules can help to resolve the ambiguity of the

represented location across corresponding locations within

each grid scale, if the ambiguous locations do not align

across the modules with different spatial scales (figure 2

and [5–7]). Note that inspection of figure 2 indicates that

the difference in scale between adjacent grid scales should

be less than a factor of 2, as indicated by the data, so that

the smaller scale sinusoid has only one peak within the

raised area of the larger sinusoid.

The size of the environment strongly influences the rela-

tive importance of the twin problems of ambiguity and

precision. In small environments, the problem of ambiguity

can be solved by the firing pattern of modules with a scale
larger than the environment—these cells do not exhibit

repeated firing fields and, as such, are unambiguous. In

this case, the accuracy of decoding location from the popu-

lation firing pattern depends on the spatial distribution of

firing (i.e. the density of coverage and the shape of the

firing patterns) and the reliability or noisiness of firing, as

quantified by Mathis et al. [5,6] using mean maximum-likeli-

hood estimate square error.

In large environments, larger than the largest grid scale,

the problem of ambiguity dominates (potentially producing

much larger errors than those of precision). Maximizing the

spatial range over which grid cells could encode location

without ambiguity leads to suggestions that the grid scales

within an animal should be co-prime, which could theoretic-

ally allow representation over a very large range (up to the

product of the grid scales [8,9]). However, the effect of

noise in neural firing potentially undermines the theoretical

capacity of co-prime grid modules, because ambiguity

becomes possible between locations where the firing patterns

of different modules nearly align (figure 2). The effect of

noise is not irrecoverable in small environments [6], but

could be much more disruptive in larger environments.

The impact of noisy firing on the spatial range encoded

by grid cells and on the optimal organization of grid scales

has not been fully explored. Nonetheless, the fact that errors

caused by ambiguity will typically be extremely large (i.e.

decoded locations will be far from the correct location), leads

to the suggestion that combining the grid cell system with a

slow-moving representation of location will prove optimal

[10]. Such a representation is potentially provided by place

cells in the hippocampus [11]. Each place cell typically fires

in only a single location [12] so that during normal locomotory

activity the overall pattern of activity does not change rapidly.

Thus, large errors in the grid cell representation of location

could be detected (and potentially corrected) by the fact

that they would correspond to sudden large changes in the

corresponding place cell representation of location.

Recent experiments have shown that the spatial scale of

grid cell firing patterns increases whenever the rat is put

into a novel environment [13]. Note that this phenomenon

contrasts with the view that grid cells provide a fixed

metric for space (e.g. [1]). It also appears to reflect a different

mechanism than the parametric response of grid firing pat-

terns to spatial deformation of the environment [2]. When a

familiar environment is changed in shape and size, the

grids show a partial change in spatial scale, most probably

reflecting associations to environmental sensory information,

including that mediated by place cells and boundary vector

cells [14–16]. By contrast, the expansion of grid firing pat-

terns in a novel environment (which is of the same size as

the familiar one) appears to be intrinsically generated.

Currently, it is unknown why this expansion occurs. Here,

we suggest that the increase in grid scale is an adaptive response

to an increase in spatial uncertainty in a novel environment.

The spatial firing patterns of all grid cells within a single

module appear to be coherent, consistent with the presence of

attractor dynamics [17,18], which potentially provides a power-

ful means of reducing the effects of noisy firing by individual

cells on the spatial coding of the population. However, the

spatial representations of each module can shift relative to

each other [17], potentially providing a mechanism for place

cell remapping in a new environment. This decoupling of mod-

ules implies that spatial uncertainty in a novel environment

http://rstb.royalsocietypublishing.org/
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Figure 2. Precision and ambiguity in grid cell firing. The schematic shows the spatial firing patterns of three cells with different spatial scales which fire at their
peak rate at the current (central) location of the animal. Horizontal arrow shows uncertainty about the actual position of the animal encoded by the firing of three
grid cells with different spatial scales, owing to imprecision in their potentially noisy firing patterns. Vertical arrows indicate potentially ambiguous locations with
similar representations in the grid cells’ firing owing to false alignments or near-alignments in firing of subsets of the three cells.
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might cause spatial ‘noise’ reflected in relative movement of

different modules, with potentially strong implications for

ambiguity errors, even when these shifts are small in amplitude.

To summarize, optimal spatial coding by grid cells will

reflect a complex trade-off between precision and ambiguity,

which will interact with spatial uncertainty and temporal

stochasticity in neural firing and will also interact with the

size of the environment relative to the scales of the grids.

By simulating the neural firing patterns in a modular grid

cell system and estimating decoding error for randomly

sampled locations within the environment, we investigate

several questions regarding the configurations of grid scale

that result in the least decoding error, following [5]. Import-

antly, we can investigate the impact of noisy firing,

environmental size and spatial uncertainty on the decoding

error of the simulated grid configurations. The last of these

allows us to examine whether the expansion in grid scale

observed in novel environments might be an adaptive

response that mitigates the effects of spatial uncertainty.
2. Material and methods
(a) One-dimensional grid cell system model
Spiking activity of a population of grid cells, organized into L
discrete modules by spatial period size, was modelled in a one-

dimensional environment using MATLAB v. 7 (Mathworks; code

may be obtained by contacting the authors). The spike output

of a grid cell, j, within a particular module, i, was modelled, fol-

lowing [5], as a Poisson process with rate modulated by position

on an open interval, x [ (0, xmax), according to a periodic

Gaussian tuning curve ai,j(x):

ai;jðxÞ ¼ fmaxe� ð� rli=2þmodðrli=2þx�wj ;rliÞÞ2=2s2
i ; ð2:1Þ

where fmax is the maximum firing rate (which is constant across the

population), li the baseline spatial period defining the module, r
the multiplier applied to that spatial period to control grid scale

expansion, wj the spatial phase offset, si the tuning width of the

grid fields and mod(a,b) represents the modulo function.

Within each module with a shared scale li, tuning curves were

created for M equidistant spatial phases wj ¼ ðbi þ jÞli/M;where

0 � j , M andbi is a random additional offset on the interval (0, 1),

common to all tuning curves within a module but different

between modules. This was added in order to prevent biases

that would result from the alignment of tuning curves across

modules. Thus, a total of L�M ¼ N neurons were simulated.

(b) Two-dimensional grid cell system model
The model described in §2a was also adapted to model grid cell

activity in a two-dimensional environment. Two-dimensional
template tuning curves for each grid scale (and expansion

thereof ) were generated with locations of grid nodes specified

as a regular triangular grid with scale rli and expected firing

rate at each location determined by a Gaussian distribution

centred on the nearest node:

aiðx; yÞ ¼ fmaxe� d2=2s2
i ; ð2:2Þ

where d is the distance from (x,y) to the nearest grid node.

Within each module, M ¼ 195 offset tuning curves were distrib-

uted in a 13� 15 rectangular grid via translations of this original

tuning curve, as well as adding a random translation common to

all grids in the module. Finally, in a given experiment, all grid

tuning curves in all modules were rotated to a common, randomly

selected orientation with respect to the environment. All these

transformations were performed using cubic interpolation.

(c) Determining module scales
Three systems for determining relative module scales were used:

geometric, co-prime and random. In a geometric system, a set of

modules were created by specifying a spatial period multiplier, p,

a smallest scale (r � l1) and a total number of modules L. The

spatial period of each module was determined as rli¼ rl1pi21

where 0 � i � L. In a co-prime system, a set of modules were cre-

ated with scales in the ratios of prime numbers 2 : 3 : 5 : . . . (e.g.

l3 ¼ 5/2l1). Finally, random systems were constructed to com-

pare to the geometric system with p ¼ 1.4 as follows: 1000

systems were created by taking the smallest and the largest

grid scales occurring in the geometric system and selecting a

further L – 2 scales from a uniform distribution ranging between

these scales, hence yielding L scales with upper and lower scales

matched to the p ¼ 1.4 system.

(d) Modelling spatial uncertainty
Gaussian noise 1i was generated separately for each module and

added to the actual position, x, to yield a noisy position estimate

x þ 1i (in the two-dimensional simulation independent noise was

added in both x- and y-dimensions: x þ 1x,j, y þ 1y,j). The degree of

uncertainty was varied by modifying the standard deviation of 1i.

All cells within a module therefore received the same noisy position

input, but cells in different modules received different input. Thus,

cell firing rate was now modulated according to ai,j(x þ 1i). Note

that in the two-dimensional simulation, noisy position signals that

fell outside the environment were corrected to the closest location

at the edge of the environment before being input to the grid cells.

(e) Decoding
The signal extracted from the grid cell system was the number of

spikes, k, generated by each neuron during a finite read-out

period, T—i.e. a population response K ¼ (k1,. . ., kN). We

assume that the decoding cannot take the added noise into

http://rstb.royalsocietypublishing.org/
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account in any way, so that given a position x the probability of

observing the response K in time T, following [5], is taken to be:

PðKjxÞ ¼
YPoissonðki;TaiðxÞÞ

¼
Y ðT � ai;jðxÞÞk

k!
� e�Tai;j(x): ð2:3Þ

From the population response K, we can decode position as

the maximum-likelihood estimate of x, that is x̂ðKÞ. Given the

initial assumption that all values of x within the environment

are uniformly likely

x̂ðKÞ ¼ max
x[½0;xmax �

PðxjKÞ ¼ max
x[½0;xmax �

PðKjxÞ: ð2:4Þ

Thus, x̂ðKÞ may be closely approximated by calculating P(Kjx)

for a sufficiently finely spaced uniform sample of x values

on the interval [0,xmax], and selecting the value of x which

yields the greatest P(Kjx). We used a spatial bin size of

Dx ¼ 0.5 cm. Where two or more values of x yielded the same

maximal P(Kjx) (i.e. decoding was ambiguous), one was ran-

domly selected.

In two dimensions, ai,j(x,y) is calculated by cubic interpolation

from the tuning curve, which gives expected firing rates only at the

sampled intervals. As all possible locations are considered inde-

pendently in the probability calculations, no further adaptation

is required to implement this in two dimensions.

( f ) Measuring error
The mean maximum-likelihood estimate square error, or MMLE,

assesses the accuracy of decoding possible with a particular grid

system, based on the square error of position decoding. Exact

MMLE is defined [19,20] as

x2 ¼ Eððx� x̂Þ2Þ ¼
X

K[NN

ð1

0

ðx� x̂ðKÞÞ2PðKjxÞpðxÞdx ð2:5Þ

and in two dimensions

x2 ¼ Eððx� x̂Þ2 þ ðy� ŷÞ2Þ; ð2:6Þ

where EðbÞ is the expected value of a random variable b. MMLE

values for each set of grid cell network parameters were esti-

mated using the Monte Carlo method. For each iteration c, a

sample position xc was selected, and with the introduction of

noise 1 to the modelled grid cells, a population spike response

Kc was generated, then decoded to yield x̂ðKcÞ. With a large

number of iterations, MMLE can be approximated [5]. One thou-

sand iterations were performed (i.e. 1 � c � 1000)

x2 � 1

1000

X1000

c¼1

ðxc � x̂ðKcÞÞ2 ð2:7Þ

and in two dimensions

x2 � 1

1000

X1000

c¼1

ðxc � x̂ðKcÞÞ2 þ ðyc � ŷðKcÞÞ2: ð2:8Þ

For a given set of parameters in a geometric or co-prime grid

system, 10 such experiments were performed to calculate 10

independent estimates of MMLE, unless specified. For the

random grid scales, a single 1000 iteration experiment was per-

formed for each of the 1000 generated systems.

(g) Comparison of decoding performance to
chance levels

For the purposes of comparison, chance performance levels were

calculated for each track size (i.e. corresponding to a uniform distri-

bution of decoded locations). For a one-dimensional environment,

this was d2/6 and for a square two-dimensional environment d2/3.
(h) Parameters
In all simulations, the following parameters were used, following

Mathis et al. [5]: read-out time period, T ¼ 0.1 s, the approximate

length of a theta cycle; maximal grid firing modulation rate

fmax ¼ 10 Hz; smallest baseline spatial period, l1 ¼ 25 cm; total

number of modules, L ¼ 8; tuning width of grid pattern bumps:

si ¼ rli
3

20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
loge 100

p :

In one dimension, the number of equidistant phase offsets

represented within a module of grid cells, M ¼ 20 or M ¼ 100

and M ¼ 195 in two dimensions; thus the total number of cells,

N ¼ L �M ¼ 160 or 800 in one dimension and N ¼ 1560 in

two dimensions.
3. Results
How does the arrangement of the spatial scales of grid cell

modules affect spatial encoding when the stochastic nature

of neural firing is taken into account? We simulated systems

of Poisson firing grid cells containing eight modules of 20 or

100 cells per module, with geometric, co-prime and random

series of grid scales, all starting from the smallest module

with scale of 25 cm. First, we examined the effect that the con-

figuration of spatial scales, the number of cells per module

and the size of the environment have on the performance

of the grid system in terms of the decoding error. Then, we

consider the optimal response of a grid system to independ-

ent variability in the estimated location across modules,

which might correspond to the effect of spatial uncertainty

in a novel environment.

(a) Configuration of spatial scales across modules
Firstly, we examined scaling factors between adjacent grid

scales ranging from 1.1 to 2.0, including factors
p

2 (1.41) and
p

3 (1.73), and estimated the decoding error of each grid cell

system on a 1 m linear track (see §2e,f). Figure 3a shows that

decoding error is very low overall (squared error generally

being less than 1 cm2), with an improvement in encoding accu-

racy for 100 cells per module compared with 20 cells per

module—presumably because Poisson firing noise is averaged

across a larger cell population. In addition, there is a moderate

effect of the geometric ratio on encoding accuracy, such that the

smaller ratios, which have more small-scale grids, are more

accurate. The performance of the system with ratio 2 and 20

cells per module is particularly poor, with a high variance indi-

cating the presence of two types of error (reflecting precision

and ambiguity, respectively).

The presence of two types of error is illustrated by figure 3b,

where the incidence of large amplitude errors (i.e. instances of

decoding with squared error greater than 10 cm2) generated by

different scaling factors is quantified. These errors are larger

than would be expected if they were owing to imprecision in

the smallest grid scale, and probably reflect decoding ambigu-

ity. Figure 3b shows that these ambiguity errors begin to appear

in grid systems with 20 cells per module as the scale ratio

approaches 2. Although these occur very infrequently (in less

than 0.5% of decoding trials), the errors are large and contrib-

ute disproportionately to the mean squared error. For example,

in the 1.9 ratio system with 20 cells per module, 0.31% of trials

produced large errors and these have a mean square size of

38.1 cm2, whereas the remaining trials have a mean squared

http://rstb.royalsocietypublishing.org/
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Figure 3. Decoding error in grid systems as a function of the configuration of grid scales across modules. (a) Mean squared decoding error on a 1 m track for
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p
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1000 decodings of random locations from grid cell activity. (b) Percentage of decodings on the 1 m track resulting in large errors (error . 10 cm2) attributed to
decoding ambiguity. (c) Decoding errors (as in a) with the large (ambiguity) errors removed. (d – f ) Simulations on 18 m track. (d ) Mean squared decoding errors
(the points for ratio

p
2 and 2.0 are off the scale). (e) Percentage ambiguity errors. ( f ) Decoding error with large (ambiguity) errors removed. (g) Decoding errors for

1000 grid systems with random scales matched to a geometric system with scale factor 1.4 (18 m track, 100 cells per module; grey bars). The 5th and 95th
percentile of the random population are shown as grey dashed lines—the matched geometric system lies at the 15.4th percentile (solid vertical line). (h) The
actual spatial scales of the modules in the best and worst performing random systems. (i) Decoding error for a geometric system (factor 1.4, 100 cells per
module) in one-dimensional environments of increasing size (50 cm – 500 m). (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130290

5

 on August 20, 2014rstb.royalsocietypublishing.orgDownloaded from 
error of 0.75 cm2. In the grid systems with 100 cells per module,

no ambiguity errors occurred in any of the 106 simulated trials.

Figure 3c replots the data from figure 3a with the ambiguity

errors removed—as expected, the performance of the 20 cells

per module system is improved at larger geometric ratios

and the variability is reduced.

The presence of ambiguity errors in grid systems with

20 cells per module is clearer in 18 m linear environments

(figure 3d ). The mean decoding error is dominated by the

infrequent but very large decoding ambiguity errors, which
also cause large variance. Note the decoding accuracy

allowed by geometric ratio 2, and to a lesser extent
p

2, is

particularly poor and exceeds the limits of the y-axis (mean

squared decoding error 8979 and 2687 cm2, respectively).

The proportion of trials showing decoding ambiguity errors

is shown in figure 3e. These errors occur for all grid systems

with 20 cells per module and their amplitudes are increased

relative to the 1 m track (because the 18 m track provides

greater scope for larger errors). Taking the 1.9 scale ratio,

again these errors account for 0.32% of the trials, but their

http://rstb.royalsocietypublishing.org/
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mean square size was 2500 cm2, while the size of the errors in

the remaining trials was effectively unchanged at 0.76 cm2.

The geometric ratio 2 coding scheme in particular suffers

from a large number of decoding ambiguity errors on

0.86% of trials, indicating the inefficacy of integer scale

ratios (figure 2). The geometric ratio
p

2 scheme also exhibits

a disproportionate number of ambiguity errors when com-

pared with the similarly scaled 1.4 and 1.5 schemes—this

appears to reflect the fact that under the
p

2 scheme alternate

grid modules follow a geometric progression with ratio 2.

Again the grid system with 100 cells per module does not gen-

erate ambiguity errors. Decoding error for the same grid

systems is shown without the infrequent, but very large,

decoding ambiguity errors in figure 3f. As with figure 3c, this

shows that the remaining (precision) errors increase with

increasing scale ratio, as would be expected from the concomi-

tant increases in the breadths of tuning of the grid firing fields

in all but the smallest scale module.

The performance of configurations of grid modules with a

co-prime sequence of scales (i.e. a 2 : 3 : 5 : 7 : 11 : 13 : 17 : 19

ratio of scales, starting from 25 cm and ending at 237.5 cm)

is similar to a geometric series with scale factor approxi-

mately 1.5 (range 25–427 cm) for both the 1 and 18 m

tracks, and in systems with 20 and 100 cells per module

(see the rightmost points in figure 3a–f ). It performs slightly

worse than the geometric series with scale factor 1.4, whose

overall range (25–264 cm) is best matched to it. Thus, there

seems to be no specific advantage for a co-prime series of

grid scales over a geometric series in one-dimensional

environments of these sizes. Grid systems with geometric

ratio 1, i.e. where all grids are 25 cm in scale, were also simu-

lated, but the data are not shown because they give such large

errors, being unable to disambiguate locations more than

25 cm apart (e.g. mean squared error with 20 cells per

module on a 1 m track is 1669 cm2).

Figure 3g examines the decoding error for grid systems

with a random distribution of grid scales between 25 and

264 cm, for comparison with a geometric series with scale

ratio 1.4 (which has the same range of scales and is investi-

gated further below). The mean error in the geometric

system lies at the 15.4th percentile of the distribution of

random scales, showing that on average a geometric series

performs somewhat better than a random series with a simi-

lar range of scales but that this advantage is slight and all

systems exhibit only precision errors. The five randomly gen-

erated grid systems that gave the lowest decoding errors

(rank first to fifth) as well as the five yielding the highest

errors (rank 996th to 1000th) are shown in figure 3h. The

best performing random systems include more small-scale

grid modules than the poorly performing systems, which

are dominated by larger scale grids, and so somewhat

resemble the geometric series of scales. This reflects the fact

that, on the 18 m track with 100 grids per module, ambiguity

errors are unlikely to occur, and so the maximum decoding

accuracy is obtained by minimizing precision errors—hence

small grid scales are favoured.

Figure 3i provides an indication of the actual capacity of the

grid system and how this compares to the 18 m track used in the

previous simulations. Specifically, decoding error of a geo-

metric system with scale ratio 1.4 and 100 grids per module is

examined on tracks of increasing length. In all cases, the decod-

ing errors are small, consisting mainly of precision errors even

on the largest track (500 m), suggesting that the maximum
range of this system is considerably larger than this value, as

suggested by Fiete et al. [8].

These initial simulations demonstrate several points. The

presence of two types of error is clearly shown: precision

errors which are common but relatively small in magnitude

and ambiguity errors which are infrequent but potentially

very large. The small decoding errors resulting from precision

errors are reduced further in grid systems with more small-

scale grid modules and also in systems with more cells per

module. Although ambiguity errors are infrequent, typically

occurring in less than 1% of decodes, their large size was

shown to disproportionally degrade the system’s performance.

Ambiguity errors were found to be more prevalent in systems

with fewer cells per module (20 versus 100) as well as in the

larger environment (18 versus 1 m) where their magnitude

was also increased. We did not see any specific advantage for

the co-prime system over a similarly scaled geometric system.

However, the geometric system following a ratio of 2 between

modules performed poorly owing to a disproportionate

number of ambiguity errors on the 18 m track—to a lesser

extent this was also true for the ratio
p

2 system.

(b) Optimal response to independent spatial
uncertainty across modules

Given our conclusions in §3a, that a geometric series of grid

scales across modules performs as well as any other configur-

ation, we chose to use a geometric series with a scaling ratio of

1.4 for the remaining analyses. Such a scaling ratio is indicated

(on average) by the data in [3], although we note that a larger

ratio would be required to produce a range comparable with

the smallest and the largest grid scales that have been reported

(i.e. 25–500 cm [4]) with only eight modules, more consistent

with the ratio in [2]. We used 100 cells per module, because

this minimizes the effect of decoding ambiguity errors arising

from Poisson firing. Finally, we decode position on an 18 m

track, rather than a 1 m track, because this is closer to the natural

situation in which grid systems must operate, where the range

of the animal is larger than the largest grid scale, and in which

the combinatorial power of the grid code can be exploited.

As noted in §1, the spatial firing patterns of the grid cells

within the same module appear to be coherent [18], and we

have seen that increasing the number of grid cells within each

module mitigates the effects of noisy firing (§3a). Thus, the

encoding of location within each module appears to be

robust. However, the spatial representations of each module

can shift relative to each other [3]. This decoupling implies

that each module performs its own independent estimation of

location (e.g. each receiving independent movement and/or

location-related signals). This type of spatial noise or uncer-

tainty will cause shifts in the relative locations represented by

different modules, with potentially strong implications for

ambiguity errors. Following the experimental observation of

grid scale expansion in novel environments [13], we examined

whether a uniform expansion of all grid scales might be an opti-

mal response to spatial uncertainty in terms of reducing the

decoding error.

Spatial uncertainty was simulated by adding random off-

sets in the locations represented by different grid modules,

and all grid scales were multiplied by a single expansion

factor. The offsets were taken from Gaussian distributions

with zero mean, increasing the standard deviation to

simulate increasing uncertainty (see §2d for details).

http://rstb.royalsocietypublishing.org/
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Figure 4. Expansion of a grid system is an optimal response to spatial uncertainty. (a) Mean squared decoding error on an 18 m track in grid systems subjected to
varying expansion, under low uncertainty (s.d. 2 cm; solid line) and higher uncertainty (s.d. 6 cm; dashed line). For each level of uncertainty, there is an optimal
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Figure 4a shows the decoding error for the grid system,

for two levels of uncertainty, as a function of the grid scale

expansion factor in the range 0.125–7. For both levels of

uncertainty, small expansion factors lead to large decoding

errors, reflecting the occurrence of decoding ambiguity

errors caused by spatial uncertainty (for this grid system

and environment, Poisson firing alone does not cause ambi-

guity errors, or at least does so only extremely rarely,

owing to population coding; see §3a). Equally, for larger

expansion factors, the overall decoding error increases

owing to decreasing precision. The scaling factor representing

the optimal trade-off between these two factors depends on

the level of uncertainty. In fact, the optimal expansion

factor, which minimizes decoding error in this situation,

increases linearly with the level of spatial uncertainty, as

illustrated in figure 4b. The differences in decoding error gen-

erated by the optimally expanded and initial (unexpanded)

grid systems are shown in figure 4c.

A similar pattern of results is generated by the grid system

in a two-dimensional, 1 m2 environment (see figure 4d–f,
where expansion factors ranging from 0.125 to 3.5 were

assessed). Note that at low uncertainty (s.d. 2.5 cm) the optimal

grid expansion is 1.0 (i.e. comparable to ‘baseline’ scales

measured empirically), and with an increase in uncertainty

(to 5 cm) the optimal expansion is 1.9, which is of a similar

order of magnitude to the expansion recorded empirically in

exposure to a novel environment [13].

At zero spatial uncertainty, the optimal expansion factor

is less than unity and represents shrinkage of the grid firing
pattern. In fact, the true optimum is likely to be even smaller

than that observed here. Our estimate was limited by the

range examined, and expansion factors smaller than 0.125

were not examined. However, the fact that these shrunken

grids can code location with so little error is further evidence

of the power of grid systems to encode unique locations over

ranges much larger than their scales.

In summary, using simulations of one- and two-dimen-

sional environments, we have modelled uncertainty as

independent spatial noise affecting each grid module. Ele-

vated spatial uncertainty was shown to greatly increase the

occurrence of ambiguity errors, resulting in a pronounced

reduction in spatial coding accuracy. However, the deleteri-

ous effect of spatial uncertainty is less pronounced in

systems with larger scale grids. Hence, a uniform expansion

of all grid modules in a system was seen to mitigate the

effect of spatial uncertainty, reducing the decoding errors

produced by ambiguity errors.

We interpret our results as suggesting that the grid

expansion observed in vivo [2] could be an optimal response

to spatial uncertainty, which is assumed to produce independ-

ent spatial error in the locations represented by different

grid modules. Expanding grid scales appears to reduce the

effect of uncertainty, and optimal expansion represents a

trade-off between mitigating uncertainty and maintaining

sufficient precision. The optimal expansion factor is linearly

proportional to the uncertainty. The likely explanation

is that grid expansion is required to keep the size of the jitter

small enough relative to the sizes of the grids to avoid

http://rstb.royalsocietypublishing.org/
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ambiguity errors, but not to expand more than necessary (as

this will reduce precision). The optimal expansion appears to

approximately maintain the uncertainty (i.e. the standard devi-

ation of the distribution of spatial error) below 10% of the

smallest grid scale (i.e. 2.5 cm jitter with 25 cm smallest grid

scale; 5 cm jitter with 50 cm smallest grid scale, etc.).
 ypublishing.org
Phil.Trans.R.Soc.B
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4. Discussion
Using maximum-likelihood decoding of simulated grid cell

Poisson spiking dynamics, we examined the accuracy with

which populations of grid cells can encode position in one-

and two-dimensional environments. We explored the effects

of varying the number of grid cells per module, the scaling

factor between modules and the environment size. Addition-

ally, we described the effect of spatial uncertainty—modelled

as independent noise in the relative position of different grid

modules—on encoding accuracy as well as the interaction

between spatial uncertainty and grid scale. In particular, we

showed that increased spatial uncertainty markedly reduces

the precision with which location is encoded. Finally, we

demonstrate that this reduction in performance can be

minimized by a homogeneous expansion of all grid scales.

Our simulations demonstrate that grid systems are suscep-

tible to two types of error: localized precision errors which

reflect small inaccuracies in the decoded location and larger

ambiguity errors resulting from decoding location to the

wrong part of the track. In the absence of spatial uncertainty,

the sole source of noise in the system arises from the Poisson

dynamics, and ambiguity errors occur relatively infrequently.

However, their magnitude scales with the size of the environ-

ment, unlike precision errors. As such, even in a moderately

sized environment, ambiguity introduces significant errors

that are typically of the orders of magnitude larger than the

precision errors (which are usually much smaller than a

rodent’s body length). Grid systems with smaller grid scales

experienced smaller precision errors and so, in the absence of

ambiguity errors, were more accurate. This effect was also

reflected in the performance of grid systems with randomly

selected scales—those providing the most precise information

about location included more small-scale grid modules.

Increasing the number of grid cells per module also

decreased the size of the precision errors. This effect appears

to arise both because Poisson noise is averaged across cells

and because the larger population of cells provides a better

approximation to the idealized population vector for a given

position. However, increasing the number of cells per module

also decreased the incidence of ambiguity errors. Partly this

effect occurs because averaging the Poisson noise across more

cells renders it less likely that the grid code for two different

locations will be confused. As such, the number of different

states that the grid code can disambiguate is increased—this

enhances both the precision and range of the code. Indeed,

with 100 cells per module the range of the grid code is combin-

atorially huge (greater than 500 m), easily exceeding the

scale of the largest grid module (264 cm, given a geometric

ratio of 1.4).

Previous theoretical work has suggested that the scale of

grid modules should follow a co-prime sequence [8]. In our

simulations, grid systems based on co-prime and non-integer

geometric scaling factors perform equally well, notwithstand-

ing the slight reduction in the magnitude of precision errors
for the grid systems with smaller scale modules. However,

systems based on a geometric scaling factor of 1 and 2 per-

form particularly poorly, generating more ambiguity errors.

In the former, this is because all modules contain grids of

the same scale, making it impossible to disambiguate positions

further apart than a single grid spatial period (25 cm). The

weakness of the factor 2 system appears to arise because all

modules’ scales share a common integer factor which increases

the likelihood of ambiguity errors, as discussed by Fiete et al. [8].

Interestingly, the weakness of the factor 2 code is most apparent

on longer tracks (18 versus 1 m), suggesting that simulations of

even larger environments might potentially reveal further

differences between co-prime and geometric systems.

Finally, we also showed that uniform expansion of grid

scale is an optimal response to spatial uncertainty—larger

scales provide more accurate representations of position in

high uncertainty situations. Again, this effect can be under-

stood in terms of precision and ambiguity errors. With low

spatial uncertainty, ambiguity errors are unlikely, and uni-

formly increasing grid scale simply increases the size of the

precision errors—thus smaller grid scales are favoured.

With increasing spatial uncertainty, ambiguity errors occur

more frequently, but this can be mitigated by increasing

grid scales. There appear to be two reasons for this. Firstly,

increasing scale reduces the size of spatial uncertainty relative

to the grids, decreasing the chance of making ambiguity

errors. Secondly, it increases the range of the grid system,

such that a given environment occupies less of the overall

capacity. Because location is only decoded to locations

within the environment, this effectively means fewer candi-

date decode locations are considered, again reducing the

chance of ambiguity errors. This form of ‘capacity’-based

error correction was previously described in the context of

a non-expanded grid system by Fiete et al. [8].

To conclude, increasing spatial uncertainty reduces the

fidelity and range of the grid system, and these effects can be

mitigated by uniform expansion of grid scale. This provides a

potential explanation for the transient expansion of grid scales

observed when an animal is placed in a novel environment

[13]. We suggest that novel environments are characterized by

increased spatial uncertainty, the animal being unfamiliar

with the form and reliability of the available spatial cues.

In such circumstances, to minimize degradation of the spatial

encoding, the grid system expands. As the environment

becomes more familiar and the animal learns about the available

cues, spatial uncertainty reduces, and the grid scale returns to

baseline levels. It may be that expansion is mediated by changes

in the theta-band oscillatory dynamics of grid cell firing that

co-occurs with the expansion [13], as would be consistent

with models in which these oscillatory dynamics determine

the spatial firing pattern [21–23]. In turn, it seems possible

that the changes in theta-band dynamics may be triggered by

increased levels of acetylcholine in the hippocampal formation:

elevated acetylcholine tone is associated with environmental

novelty [24], is known to modulate the oscillatory dynamics of

mEC stellate cells [25] and has been theoretically implicated in

signalling uncertainty [26]. Additionally, grid expansion occur-

ring in response to increased spatial uncertainty might promote

the ‘remapping’ of place cell firing, which also co-occurs with

the expansion [13,27]. This would be consistent with models

suggesting that remapping reflects a mismatch between path

integration-based grid inputs and environmental sensory

inputs to place cells [13,28].
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