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Connectivity has an important role in neural networks, computer network, and clustering. In the design of a network, it is important
to analyze connections by the levels. The structural properties of intuitionistic fuzzy graphs provide a tool that allows for the
solution of operations research problems. In this paper, we introduce various types of intuitionistic fuzzy bridges, intuitionistic
fuzzy cut vertices, intuitionistic fuzzy cycles, and intuitionistic fuzzy trees in intuitionistic fuzzy graphs and investigate some of
their interesting properties. Most of these various types are defined in terms of levels. We also describe comparison of these types.

1. Introduction

A graph theory has many applications in different areas of
computer science including data mining, image segmen-
tation, clustering, image capturing, and networking. For
example, a data structure can be designed in the form of trees;
modeling of network topologies can be done using graph
concepts. The most important concept of graph coloring is
utilized in resource allocation and scheduling. The concepts
of paths, walks, and circuits in graph theory are used in
traveling salesman problem, database design concepts, and
resource networking. This leads to the development of new
algorithms and new theorems that can be used in tremendous
applications.

A notion having certain influence on graph theory is
fuzzy set, which is introduced by Zadeh [1] in 1965. Fuzzy
graph theory is finding an increasing number of applications
in modeling real time systems where the level of information
inherent in the system varies with different levels of precision.
Fuzzy models are becoming useful because of their aim in
reducing the differences between the traditional numerical
models used in engineering and sciences and the symbolic
models used in expert systems.

Kaufmann’s initial definition of a fuzzy graph [2] was
based on Zadeh’s fuzzy relations [3]. Rosenfeld [4] intro-
duced the fuzzy analogue of several basic graph-theoretic
concepts including bridges, cut nodes, connectedness, trees,

and cycles. Bhattacharya [5] gave some remarks on fuzzy
graphs, and Sunitha and Vijayakumar [6] characterized fuzzy
trees. Bhutani and Rosenfeld [7] introduced the concepts of
strong arcs, fuzzy end nodes, and geodesics in fuzzy graphs,
and types of arcs in a fuzzy graph are described in [8].
Atanassov [9] introduced the concept of intuitionistic fuzzy
relations and intuitionistic fuzzy graphs. Parvathi et al. [10, 11]
have studied intuitionistic fuzzy graphs and intuitionistic
fuzzy shortest hyperpath in a network. Karunambigai et al.
[12] have described arcs in intuitionistic fuzzy graphs.
Akram et al. [13–15] have discussedmany concepts, including
strong intuitionistic fuzzy graphs, intuitionistic fuzzy hyper-
graphs, and metric aspects of intuitionistic fuzzy graphs. In
this paper, we introduce various types of intuitionistic fuzzy
bridges, intuitionistic fuzzy cut vertices, intuitionistic fuzzy
cycles, and intuitionistic fuzzy trees in intuitionistic fuzzy
graphs and investigate some of their interesting properties.

We have used standard definitions and terminologies in
this paper. For other notations, terminologies, and applica-
tions not mentioned in the paper, the readers should refer to
[3, 5, 7, 8, 10, 16–23].

2. Preliminaries

In this section, we review some elementary concepts whose
understanding is necessary to fully benefit from this paper.

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 305836, 11 pages
http://dx.doi.org/10.1155/2014/305836



2 The Scientific World Journal

By a graph, we mean a pair 𝐺∗ = (𝑉, 𝐸), where 𝑉 is the
set and 𝐸 is a relation on 𝑉. The elements of 𝑉 are vertices of
𝐺
∗ and the elements of 𝐸 are edges of 𝐺∗. We write 𝑥𝑦 ∈ 𝐸

to mean that (𝑥, 𝑦) ∈ 𝐸, and if 𝑒 = 𝑥𝑦 ∈ 𝐸, we say that 𝑥
and 𝑦 are adjacent. A path in a graph 𝐺∗ is an alternating
sequence of vertices and edges V

0
, 𝑒
1
, V
1
, 𝑒
2
, . . . , V

𝑛−1
, 𝑒
𝑛
, and

V
𝑛
. The path graph with 𝑛 vertices is denoted by 𝑃

𝑛
. A path

is sometime denoted by 𝑃
𝑛
: V
0
V
1
⋅ ⋅ ⋅ V
𝑛
(𝑛 > 0). The length

of a path 𝑃
𝑛
in 𝐺∗ is 𝑛. A path 𝑃

𝑛
: V
0
V
1
⋅ ⋅ ⋅ V
𝑛
in 𝐺∗ is called

a cycle if V
0
= V
𝑛
and 𝑛 ≥ 3. Note that path graph, 𝑃

𝑛
, has

𝑛 − 1 edges and can be obtained from cycle graph, 𝐶
𝑛
, by

removing any edge. An undirected graph 𝐺∗ is connected if
there is a path between each pair of distinct vertices. A block
is a maximal biconnected subgraph of a given graph 𝐺. An
edge 𝑒 in a connected graph𝐺 is a bridge (cut-edge or cut arc)
if𝐺−𝑒 is disconnected. A vertex V in a connected graph𝐺 is a
cut vertex if𝐺−V is disconnected.The graphswith exactly 𝑛−1
bridges are exactly the trees, and the graphs in which every
edge is a bridge are exactly the forests. A tree is a connected
graph which contains no cycles.

Proposition 1. Let 𝐺 be a graph with 𝑛 vertices. Then the
following statements are equivalent.

(i) 𝐺 is connected and contains no cycles.
(ii) 𝐺 is connected and has 𝑛 − 1 edges.
(iii) 𝐺 has 𝑛 − 1 edges and contains no cycles.
(iv) 𝐺 is connected and each edge is a bridge.
(v) Any two vertices of 𝐺 are connected by exactly one

path.
(vi) 𝐺 contains no cycles, but the addition of any new edge

creates exactly one cycle.

A spanning tree in a connected graph 𝐺 is a subgraph of
𝐺 that includes all the vertices of 𝐺 and is also a tree. A forest
is an undirected graph; all of its connected components are
trees; in other words, the graph consists of a disjoint union of
trees.

A fuzzy subset 𝜇 on a set 𝑋 is a map 𝜇 : 𝑋 → [0, 1]. A
fuzzy binary relation ] on 𝑋 is a fuzzy subset ] on 𝑋 × 𝑋. By
a fuzzy relation ], we mean a fuzzy binary relation given by
] : 𝑋×𝑋 → [0, 1]. Let ]∘] be a fuzzy set of𝐸 ⊆ 𝑉×𝑉 defined
by ] ∘ ](𝑥, 𝑦) = sup{min{](𝑥, 𝑦), ](𝑦, 𝑧)} | 𝑧 ∈ 𝑉}. Then ] ∘ ]
is called the composition of ]with itself. Since composition is
associative, we get ]𝑘 = ]𝑘−1 ∘ ] for 𝑘 = 1, 2, 3, . . . . Define the
fuzzy subset ]∞ of 𝑉 × 𝑉 by

]∞ (𝑥, 𝑦) = sup {]𝑘 (𝑥, 𝑦) : 𝑘 = 1, 2, . . .} . (1)

]∞(𝑥, 𝑦) denotes the “strength of connectedness” between
two nodes 𝑥 and 𝑦. That is, ]∞(𝑥, 𝑦) is defined as the max-
imum of the strengths of all paths between 𝑥 and 𝑦.

In 1995, Atanassov [16] introduced the concept of intu-
itionistic fuzzy sets as a generalization of fuzzy sets [1].
Atanassov added a new component (which determines the
degree of nonmembership) in the definition of fuzzy set.
The fuzzy sets give the degree of membership of an element
in a given set (and the nonmembership degree equals one

minus the degree of membership), while intuitionistic fuzzy
sets give both a degree of membership and a degree of
nonmembership which are more or less independent from
each other; the only requirement is that the sum of these two
degrees is not greater than 1.

An intuitionistic fuzzy set (IFS, for short) on a universe𝑋
is an object of the form

𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥) , ]

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋} , (2)

where 𝜇
𝐴
(𝑥) (∈ [0, 1]) is called degree of membership of 𝑥 in

𝐴, ]
𝐴
(𝑥) (∈ [0, 1]) is called degree of nonmembership of 𝑥 in

𝐴, and 𝜇
𝐴
, ]
𝐴
satisfies the following condition for all 𝑥 ∈ 𝑋,

𝜇
𝐴
(𝑥) + ]

𝐴
(𝑥) ≤ 1. In particular, we use 0

∼
and 1
∼
to denote

the intuitionistic fuzzy empty set and the intuitionistic fuzzy
whole set in a set 𝐿 such that 0

∼
(𝑥) = (0, 1) and 1

∼
(𝑥) = (1, 0),

for each 𝑥 ∈ 𝑋, respectively. An intuitionistic fuzzy relation
𝑅 = (𝜇

𝑅
(𝑥, 𝑦), ]

𝑅
(𝑥, 𝑦)) in a universe 𝑋 × 𝑌 (𝑅(𝑋 → 𝑌), for

short) is an intuitionistic fuzzy set of the form

𝑅 = {⟨(𝑥, 𝑦) , 𝜇
𝐴
(𝑥, 𝑦) , ]

𝐴
(𝑥, 𝑦)⟩ | (𝑥, 𝑦) ∈ 𝑋 × 𝑌} , (3)

where 𝜇
𝐴
: 𝑋 × 𝑌 → [0, 1] and ]

𝐴
: 𝑋 × 𝑌 → [0, 1]. The

intuitionistic fuzzy relation 𝑅 satisfies 𝜇
𝑅
(𝑥, 𝑦) + ]

𝑅
(𝑥, 𝑦) ≤ 1

for all 𝑥, 𝑦 ∈ 𝑋. An intuitionistic fuzzy relation 𝑅 on universe
𝑋 is called reflexive if 𝑅(𝑥, 𝑥) = (1, 0) for each 𝑥 ∈ 𝑋. 𝑅 is
called symmetric if 𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑥) for any 𝑥, 𝑦 ∈ 𝑋.

Definition 2. The height of an intuitionistic fuzzy set 𝐴 is
defined as

ℎ (𝐴) = sup
𝑥∈𝑋

(𝐴) (𝑥)

= (sup
𝑥∈𝑋

𝜇
𝐴
(𝑥) , inf
𝑥∈𝑋

]
𝐴
(𝑥)) = (ℎ (𝜇

𝐴
) , ℎ (]

𝐴
)) .

(4)

We will say that intuitionistic fuzzy set 𝐴 is normal if there
is at least one 𝑥 ∈ 𝑋 such that 𝜇

𝐴
(𝑥) = 1. The depth of an

intuitionistic fuzzy set 𝐴 is defined as

𝑑 (𝐴) = inf
𝑥∈𝑋

(𝐴) (𝑥)

= (inf
𝑥∈𝑋

𝜇
𝐴
(𝑥) , sup
𝑥∈𝑋

]
𝐴
(𝑥)) = (𝑑 (𝜇

𝐴
) , 𝑑 (]

𝐴
)) .

(5)

Notation. (1) Let 0 = (0, 0); then (𝑠, 𝑡) ∈ (0, ℎ(𝐴)]means that
(𝑠, 𝑡) ∈ (0, ℎ(𝜇

𝐴
)] × (0, ℎ(]

𝐴
)].

(2) (𝑠, 𝑡) ∈ (𝑑(𝐴), ℎ(𝐴)] means that (𝑠, 𝑡) ∈ (𝑑(𝜇
𝐴
),

ℎ(𝜇
𝐴
)] × (𝑑(]

𝐴
), ℎ(]
𝐴
)].

Definition 3 (see [14]). By an intuitionistic fuzzy graph (IFG),
one means a pair 𝐺 = (𝐴, 𝐵) in which 𝐴 = (𝜇

𝐴
, ]
𝐴
)

is an intuitionistic fuzzy set on 𝑉 and 𝐵 = (𝜇
𝐵
, ]
𝐵
) is

an intuitionistic fuzzy relation on 𝐸 such that 𝜇
𝐵
(𝑥, 𝑦) ≤

min(𝜇
𝐴
(𝑥), 𝜇
𝐴
(𝑦)), ]

𝐵
(𝑥, 𝑦) ≥ max(]

𝐴
(𝑥), ]
𝐴
(𝑦)), and 0 ≤

𝜇
𝐵
(𝑥, 𝑦) + ]

𝐵
(𝑥, 𝑦) ≤ 1 for all (𝑥, 𝑦) ∈ 𝐸. Note that 𝐵 is a

symmetric intuitionistic fuzzy relation on 𝐴.



The Scientific World Journal 3

Definition 4 (see [12, 14]). An intuitionistic fuzzy graph is
called complete if𝜇

𝐵
(𝑥, 𝑦)=min(𝜇

𝐴
(𝑥), 𝜇
𝐴
(𝑦)) and ]

𝐵
(𝑥, 𝑦) =

max(]
𝐴
(𝑥), ]
𝐴
(𝑦)) for all 𝑥, 𝑦.

Definition 5 (see [9]). The support of 𝐴 is defined by

𝐴
∗

= (𝜇
∗

𝐴
, ]∗
𝐴
) = {𝑥 ∈ 𝑉 | 𝜇

𝐴
(𝑥) > 0, ]

𝐴
(𝑥) > 0} . (6)

The support of 𝐵 is defined by

𝐵
∗

= (𝜇
∗

𝐵
, ]∗
𝐵
)

= {(𝑥, 𝑦) ∈ 𝐸 | 𝜇
𝐵
(𝑥, 𝑦) > 0, ]

𝐵
(𝑥, 𝑦) > 0} .

(7)

Let 𝐺∗ = (𝐴∗, 𝐵∗). For 𝑠, 𝑡 ∈ [0, 1], 𝐴(𝑠,𝑡) = {𝑥 ∈ 𝑉 | 𝜇
𝐴
(𝑥) ≥

𝑠, ]
𝐴
(𝑥) ≤ 𝑡} is called an (𝑠, 𝑡)-level subset of 𝐴 and 𝐵(𝑠,𝑡) =

{(𝑥, 𝑦) ∈ 𝐸 | 𝜇
𝐵
(𝑥, 𝑦) ≥ 𝑠, ]

𝐵
(𝑥, 𝑦) ≤ 𝑡} is called an (𝑠, 𝑡)-level

subset of 𝐵. Let 𝐺(𝑠,𝑡) = (𝐴(𝑠,𝑡), 𝐵(𝑠,𝑡)).

Definition 6 (see [12]). A path𝑃 in a intuitionistic fuzzy graph
𝐺 is an sequence of distinct vertices V

1
, V
2
, . . . , V

𝑛
such that

either one of the following condition is satisfied:

(1) 𝜇
𝐵
(𝑥, 𝑦) > 0 and ]

𝐵
(𝑥, 𝑦) > 0 for some 𝑥, 𝑦;

(2) 𝜇
𝐵
(𝑥, 𝑦) > 0 and ]

𝐵
(𝑥, 𝑦) = 0 for some 𝑥, 𝑦;

(3) 𝜇
𝐵
(𝑥, 𝑦) = 0 and ]

𝐵
(𝑥, 𝑦) > 0 for some 𝑥, 𝑦.

When 𝜇
𝐵
(𝑥, 𝑦) = ]

𝐵
(𝑥, 𝑦) = 0 for some 𝑥, 𝑦, there is no edge

between 𝑥 and 𝑦. Otherwise, there exists an edge between 𝑥
and 𝑦.

Definition 7 (see [12]). An intuitionistic fuzzy graph 𝐺 is
connected if any two vertices are joined by a path.

Definition 8 (see [12]). If 𝑥, 𝑦 ∈ 𝑉, the 𝜇-strength of connect-
edness between 𝑥 and 𝑦 is

𝜇
∞

𝐵
(𝑥, 𝑦) = sup {𝜇𝑘

𝐵
(𝑥, 𝑦) | 𝑘 = 1, 2, . . . , 𝑛} ,

𝜇
∞

𝐵
(𝑥, 𝑦)

= sup {𝜇
𝐵
(𝑥, V
1
) ∧ 𝜇
𝐵
(V
1
, V
2
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝐵
(V
𝑘−1
, 𝑦) |

𝑥, V
1
, V
2
, . . . , V

𝑘−1
, 𝑦 ∈ 𝑉, 𝑘 = 1, 2, . . . , 𝑛} .

(8)

The ]-strength of connectedness between 𝑥 and 𝑦 is

]∞
𝐵
(𝑥, 𝑦) = inf {]𝑘

𝐵
(𝑥, 𝑦) | 𝑘 = 1, 2, . . . , 𝑛} ,

]∞
𝐵
(𝑥, 𝑦) = inf {]

𝐵
(𝑥, V
1
) ∨ ]
𝐵
(V
1
, V
2
) ∨ ⋅ ⋅ ⋅ ∨ ]

𝐵
(V
𝑘−1
, 𝑦) |

𝑥, V
1
, V
2
, . . . , V

𝑘−1
, 𝑦 ∈ 𝑉, 𝑘 = 1, 2, . . . , 𝑛} .

(9)

The 𝜇-strength and ]-strength of connectedness between 𝑥
and 𝑦 in 𝐺 are denoted by 𝜇∞

𝐺
(𝑥, 𝑦) and ]∞

𝐺
(𝑥, 𝑦), respec-

tively. Also 𝜇󸀠∞
𝐵
(𝑥, 𝑦) and ]󸀠∞

𝐵
(𝑥, 𝑦) denote 𝜇∞

𝐺−(𝑥,𝑦)
(𝑥, 𝑦) and

]∞
𝐺−(𝑥,𝑦)

(𝑥, 𝑦), where𝐺−(𝑥, 𝑦) is obtained from𝐺 by deleting
the arc (𝑥, 𝑦).

(0.8, 0.2)

(0.7, 0.1)

x

yz

Figure 1: Connected intuitionistic fuzzy graph.

3. Bridges, Cut Vertices, and Blocks

Though the concept of path and connectedness in intuitionis-
tic fuzzy graph is analogous to crisp graph, the other concepts
like intuitionistic fuzzy tree and intuitionistic fuzzy bridge
differ from those in crisp graph. In crisp graph, a cut node
is the one whose removal from the graph disconnects the
graph. A cut edge or bridge is also an edge whose removal
disconnects the graph. But in intuitionistic fuzzy graph, the
definitions of intuitionistic fuzzy bridge and intuitionistic
fuzzy cut node are not so.

Definition 9 (see [12]). A bridge (𝑥, 𝑦) in 𝐺 is said to
be 𝜇-bridge, if deleting (𝑥, 𝑦) reduces the 𝜇-strength of
connectedness between some pair of vertices. A bridge (𝑥, 𝑦)
is said to be ]-bridge if deleting (𝑥, 𝑦) increases the ]-strength
of connectedness between some pair of vertices. A bridge
(𝑥, 𝑦) is said to be an intuitionistic fuzzy bridge if it is𝜇-bridge
and ]-bridge.

Definition 10. Let (𝑥, 𝑦) ∈ 𝐸.

(1) (𝑥, 𝑦) is called a bridge if (𝑥, 𝑦) is a bridge of 𝐺∗ =
(𝐴
∗

, 𝐵
∗

).
(2) (𝑥, 𝑦) is called an intuitionistic fuzzy bridge if

𝜇́
∞

𝐵
(𝑢, V) < 𝜇∞

𝐵
(𝑢, V) and ]́∞

𝐵
(𝑢, V) > ]∞

𝐵
(𝑢, V) for some

(𝑢, V) ∈ 𝐸, where 𝜇́
𝐵
and ]́
𝐵
are 𝜇
𝐵
and ]
𝐵
restricted to

𝑉 × 𝑉 − {(𝑥, 𝑦), (𝑦, 𝑥)}.
(3) (𝑥, 𝑦) is called aweak intuitionistic fuzzy bridge if there

exists (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] such that (𝑥, 𝑦) is a bridge of
𝐺
(𝑠,𝑡).

(4) (𝑥, 𝑦) is called a partial intuitionistic fuzzy bridge if
(𝑥, 𝑦) is a bridge for 𝐺(𝑠,𝑡) for all (𝑠, 𝑡) ∈ (𝑑(𝐵), ℎ(𝐵)] ∪
{ℎ(𝐵)}.

(5) (𝑥, 𝑦) is called a full intuitionistic fuzzy bridge if (𝑥, 𝑦)
is a bridge for 𝐺(𝑠,𝑡) for all (𝑠, 𝑡) ∈ (0, ℎ(𝐵)].

Example 11. Consider a connected intuitionistic fuzzy graph
as shown in Figure 1.
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y

(0.9, 0.1)

(0.8, 0.1)(0.1, 0.4)

xz

Figure 2: Connected intuitionistic fuzzy graph.

By routine computations, we have 𝑑(𝐵) = (0.7, 0.2) and
ℎ(𝐵) = (0.8, 0.1). Thus (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] means that (𝑠, 𝑡) ∈
(0, 0.8] × (0, 0.1]. For 0 < 𝑠 ≤ 0.7, 0 < 𝑡 ≤ 0.2, 𝐺(𝑠,𝑡) =
(𝑉, {(𝑥, 𝑦), (𝑦, 𝑧)}). For 0.7 < 𝑠 ≤ 0.8, 0 < 𝑡 ≤ 0.1,
𝐺
(𝑠,𝑡)

= (𝑉, {(𝑦, 𝑧)}). Hence we conclude that (𝑦, 𝑧) is a full
intuitionistic fuzzy bridge and (𝑥, 𝑦) is a weak intuitionistic
fuzzy bridge but not a partial intuitionistic fuzzy bridge. Both
(𝑥, 𝑦) and (𝑦, 𝑧) are bridges and intuitionistic fuzzy bridges.

Example 12. Consider a connected intuitionistic fuzzy graph
as shown in Figure 2.

By routine computations, we have 𝑑(𝐵) = (0.1, 0.4) and
ℎ(𝐵) = (0.9, 0.1). For 0 < 𝑠 ≤ 0.1, 0 < 𝑡 ≤ 0.4,
𝐺
(𝑠,𝑡)

= (𝑉, {(𝑥, 𝑦), (𝑥, 𝑧), (𝑦, 𝑧)}). For 0.1 < 𝑠 ≤ 0.8, 0 <

𝑡 ≤ 0.1, 𝐺(𝑠,𝑡) = (𝑉, {(𝑥, 𝑦), (𝑥, 𝑧)}). For 0.8 < 𝑠 ≤ 0.9,
0 < 𝑡 ≤ 0.1,𝐺(𝑠,𝑡) = (𝑉, {(𝑥, 𝑧)}).Thus (𝑥, 𝑧) is an intuitionistic
fuzzy bridge and a partial intuitionistic fuzzy bridge but not
a bridge. The edge (𝑦, 𝑧) is not any of five types of bridges.

Example 13. Consider a connected graph 𝐺∗ = (𝑉, 𝐸) such
that 𝑉 = {𝑥, 𝑦, 𝑧} and 𝐸 = {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}. Let 𝐴 be an
intuitionistic fuzzy set of𝑉 and let𝐵 be an intuitionistic fuzzy
set of 𝐸 ⊆ 𝑉 × 𝑉 defined by

𝜇
𝐴
(𝑥) = 𝜇

𝐴
(𝑦) = 𝜇

𝐴
(𝑧) = 1,

]
𝐴
(𝑥) = ]

𝐴
(𝑦) = ]

𝐴
(𝑧) = 0,

𝜇
𝐵
(𝑥, 𝑦) = 𝜇

𝐵
(𝑦, 𝑧) = 𝜇

𝐵
(𝑥, 𝑧) = 0.9,

]
𝐵
(𝑥, 𝑦) = ]

𝐵
(𝑦, 𝑧) = ]

𝐵
(𝑥, 𝑧) = 0.1.

(10)

Routine computations show that connected intuitionistic
fuzzy graph 𝐺 has no bridges of any of the five types.

Example 14. Consider a connected graph 𝐺∗ = (𝑉, 𝐸) such
that 𝑉 = {𝑥, 𝑦, 𝑧, 𝑤} and 𝐸 = {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧), (𝑧, 𝑤)}.

Let 𝐴 be an intuitionistic fuzzy set of 𝑉 and let 𝐵 be an
intuitionistic fuzzy set of 𝐸 ⊆ 𝑉 × 𝑉 defined by

𝜇
𝐴
(𝑥) = 𝜇

𝐴
(𝑦) = 𝜇

𝐴
(𝑧) = 𝜇

𝐴
(𝑤) = 1,

]
𝐴
(𝑥) = ]

𝐴
(𝑦) = ]

𝐴
(𝑧) = ]

𝐴
(𝑤) = 0,

𝜇
𝐵
(𝑥, 𝑦) = 𝜇

𝐵
(𝑦, 𝑧) = 0.1,

𝜇
𝐵
(𝑥, 𝑧) = 𝜇

𝐵
(𝑤, 𝑧) = 0.9,

]
𝐵
(𝑥, 𝑦) = ]

𝐵
(𝑦, 𝑧) = 0.5,

]
𝐵
(𝑥, 𝑧) = ]

𝐵
(𝑤, 𝑧) = 0.1.

(11)

By routine computations, we have 𝑑(𝐵) = (0.1, 0.5) and
ℎ(𝐵) = (0.9, 0.1). For 0 < 𝑠 ≤ 0.1, 0 < 𝑡 ≤ 0.5,
𝐺
(𝑠,𝑡)

= (𝑉, {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧), (𝑧, 𝑤)}). For 0.1 < 𝑠 ≤ 0.9,
0 < 𝑡 ≤ 0.1, 𝐺(𝑠,𝑡) = (𝑉, {(𝑥, 𝑧), (𝑧, 𝑤)}). Thus (𝑧, 𝑤) is a full
intuitionistic fuzzy bridge and (𝑥, 𝑧) is a partial intuitionistic
fuzzy bridge but not a full intuitionistic fuzzy bridge.

We state the following propositions without their proofs.

Proposition 15. Let (𝑥, 𝑦) be a bridge in 𝐺∗. Then (𝑥, 𝑦) is an
intuitionistic fuzzy bridge if and only if 𝜇

𝐵
(𝑥, 𝑦) > 𝜇́

∞

𝐵
(𝑥, 𝑦)

and ]
𝐵
(𝑥, 𝑦) < ]́∞

𝐵
(𝑥, 𝑦).

Proposition 16. (𝑥, 𝑦) is an intuitionistic fuzzy bridge if and
only if (𝑥, 𝑦) is not the weakest bridge of any cycle.

Proposition 17. (𝑥, 𝑦) is an intuitionistic fuzzy bridge if and
only if (𝑥, 𝑦) is a bridge for 𝐺∗ and 𝜇

𝐵
(𝑥, 𝑦) = ℎ(𝜇

𝐵
) and

]
𝐵
(𝑥, 𝑦) = ℎ(]

𝐵
).

Proof. Suppose that (𝑥, 𝑦) is a full bridge. Then (𝑥, 𝑦) is a
bridge for 𝐺(𝑠,𝑡) for all (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] = (0, ℎ(𝜇

𝐵
)] ×

(0, ℎ(]
𝐵
)]. Hence (𝑥, 𝑦) ∈ 𝐵

ℎ(𝐵) and so 𝜇
𝐵
(𝑥, 𝑦) = ℎ(𝜇

𝐵
)

and ]
𝐵
(𝑥, 𝑦) = ℎ(]

𝐵
). Since (𝑥, 𝑦) is a bridge for 𝐺(𝑠,𝑡) for all

(𝑠, 𝑡) ∈ (0, ℎ(𝐵)] = (0, ℎ(𝜇
𝐵
)] × (0, ℎ(]

𝐵
)], it follows that (𝑥, 𝑦)

is a bridge for 𝐺∗ since 𝑉 = 𝐴
𝑑(𝐵) and 𝐸 = 𝐵ℎ(𝐵).

Conversely, suppose that (𝑥, 𝑦) is a bridge for 𝐺∗ and
𝜇
𝐵
(𝑥, 𝑦) = ℎ(𝜇

𝐵
) and ]

𝐵
(𝑥, 𝑦) = ℎ(]

𝐵
). Then (𝑥, 𝑦) ∈ 𝐵(𝑠,𝑡) for

all (𝑠, 𝑡) ∈ (0, ℎ(𝐵)]. Thus since also (𝑥, 𝑦) is a bridge for 𝐺∗,
(𝑥, 𝑦) is a bridge for 𝐺(𝑠,𝑡) for all (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] since each
𝐺
(𝑠,𝑡) is a subgraph of 𝐺∗. Hence (𝑥, 𝑦) is a full intuitionistic

fuzzy bridge.

Proposition 18. Suppose that (𝑥, 𝑦) is not contained in a cycle
of 𝐺∗. Then the following conditions are equivalent:

(1) 𝜇
𝐵
(𝑥, 𝑦) = ℎ(𝜇

𝐵
) and ]

𝐵
(𝑥, 𝑦) = ℎ(]

𝐵
);

(2) (𝑥, 𝑦) is a partial intuitionistic fuzzy bridge;
(3) (𝑥, 𝑦) is an intuitionistic full fuzzy bridge.

Proof. Since (𝑥, 𝑦) is not contained in a cycle of 𝐺∗, (𝑥, 𝑦)
is a bridge of 𝐺∗. Hence by Proposition 17, (1)⇔(3). Clearly,
(3)⇔(2). Suppose that (2) holds. Then (𝑥, 𝑦) is a bridge for
𝐺
(𝑠,𝑡) for all (𝑠, 𝑡) ∈ (𝑑(𝐵), ℎ(𝐵)] and so (𝑥, 𝑦) ∈ 𝐵

ℎ(𝐵). Thus
𝜇
𝐵
(𝑥, 𝑦) = ℎ(𝜇

𝐵
) and ]

𝐵
(𝑥, 𝑦) = ℎ(]

𝐵
); that is, (1) holds.
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Proposition 19. If (𝑥, 𝑦) is a bridge, then (𝑥, 𝑦) is a weak
intuitionistic fuzzy bridge and an intuitionistic fuzzy bridge.

Proposition 20. (𝑥, 𝑦) is an intuitionistic fuzzy bridge if and
only if (𝑥, 𝑦) is a weak bridge.

Proof. Suppose that (𝑥, 𝑦) is a weak intuitionistic fuzzy
bridge. Then ∃(𝑠, 𝑡) ∈ (0, ℎ(𝐵)] such that (𝑥, 𝑦) is a bridge
for𝐺(𝑠,𝑡). Hence removal of (𝑥, 𝑦) disconnects𝐺(𝑠,𝑡). Thus any
path from 𝑥 to 𝑦 in 𝐺 has an edge (𝑢, V) with 𝜇

𝐵
(𝑢, V) < 𝑠,

]
𝐵
(𝑢, V) > 𝑡. Thus the removal of (𝑥, 𝑦) results in 𝜇󸀠∞

𝐵
(𝑥, 𝑦) <

𝑠 ⩽ 𝜇
∞

(𝑥, 𝑦), ]󸀠∞
𝐵
(𝑥, 𝑦) < 𝑡 ⩽ ]∞(𝑥, 𝑦). Hence (𝑥, 𝑦) is an

intuitionistic fuzzy bridge.
Conversely, suppose that (𝑥, 𝑦) is an intuitionistic fuzzy

bridge. Then ∃(𝑢, V) such that removal of (𝑥, 𝑦) results in
𝜇
󸀠∞

𝐵
(𝑢, V) < 𝜇∞

𝐵
(𝑢, V), ]󸀠∞

𝐵
(𝑢, V) > ]∞

𝐵
(𝑢, V). Hence (𝑥, 𝑦) is on

every strongest path connecting 𝑢 and V and in fact 𝜇
𝐵
(𝑢, V) ⩾

and ]
𝐵
(𝑢, V) ⩽ this value. Thus there does not exist a path

(other than (𝑥, 𝑦)) connecting 𝑥 and 𝑦 in 𝐺(𝜇𝐵(𝑥,𝑦),]𝐵(𝑥,𝑦)), else
this other path without (𝑥, 𝑦)would be of strength ⩾ 𝜇

𝐵
(𝑥, 𝑦)

and ⩽ ]
𝐵
(𝑥, 𝑦) and would be part of a path connecting 𝑢

and V of strongest length, contrary to the fact that (𝑥, 𝑦) is
on every such path. Hence (𝑥, 𝑦) is a bridge of 𝐺(𝜇𝐵(𝑥,𝑦),]𝐵(𝑥,𝑦))
and 0 < 𝜇

𝐵
(𝑥, 𝑦) ≤ ℎ(𝜇

𝐵
), 0 < ]

𝐵
(𝑥, 𝑦) ≤ ℎ(]

𝐵
).Thus 𝜇

𝐵
(𝑥, 𝑦)

and ]
𝐵
(𝑥, 𝑦) are desired (𝑠, 𝑡).

Definition 21 (see [12]). A vertex 𝑥 ∈ 𝑉 in 𝐺 is called 𝜇-cut
vertex if deleting it reduces the 𝜇-strength of connectedness
between some pairs of vertices. A vertex 𝑥 ∈ 𝑉 is called ]-cut
vertex if deleting it increases the ]-strength of connectedness
between some pairs of vertices. A vertex 𝑥 ∈ 𝑉 is an
intuitionistic fuzzy cut vertex if it is 𝜇-cut vertex and ]-cut
vertex.

Definition 22. Let 𝑥 ∈ 𝑉.
(1) 𝑥 is called a cut vertex if 𝑥 is a cut-vertex of 𝐺∗ =

(𝐴
∗

, 𝐵
∗

).
(2) 𝑥 is called an intuitionistic fuzzy cut-vertex if

𝜇
󸀠∞

𝐵
(𝑢, V) < 𝜇

∞

𝐵
(𝑢, V) and ]󸀠∞

𝐵
(𝑢, V) > ]∞

𝐵
(𝑢, V) for

some 𝑢, V ∈ 𝑉, where 𝜇󸀠
𝐵
and ]󸀠
𝐵
are 𝜇
𝐵
and ]
𝐵
restric-

ted to 𝑉 × 𝑉 − {(𝑥, 𝑧), (𝑧, 𝑥) | 𝑧 ∈ 𝑉}.
(3) 𝑥 is called aweak intuitionistic fuzzy cut-vertex if there

exists (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] such that 𝑥 is a cut-vertex of
𝐺
(𝑠,𝑡).

(4) 𝑥 is called a partial intuitionistic fuzzy cut-vertex if 𝑥
is a cut-vertex for 𝐺(𝑠,𝑡) for all (𝑠, 𝑡) ∈ (𝑑(𝐵), ℎ(𝐵)] ∪

{ℎ(𝐵)}.
(5) 𝑥 is called a full intuitionistic fuzzy cut-vertex if 𝑥 is a

cut-vertex for 𝐺(𝑠,𝑡) for all (𝑠, 𝑡) ∈ (0, ℎ(𝐵)].

Example 23. Consider a connected intuitionistic fuzzy graph
as shown in Figure 3.

By routine computations, we have 𝑑(𝐵) = (0.6, 0.2),
ℎ(𝐵) = (0.8, 0.1). Thus (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] means that (𝑠, 𝑡) ∈
(0, 0.8] × (0, 0.1]. For 0 < 𝑠 ≤ 0.6 and 0 < 𝑡 ≤ 0.2,
𝐺
(𝑠,𝑡)

= (𝑉, {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}). For 0.6 < 𝑠 ≤ 0.7 and
0 < 𝑡 ≤ 0.2, 𝐺(𝑠,𝑡) = (𝑉, {(𝑥, 𝑦), (𝑥, 𝑧)}). For 0.6 < 𝑠 ≤ 0.8 and

(0.8, 0.2)

(0.7, 0.1)(0.6, 0.2)

x

y

z

Figure 3: Connected intuitionistic fuzzy graph.

0 < 𝑡 ≤ 0.1, 𝐺(𝑠,𝑡) = (𝑉, {(𝑥, 𝑧)}). Thus 𝑥 is an intuitionistic
fuzzy cut-vertex and aweak intuitionistic fuzzy cut-vertex but
neither a cut-vertex nor a partial cut-vertex.

Example 24. Consider a connected graph 𝐺∗ = (𝑉, 𝐸) such
that 𝑉 = {𝑥, 𝑦, 𝑧} and 𝐸 = {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}. Let 𝐴 be an
intuitionistic fuzzy set of𝑉 and let𝐵 be an intuitionistic fuzzy
set of 𝐸 ⊆ 𝑉 × 𝑉 defined by

𝜇
𝐴
(𝑥) = 𝜇

𝐴
(𝑦) = 𝜇

𝐴
(𝑧) = 1,

]
𝐴
(𝑥) = ]

𝐴
(𝑦) = ]

𝐴
(𝑧) = 0,

𝜇
𝐵
(𝑥, 𝑦) = 𝜇

𝐵
(𝑥, 𝑧) = 0.9,

𝜇
𝐵
(𝑦, 𝑧) = 0.5,

]
𝐵
(𝑥, 𝑦) = ]

𝐵
(𝑥, 𝑧) = 0.1,

]
𝐵
(𝑦, 𝑧) = 0.4.

(12)

By routine computations, we have 𝑑(𝐵) = (0.5, 0.4) and
ℎ(𝐵) = (0.9, 0.1). For 0 < 𝑠 ≤ 0.5 and 0 < 𝑡 ≤ 0.4,
𝐺
(𝑠,𝑡)

= (𝑉, {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}). For 0.5 < 𝑠 ≤ 0.9 and 0 <
𝑡 ≤ 0.1, 𝐺(𝑠,𝑡) = (𝑉, {(𝑥, 𝑦), (𝑥, 𝑧)}). Thus 𝑥 is an intuitionistic
fuzzy cut-vertex and a partial intuitionistic fuzzy cut-vertex
but neither a cut-vertex nor a full cut-vertex.

Example 25. Consider a connected graph 𝐺∗ = (𝑉, 𝐸) such
that 𝑉 = {𝑥, 𝑦, 𝑧} and 𝐸 = {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}. Let 𝐴 be an
intuitionistic fuzzy set of𝑉 and let𝐵 be an intuitionistic fuzzy
set of 𝐸 ⊆ 𝑉 × 𝑉 defined by

𝜇
𝐴
(𝑥) = 𝜇

𝐴
(𝑦) = 𝜇

𝐴
(𝑧) = 1,

]
𝐴
(𝑥) = ]

𝐴
(𝑦) = ]

𝐴
(𝑧) = 0,

𝜇
𝐵
(𝑥, 𝑦) = 𝜇

𝐵
(𝑥, 𝑧) = 0.9,

]
𝐵
(𝑥, 𝑦) = ]

𝐵
(𝑥, 𝑧) = 0.1.

(13)
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(0.7, 0.3)

(0.5, 0.2) (0.5, 0.2)

x

y

z

Figure 4: Connected intuitionistic fuzzy graph.

By routine computations, we have 𝑑(𝐵) = (0.9, 0.1) and
ℎ(𝐵) = (0.9, 0.1). For 0 < 𝑠 ≤ 0.9 and 0 < 𝑡 ≤ 0.1, 𝐺(𝑠,𝑡) =
(𝑉, {(𝑥, 𝑦), (𝑥, 𝑧)}). Thus 𝑥 is a full intuitionistic fuzzy cut-
vertex, an intuitionistic fuzzy cut-vertex, and a cut-vertex.

We state the following propositions without their proofs.

Proposition 26. Let 𝐺 be an intuitionistic fuzzy graph such
that 𝐺∗ is a cycle. Then a node is an intuitionistic fuzzy cut
node of𝐺 if and only if it is a common node of two intuitionistic
fuzzy bridges.

Proposition 27. If 𝑧 is a common node of at least two
intuitionistic fuzzy bridges, then 𝑧 is an intuitionistic fuzzy cut
node.

Proposition 28. If 𝐺 is a complete intuitionistic fuzzy graph,
then 𝜇∞

𝐵
(𝑢, V) = 𝜇

𝐵
(𝑢, V) and ]∞

𝐵
(𝑢, V) = ]

𝐵
(𝑢, V).

Proposition 29. A complete intuitionistic fuzzy graph has no
intuitionistic fuzzy cut vertex.

Definition 30. (1) 𝐺 is called a block if 𝐺∗ is a block.
(2) 𝐺 is called an intuitionistic fuzzy block if it has no

intuitionistic fuzzy cut vertices.
(3) 𝐺 is called a weak intuitionistic fuzzy block if there

exists (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] such that 𝐺(𝑠,𝑡) is a block.
(4) 𝐺 is called a partial intuitionistic fuzzy block if 𝐺(𝑠,𝑡) is

a block for all (𝑠, 𝑡) ∈ (𝑑(𝐵), ℎ(𝐵)] ∪ {ℎ(𝐵)}.
(5) 𝐺 is called a full intuitionistic fuzzy block if 𝐺(𝑠,𝑡) is a

block for all (𝑠, 𝑡) ∈ (0, ℎ(𝐵)].

Example 31. Consider a connected intuitionistic fuzzy graph
as shown in Figure 4.

By routine computations, we have 𝑑(𝐵) = (0.5, 0.3) and
ℎ(𝐵) = (0.7, 0.2). Thus (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] means that (𝑠, 𝑡) ∈
(0, 0.7] × (0, 0.2]. For 0 < 𝑠 ≤ 0.5 and 0 < 𝑡 ≤ 0.3, 𝐺(𝑠,𝑡) =
(𝑉, {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}). For 0.5 < 𝑠 ≤ 0.7 and 0 < 𝑡 ≤ 0.2,
𝐺
(𝑠,𝑡)

= (𝑉, {(𝑥, 𝑧)}). Thus 𝐺 is a block, an intuitionistic fuzzy
block, and a weak intuitionistic fuzzy block. 𝐺 is not a partial

intuitionistic fuzzy block since 𝐺(𝑠,𝑡) is not a block for 0.5 <
𝑠 ≤ 0.7, 0 < 𝑡 ≤ 0.2.

Example 32. Consider a connected graph 𝐺∗ = (𝑉, 𝐸) such
that 𝑉 = {𝑥, 𝑦, 𝑧} and 𝐸 = {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}. Let 𝐴 be an
intuitionistic fuzzy set of𝑉 and let𝐵 be an intuitionistic fuzzy
set of 𝐸 ⊆ 𝑉 × 𝑉 defined by

𝜇
𝐴
(𝑥) = 𝜇

𝐴
(𝑦) = 𝜇

𝐴
(𝑧) = 1,

]
𝐴
(𝑥) = ]

𝐴
(𝑦) = ]

𝐴
(𝑧) = 0,

𝜇
𝐵
(𝑥, 𝑦) = 𝜇

𝐵
(𝑥, 𝑧) = 0.9,

𝜇
𝐵
(𝑦, 𝑧) = 0.5,

]
𝐵
(𝑥, 𝑦) = ]

𝐵
(𝑥, 𝑧) = 0.1,

]
𝐵
(𝑦, 𝑧) = 0.4.

(14)

By routine computations, we have 𝑑(𝐵) = (0.5, 0.4) and
ℎ(𝐵) = (0.9, 0.1). For 0 < 𝑠 ≤ 0.5 and 0 < 𝑡 ≤ 0.4,
𝐺
(𝑠,𝑡)

= (𝑉, {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}). For 0.5 < 𝑠 ≤ 0.9 and
0 < 𝑡 ≤ 0.1, 𝐺(𝑠,𝑡) = (𝑉, {(𝑥, 𝑦), (𝑥, 𝑧)}). Thus 𝐺 is a block
and a weak intuitionistic fuzzy block. However, 𝐺 is not an
intuitionistic fuzzy block since 𝑥 is an intuitionistic fuzzy cut
vertex of 𝐺. Also 𝐺 is not a partial intuitionistic fuzzy block
since 𝑥 is a cut vertex for 0.5 < 𝑠 ≤ 0.9 and 0 < 𝑡 ≤ 0.1.

Example 33. Consider a connected graph 𝐺∗ = (𝑉, 𝐸) such
that 𝑉 = {𝑥, 𝑦, 𝑧} and 𝐸 = {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}. Let 𝐴 be an
intuitionistic fuzzy set of𝑉 and let𝐵 be an intuitionistic fuzzy
set of 𝐸 ⊆ 𝑉 × 𝑉 defined by

𝜇
𝐴
(𝑥) = 𝜇

𝐴
(𝑦) = 𝜇

𝐴
(𝑧) = 1,

]
𝐴
(𝑥) = ]

𝐴
(𝑦) = ]

𝐴
(𝑧) = 0,

𝜇
𝐵
(𝑥, 𝑦) = 𝜇

𝐵
(𝑥, 𝑧) = 𝜇

𝐵
(𝑦, 𝑧) = 0.9,

]
𝐵
(𝑥, 𝑦) = ]

𝐵
(𝑥, 𝑧) = ]

𝐵
(𝑦, 𝑧) = 0.1.

(15)

By routine computations, we have 𝑑(𝐵) = (0.9, 0.1) and
ℎ(𝐵) = (0.9, 0.1). For 0 < 𝑠 ≤ 0.9 and 0 < 𝑡 ≤ 0.1, 𝐺(𝑠,𝑡) =
(𝑉, {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}). Thus 𝐺 is a block, an intuitionistic
fuzzy block, and a full intuitionistic fuzzy block.

Definition 34. A connected intuitionistic fuzzy graph 𝐺 is
said to be firm if

min {𝜇
𝐴
(𝑥) | 𝑥 ∈ 𝑉} ≥ max {𝜇

𝐵
(𝑥, 𝑦) | (𝑥, 𝑦) ∈ 𝐸} ,

max {]
𝐴
(𝑥) | 𝑥 ∈ 𝑉} ≤ min {]

𝐵
(𝑥, 𝑦) | (𝑥, 𝑦) ∈ 𝐸} .

(16)

Example 35. All connected intuitionistic fuzzy graphs as
shown in Figures 1, 2, 3, and 4 are firms.

Example 36. Consider a connected intuitionistic fuzzy graph
as shown in Figure 5.
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Figure 5: Connected intuitionistic fuzzy graph.
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Figure 6: Connected intuitionistic fuzzy graph.

By routine computations, we have 𝑑(𝐵) = (0.5, 0.4) and
ℎ(𝐵) = (0.8, 0.2). Thus (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] means that (𝑠, 𝑡) ∈
(0, 0.8] × (0, 0.2]. For 0 < 𝑠 ≤ 0.5 and 0 < 𝑡 ≤ 0.4, 𝐺(𝑠,𝑡) =
(𝑉, {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}). For 0.5 < 𝑠 ≤ 0.8 and 0 < 𝑡 ≤ 0.2,
𝐺
(𝑠,𝑡)

= (𝑉, {(𝑥, 𝑧)}). Thus 𝐺 is a block, an intuitionistic fuzzy
block, and full intuitionistic fuzzy block.We note that𝐺 is not
firm.

4. Cycles and Trees

Definition 37. (1) 𝐺 is called a cycle if 𝐺∗ is a cycle.
(2) 𝐺 is called an intuitionistic fuzzy cycle if 𝐺∗ is a

cycle and there does not exist unique (𝑥, 𝑦) ∈ 𝐸 such
that 𝜇

𝐵
(𝑥, 𝑦) = min{𝜇

𝐵
(𝑢, V) | (𝑢, V) ∈ 𝐸}, ]

𝐵
(𝑥, 𝑦) =

max{]
𝐵
(𝑢, V) | (𝑢, V) ∈ 𝐸}.

(3) 𝐺 is called a weak intuitionistic fuzzy cycle if there
exists (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] such that 𝐺(𝑠,𝑡) is a cycle.

(4) 𝐺 is called a partial intuitionistic fuzzy cycle if 𝐺(𝑠,𝑡) is
a cycle for all (𝑠, 𝑡) ∈ (𝑑(𝐵), ℎ(𝐵)] ∪ {ℎ(𝐵)}.

(5) 𝐺 is called a full intuitionistic fuzzy cycle if 𝐺(𝑠,𝑡) is a
cycle for all (𝑠, 𝑡) ∈ (0, ℎ(𝐵)].

Example 38. Consider a connected intuitionistic fuzzy graph
as shown in Figure 6.

(0.9, 0.1)

(0.9, 0.1)

(0.9, 0.1) (0.9, 0.1)

x

w

y

z

(0.1, 0.4)

Figure 7: Connected intuitionistic fuzzy graph.

By routine computations, we have 𝑑(𝐵) = (0.5, 0.2) and
ℎ(𝐵) = (0.9, 0.1). Thus (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] means that (𝑠, 𝑡) ∈
(0, 0.9] × (0, 0.1]. For 0 < 𝑠 ≤ 0.5 and 0 < 𝑡 ≤ 0.2, 𝐺(𝑠,𝑡) =
(𝑉, {(𝑥, 𝑦), (𝑥, 𝑤), (𝑦, 𝑧), (𝑤, 𝑧)}). For 0.5 < 𝑠 ≤ 0.9 and 0 <
𝑡 ≤ 0.1, 𝐺(𝑠,𝑡) = (𝑉, {(𝑥, 𝑦), (𝑧, 𝑤)}). Thus 𝐺 is an intuitionistic
fuzzy cycle and weak intuitionistic fuzzy cycle but 𝐺 is not
partial intuitionistic fuzzy cycle.

Example 39. Consider a connected intuitionistic fuzzy graph
as shown in Figure 7.

By routine computations, we have 𝑑(𝐵) = (0.1, 0.4) and
ℎ(𝐵) = (0.9, 0.1). Thus (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] means that (𝑠, 𝑡) ∈
(0, 0.9] × (0, 0.1]. For 0 < 𝑠 ≤ 0.1 and 0 < 𝑡 ≤ 0.4,
𝐺
(𝑠,𝑡)

= (𝑉, {(𝑥, 𝑦), (𝑦, 𝑧), (𝑤, 𝑧), (𝑤, 𝑥), (𝑥, 𝑤)}) which is not
a cycle. For 0.1 < 𝑠 ≤ 0.9 and 0 < 𝑡 ≤ 0.1, 𝐺(𝑠,𝑡) =
(𝑉, {(𝑥, 𝑦), (𝑦, 𝑧), (𝑧, 𝑤), (𝑤, 𝑥)}) which is a cycle. Thus 𝐺 is
not cycle; 𝐺 is a partial intuitionistic fuzzy cycle but not a full
intuitionistic fuzzy cycle.

The proofs of the following propositions are trivial.

Proposition 40. Suppose that 𝐺 is a cycle. Then 𝐺 is a partial
intuitionistic fuzzy cycle if and only if 𝐺 is a full intuitionistic
fuzzy cycle.

Proposition 41. 𝐺 is a full intuitionistic fuzzy cycle if and only
if 𝐺 is a cycle and 𝐵 is constant on 𝐸.

Proposition 42. 𝐺 is a partial intuitionistic fuzzy cycle if and
only if 𝐺ℎ(𝐵) is a cycle and |lm(𝐵){(0, 0)}| ≤ (2, 2).

Proof. Suppose that 𝐺 is a partial intuitionistic fuzzy cycle.
Then clearly 𝐺ℎ(𝐵) is a cycle and in fact 𝐺(𝑠,𝑡) is a cycle for all
(𝑠, 𝑡) ∈ (𝑑(𝐵), ℎ(𝐵)] ∪ {ℎ(𝐵)}. Suppose that |lm(𝐵){(0, 0)}| >
(2, 2). Then ∃(𝑠, 𝑡) such that 0 < 𝑑(𝜇

𝐵
) < 𝑠 < ℎ(𝜇

𝐵
) and 0 <

𝑑(]
𝐵
) < 𝑡 < ℎ(]

𝐵
). Hence ∃(𝑥, 𝑦) ∈ 𝐸 such that 𝜇

𝐵
(𝑥, 𝑦) = 𝑠,

]
𝐵
(𝑥, 𝑦) = 𝑡. Thus (𝑥, 𝑦) ∉ 𝐵ℎ(𝐵) and so 𝐺ℎ(𝐵) is not a cycle, a

contradiction.
Conversely, suppose that 𝐺ℎ(𝐵) is a cycle and |lm(𝐵){(0,

0)}| ≤ (2, 2). If |lm(𝐵){(0, 0)}| = (1, 1), then 𝐺 is a full intui-
tionistic fuzzy cycle by Proposition 41. Suppose that
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|lm(𝐵){(0, 0)}|=(2, 2). Then lm(𝐵){(0, 0)} = 𝑑(𝐵), ℎ(𝐵). Since
𝐺
(𝑠,𝑡)

= 𝐺
ℎ(𝐵) for 𝑑(𝜇

𝐵
) < 𝑠 ≤ ℎ(𝜇

𝐵
) and 𝑑(]

𝐵
) < 𝑡 ≤ ℎ(]

𝐵
), it

follows that 𝐺 is a partial intuitionistic fuzzy cycle.

Definition 43. A connected intuitionistic fuzzy graph 𝐺 =

(𝐴, 𝐵) is an intuitionistic fuzzy tree if it has an intuitionistic
fuzzy spanning subgraph 𝐻 = (𝐴, 𝐶) which is a tree, where
for all arcs (𝑥, 𝑦) not in 𝐻, 𝜇

𝐵
(𝑥, 𝑦) < 𝜇

∞

𝐶
(𝑥, 𝑦), ]

𝐵
(𝑥, 𝑦) >

]∞
𝐶
(𝑥, 𝑦).

Definition 44. (1) 𝐺 is called a forest if 𝐺∗ is a forest.
(2) 𝐺 is called an intuitionistic fuzzy forest if 𝐺 has an

intuitionistic fuzzy spanning subgraph 𝐻 = (𝐴, 𝐶) which is
a forest such that, for all (𝑢, V) ∈ 𝐸 − 𝑊, 𝜇

𝐵
(𝑢, V) < 𝜇∞

𝐶
(𝑢, V)

and ]
𝐵
(𝑢, V) > ]∞

𝐶
(𝑢, V).

(3) 𝐺 is called a weak intuitionistic fuzzy forest if for all
(𝑠, 𝑡) ∈ (0, ℎ(𝐵)] such that 𝐺(𝑠,𝑡) is a forest.

(4) 𝐺 is called a partial intuitionistic fuzzy forest if 𝐺(𝑠,𝑡)
is a forest for all (𝑠, 𝑡) ∈ (𝑑(𝐵), ℎ(𝐵)] ∪ {ℎ(𝐵)}.

(5) 𝐺 is called a full intuitionistic fuzzy forest if 𝐺(𝑠,𝑡) is a
forest for all (𝑠, 𝑡) ∈ (0, ℎ(𝐵)].

Example 45. Consider a connected graph 𝐺∗ = (𝑉, 𝐸) such
that 𝑉 = {𝑥, 𝑦, 𝑧, 𝑤} and 𝐸 = {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑤), (𝑤, 𝑧)}.
Let 𝐴 be an intuitionistic fuzzy set of 𝑉 and let 𝐵 be an
intuitionistic fuzzy set of 𝐸 ⊆ 𝑉 × 𝑉 defined by

𝜇
𝐴
(𝑥) = 𝜇

𝐴
(𝑦) = 𝜇

𝐴
(𝑧) = 𝜇

𝐴
(𝑤) = 1,

]
𝐴
(𝑥) = ]

𝐴
(𝑦) = ]

𝐴
(𝑧) = ]

𝐴
(𝑤) = 0,

𝜇
𝐵
(𝑥, 𝑦) = 𝜇

𝐵
(𝑤, 𝑧) = 0.9,

𝜇
𝐵
(𝑥, 𝑤) = 𝜇

𝐵
(𝑦, 𝑧) = 0.5,

]
𝐵
(𝑥, 𝑦) = ]

𝐵
(𝑤, 𝑧) = 0.1,

]
𝐵
(𝑥, 𝑤) = ]

𝐵
(𝑦, 𝑧) = 0.4.

(17)

By routine computations, we have 𝑑(𝐵) = (0.5, 0.4) and
ℎ(𝐵) = (0.9, 0.1). For 0 < 𝑠 ≤ 0.5 and 0 < 𝑡 ≤ 0.4,
𝐺
(𝑠,𝑡)

= (𝑉, {(𝑥, 𝑤), (𝑦, 𝑧), (𝑥, 𝑦), (𝑤, 𝑧)}), and for 0.5 < 𝑠 ≤ 0.9
and 0 < 𝑡 ≤ 0.1,𝐺(𝑠,𝑡) = (𝑉, {(𝑥, 𝑦), (𝑤, 𝑧)}).Thus𝐺 is a partial
intuitionistic fuzzy forest but is neither an intuitionistic fuzzy
forest nor a full intuitionistic fuzzy forest.

Proposition 46. 𝐺 is a full intuitionistic fuzzy forest if and
only if 𝐺 is forest.

Proof. Suppose that𝐺 is a full intuitionistic fuzzy forest.Then
𝐺
∗

= 𝐺
𝑑(𝐵) is a forest.

Conversely, suppose that 𝐺 is a forest. Then 𝐺∗ is a forest
and so must be 𝐺(𝑠,𝑡) for all (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] since each 𝐺(𝑠,𝑡)
is a subgraph of 𝐺∗. This completes the proof.

Example 47. Consider a connected graph 𝐺∗ = (𝑉, 𝐸) such
that 𝑉 = {𝑥, 𝑦, 𝑧} and 𝐸 = {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}. Let 𝐴 be an

intuitionistic fuzzy set of𝑉 and let𝐵 be an intuitionistic fuzzy
set of 𝐸 ⊆ 𝑉 × 𝑉 defined by

𝜇
𝐴
(𝑥) = 𝜇

𝐴
(𝑦) = 𝜇

𝐴
(𝑧) = 1,

]
𝐴
(𝑥) = ]

𝐴
(𝑦) = ]

𝐴
(𝑧) = 0,

𝜇
𝐵
(𝑥, 𝑦) = 0.9, 𝜇

𝐵
(𝑦, 𝑧) = 0.5,

]
𝐵
(𝑥, 𝑦) = 0.1, ]

𝐵
(𝑦, 𝑧) = 0.4.

(18)

By routine computations, we have 𝑑(𝐵) = (0.5, 0.4) and
ℎ(𝐵) = (0.9, 0.1). For 0 < 𝑠 ≤ 0.5 and 0 < 𝑡 ≤ 0.4,
𝐺
(𝑠,𝑡)

= (𝑉, {(𝑥, 𝑦), (𝑦, 𝑧)}). For 0.5 < 𝑠 ≤ 0.9 and 0 < 𝑡 ≤ 0.1,
𝐺
(𝑠,𝑡)

= (𝑉, {(𝑥, 𝑦)}). Thus 𝐺 is a forest and a full intuitionistic
fuzzy forest without being a constant on 𝐸. Note that 𝐺ℎ(𝐵)
has more connected components than 𝐺∗.

Proposition 48. 𝐺 is a weak intuitionistic fuzzy forest if and
only if 𝐺 does not contain a cycle whose edges are of strength
ℎ(𝐵).

Proof. Suppose that 𝐺 contains a cycle whose edges are of
strength ℎ(𝐵). Then 𝐺(𝑠,𝑡), (𝑠, 𝑡) ∈ (0, ℎ(𝐵)], that contains this
cycle and so is not a forest.Thus𝐺 is not a weak intuitionistic
fuzzy forest.

Conversely, suppose that 𝐺 does not contain a cycle and
all of its edges are of strength ℎ(𝐵). Then 𝐺

ℎ(𝐵) does not
contain a cycle and so is a forest.

Corollary 49. If 𝐺 is an intuitionistic fuzzy forest, then 𝐺 is a
weak intuitionistic fuzzy forest.

Theorem 50. 𝐺 is a forest and 𝐵 is constant on 𝐸 if and only
if 𝐺 is a full intuitionistic fuzzy forest, 𝐺∗ and 𝐺ℎ(𝐵) have the
same number of connected components, and 𝐺 is firm.

Proof. Suppose that 𝐺 is a forest and 𝐵 is constant on 𝐸.
Then for all (𝑠, 𝑡) ∈ (0, ℎ(𝐵)], 𝐺(𝑠,𝑡) = 𝐺

∗ and so 𝐺 is a full
intuitionistic fuzzy forest and 𝐺∗ and 𝐺ℎ(𝐵) have the same
number of connected components. Clearly, 𝐺 is firm since 𝐵
is a constant on 𝐸.

Conversely, suppose that 𝐺 is a full intuitionistic fuzzy
forest, 𝐺∗ and 𝐺

ℎ(𝐵) have the same number of connected
components, and 𝐺 is firm. Suppose that ∃(𝑠

1
, 𝑡
1
), (𝑠
2
, 𝑡
2
) ∈

lm(𝐵) such that 0 < 𝑠
1
, 𝑠
2
, 𝑡
1
, 𝑡
2
. Then ∃(𝑥, 𝑦) ∈ 𝐸 such

that 𝜇
𝐵
(𝑥, 𝑦) = 𝑆

1
and ]

𝐵
(𝑥, 𝑦) = 𝑡

1
. Now (𝑥, 𝑦) ∈ 𝐵

(𝑠1 ,𝑡1),
(𝑥, 𝑦) ∉ 𝐵

(𝑠2 ,𝑡2). Hence 𝐺(𝑠2 ,𝑡2) has more connected compo-
nents then 𝐺(𝑠1 ,𝑡1) since 𝐺 is firm; that is, no vertices were
lost. Thus 𝐺ℎ(𝐵) has more connected components than 𝐺∗, a
contradiction.

Corollary 51. 𝐺 is a tree and 𝐵 is constant on 𝐸 if and only if
𝐺 is a full intuitionistic fuzzy tree and 𝐺 is firm.

Definition 52. (1) 𝐺 is called a tree if 𝐺∗ is a tree.
(2) 𝐺 is called an intuitionistic fuzzy tree if 𝐺 has an

intuitionistic fuzzy spanning subgraph𝐻 = (𝐴, 𝐶) which is a
tree such that, for all (𝑢, V) ∈ 𝐸 −𝑊, 𝜇

𝐵
(𝑢, V) < 𝜇∞

𝐶
(𝑢, V) and

]
𝐵
(𝑢, V) > ]∞

𝐶
(𝑢, V).
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(3) 𝐺 is called a weak intuitionistic fuzzy tree if for all
(𝑠, 𝑡) ∈ (0, ℎ(𝐵)] such that 𝐺(𝑠,𝑡) is a tree.

(4) 𝐺 is called a partial intuitionistic fuzzy tree if 𝐺(𝑠,𝑡) is
a tree for all (𝑠, 𝑡) ∈ (𝑑(𝐵), ℎ(𝐵)] ∪ {ℎ(𝐵)}.

(5) 𝐺 is called a full intuitionistic fuzzy tree if 𝐺(𝑠,𝑡) is a
tree for all (𝑠, 𝑡) ∈ (0, ℎ(𝐵)].

Example 53. Consider a connected graph 𝐺∗ = (𝑉, 𝐸) such
that 𝑉 = {𝑥, 𝑦, 𝑧} and 𝐸 = {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}. Let 𝐴 be an
intuitionistic fuzzy set of𝑉 and let𝐵 be an intuitionistic fuzzy
set of 𝐸 ⊆ 𝑉 × 𝑉 defined by

𝜇
𝐴
(𝑥) = 𝜇

𝐴
(𝑦) = 1, 𝜇

𝐴
(𝑧) = 0.5,

]
𝐴
(𝑥) = ]

𝐴
(𝑦) = 0, ]

𝐴
(𝑧) = 0.2,

𝜇
𝐵
(𝑥, 𝑦) = 0.9, 𝜇

𝐵
(𝑦, 𝑧) = 0.5,

]
𝐵
(𝑥, 𝑦) = 0.1, ]

𝐵
(𝑦, 𝑧) = 0.4.

(19)

By routine computations, we have 𝑑(𝐵) = (0.5, 0.4) and
ℎ(𝐵) = (0.9, 0.1). For 0 < 𝑠 ≤ 0.9 and 0 < 𝑡 ≤ 0.1, 𝐺(𝑠,𝑡) =
(𝑉, {(𝑥, 𝑦), (𝑦, 𝑧)}), and for 0.5< 𝑠 ≤ 0.9 and 0< 𝑡≤0.1,𝐺(𝑠,𝑡)=
(𝑉, {(𝑥, 𝑦)}). Thus 𝐺 is a tree, 𝐺 is a full intuitionistic fuzzy
tree, and 𝐺∗ and 𝐺ℎ(𝐵) have the same number of connected
components. However, 𝐺 is not firm and 𝐵 = (𝜇

𝐵
, ]
𝐵
) is not

constant on 𝐸.

Example 54. Consider a connected graph 𝐺∗ = (𝑉, 𝐸) such
that 𝑉 = {𝑥, 𝑦, 𝑧} and 𝐸 = {(𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧)}. Let 𝐴 be an
intuitionistic fuzzy set of𝑉 and let𝐵 be an intuitionistic fuzzy
set of 𝐸 ⊆ 𝑉 × 𝑉 defined by

𝜇
𝐴
(𝑥) = 𝜇

𝐴
(𝑦) = 1, 𝜇

𝐴
(𝑧) = 0.5,

]
𝐴
(𝑥) = ]

𝐴
(𝑦) = 0, ]

𝐴
(𝑧) = 0.2,

𝜇
𝐵
(𝑥, 𝑦) = 0.9, 𝜇

𝐵
(𝑥, 𝑧) = 𝜇

𝐵
(𝑦, 𝑧) = 0.5,

]
𝐵
(𝑥, 𝑦) = 0.1, ]

𝐵
(𝑥, 𝑧) = ]

𝐵
(𝑦, 𝑧) = 0.4.

(20)

By routine computations, we have 𝑑(𝐵) = (0.5, 0.4) and
ℎ(𝐵) = (0.9, 0.1). For 0 < 𝑠 ≤ 0.5 and 0 < 𝑡 ≤ 0.4,
𝐺
(𝑠,𝑡)

= (𝑉, {(𝑥, 𝑦), (𝑥, 𝑧), (𝑦, 𝑧)}), and for 0.5 < 𝑠 ≤ 0.9 and
0 < 𝑡 ≤ 0.1, 𝐺(𝑠,𝑡) = ({𝑥, 𝑦}, {(𝑥, 𝑦)}). Thus 𝐺 is a partial
intuitionistic fuzzy tree but not a full intuitionistic fuzzy tree.
𝐺 is not an intuitionistic fuzzy tree.

We state the following propositions without their proofs.

Proposition 55. If 𝐺 is an intuitionistic fuzzy tree, then G is
not complete.

Proposition 56. If 𝐺 is an intuitionistic fuzzy tree, then arcs
of spanning subgraph 𝐻 are the intuitionistic fuzzy bridges of
𝐺.

Proposition 57. If 𝐺 is an intuitionistic fuzzy tree, then
internal nodes of spanning subgraph 𝐻 are the intuitionistic
fuzzy cut nodes of 𝐺.

Proposition 58. 𝐺 is an intuitionistic fuzzy tree if and only if
the following are equivalent:

(a) (𝑥, 𝑦) is an intuitionistic fuzzy bridge;
(b) 𝜇∞
𝐵
(𝑥, 𝑦) = 𝜇

𝐵
(𝑥, 𝑦) and ]∞

𝐵
(𝑥, 𝑦) = ]

𝐵
(𝑥, 𝑦).

Proposition 59. An intuitionistic fuzzy graph is an intuition-
istic fuzzy tree if and only if it has a uniquemaximum spanning
tree.

Definition 60. For all 𝑠, 𝑡 ∈ [0, 1], one defines ̂𝐴(𝑠,𝑡) : 𝐴(𝑠,𝑡) →
[0, 1] × [0, 1] and ̂𝐵(𝑠,𝑡) : 𝐵(𝑠,𝑡) → [0, 1] × [0, 1] by

̂
𝐴(𝑠,𝑡) (𝑥) = 𝐴 (𝑥) ∀𝑥 ∈ 𝐴

(𝑠,𝑡)

,
̂
𝐴(𝑠,𝑡) (𝑥) = 0 otherwise,

̂
𝐵(𝑠,𝑡) (𝑥, 𝑦) = 𝐵 (𝑥, 𝑦)

∀ (𝑥, 𝑦) ∈ 𝐵
(𝑠,𝑡)

,
̂
𝐵(𝑠,𝑡) (𝑥, 𝑦) = 0 otherwise.

(21)

Proposition 61. Suppose that 𝐺 is firm. If 𝐺 is a weak
intuitionistic fuzzy tree, then 𝐺 is an intuitionistic fuzzy tree.

Proof. There exist (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] such that 𝐺(𝑠,𝑡) is a tree.
Since 𝐺 is firm, 𝐺(𝑠,𝑡) is an intuitionistic fuzzy spanning
subgraph of 𝐺 which is a tree. If (𝑢, V) is in 𝐸𝐵

(𝑠,𝑡), then
𝜇
𝐵
(𝑢, V) < 𝑠, ]

𝐵
(𝑢, V) > 𝑡 and so it follows that 𝐺 is an

intuitionistic fuzzy tree.

Definition 62. (1) 𝐺 is called connected if 𝐺∗ is connected.
(2) 𝐺 is called intuitionistic fuzzy connected if 𝐺 is

intuitionistic fuzzy block.
(3)𝐺 is called weak intuitionistic fuzzy connected if there

exists (𝑠, 𝑡) ∈ (0, ℎ(𝐵)] such that 𝐺(𝑠,𝑡) is connected.
(4) 𝐺 is called partial intuitionistic fuzzy connected if

𝐺
(𝑠,𝑡) is a connected for for all (𝑠, 𝑡) ∈ (𝑑(𝐵), ℎ(𝐵)] ∪ {ℎ(𝐵)}.
(5)𝐺 is called full intuitionistic fuzzy connected if𝐺(𝑠,𝑡) is

connected for all (𝑠, 𝑡) ∈ (0, ℎ(𝐵)].

Proposition 63. If𝐺 is connected, then𝐺 is weakly connected.

Proof. 𝐺 connected implies that 𝐺∗ is connected. Now 𝐺
∗

=

𝐺
ℎ(𝐵) and so 𝐺 is weakly connected.

Proposition 64. If 𝐺 is firm and weakly connected, then 𝐺 is
connected.

Proof. If 𝐺(𝑠,𝑡) is connected for some (𝑠, 𝑡) ∈ (0, ℎ(𝐵)], then
𝐺
∗ is connected since 𝐺 is firm.

Proposition 65. (1) If 𝐺 is a weak intuitionistic fuzzy tree,
then𝐺 is weakly connected and𝐺 is a weak intuitionistic fuzzy
forest. Conversely, if ∃(𝑠

1
, 𝑡
1
), (𝑠
2
, 𝑡
2
) ∈ (0, ℎ(𝐵)] with 𝑠

1
< 𝑠
2

and 𝑡
1
< 𝑡
2
such that 𝐺(𝑠1 ,𝑡1) is a forest and 𝐺(𝑠2 ,𝑡2) is connected,

then 𝐺 is a weak intuitionistic fuzzy tree.
(2)𝐺 is a tree if and only if𝐺 is a forest and𝐺 is connected.
(3) 𝐺 is partial intuitionistic fuzzy tree if and only if 𝐺 is a

partial intuitionistic fuzzy forest and𝐺 is partially intuitionistic
fuzzy connected.
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(4) 𝐺 is a full intuitionistic fuzzy tree if and only if 𝐺 is a
full intuitionistic fuzzy forest and 𝐺 is fully connected.

Proof. (1) If𝐺(𝑠,𝑡) is a tree for some (𝑠, 𝑡) ∈ (0, ℎ(𝐵)], then𝐺(𝑠,𝑡)
is connected and is a forest. For the converse, we note that
𝐺
(𝑠2 ,𝑡2) must also be a forest. Since also 𝐺(𝑠2 ,𝑡2) is connected,

𝐺
(𝑠2 ,𝑡2) is a tree.
The proofs of (2), (3), and (4) are immediate.

Proposition 66. 𝐺 is firm if and only if 𝐺(𝑠,𝑡) is firm for all
(𝑠, 𝑡) ∈ (0, ℎ(𝐵)].

Proof. Suppose that 𝐺 is firm. Let (𝑠, 𝑡) ∈ (0, ℎ(𝐵)]. Let
(𝑥, 𝑦) ∈ 𝜇

(𝑠,𝑡). Then

𝑠 ≤ 𝜇
𝐵
(𝑥, 𝑦)

≤ min {𝜇
𝐴
(𝑥) | 𝑥 ∈ 𝑉} ≤ min {𝜇

𝐴
(𝑥) | 𝑥 ∈ 𝜇

𝑠

𝐴
} ,

𝑡 ≥ ]
𝐵
(𝑥, 𝑦)

≥ max {]
𝐴
(𝑥) | 𝑥 ∈ 𝑉} ≥ max {]

𝐴
(𝑥) | 𝑥 ∈ ]𝑡

𝐴
} .

(22)

Hence max{𝜇
𝐵
(𝑥, 𝑦) | (𝑥, 𝑦) ∈ 𝜇

𝑠

𝐵
} ≤ min{𝜇

𝐴
(𝑥) | 𝑥 ∈ 𝜇

𝑠

𝐴
}

and min{]
𝐵
(𝑥, 𝑦) | (𝑥, 𝑦) ∈ ]𝑡

𝐵
} ≥ max{]

𝐴
(𝑥) | 𝑥 ∈ ]𝑡

𝐴
}. Thus

we conclude that 𝐵(𝑠,𝑡)∗ = 𝐵(𝑠,𝑡) and𝐴(𝑠,𝑡)∗ = 𝐴(𝑠,𝑡) and𝐺(𝑠,𝑡) is
firm.

Conversely, suppose that 𝐺(𝑠,𝑡) is firm for all (𝑠, 𝑡) ∈

(0, ℎ(𝐵)]. Let min{𝜇
𝐴
(𝑥) | 𝑥 ∈ 𝑉} = 𝑠

0
, and let max{]

𝐴
(𝑥) |

𝑥 ∈ 𝑉} = 𝑡
0
. Then 𝑡

0
> 0. Now max{𝜇

𝐵
(𝑥, 𝑦) | (𝑥, 𝑦) ∈

𝜇
𝑠0

𝐵
} ≤ 𝑠
0
and min{]

𝐵
(𝑥, 𝑦) | (𝑥, 𝑦) ∈ ]𝑡0

𝐵
} ≥ 𝑡
0
since 𝐺(𝑠0 ,𝑡0) is

firm and 𝑉 = 𝐴
(𝑠0 ,𝑡0) = 𝐴

(𝑠0 ,𝑡0)∗. Let (𝑥, 𝑦) ∈ 𝐸 − 𝐵(𝑠,𝑡)∗. Then
𝜇
𝐵
(𝑥, 𝑦) < 𝑠

0
, ]
𝐵
(𝑥, 𝑦) > 𝑡

0
. Thus

max {𝜇
𝐵
(𝑥, 𝑦) | (𝑥, 𝑦) ∈ 𝐸} ≤ 𝑠

0
= min {𝜇

𝐴
(𝑥) | 𝑥 ∈ 𝑉} ,

min {]
𝐵
(𝑥, 𝑦) | (𝑥, 𝑦) ∈ 𝐸} ≥ 𝑡

0
= max {]

𝐴
(𝑥) | 𝑥 ∈ 𝑉} .

(23)

Hence 𝐺 is firm.

5. Conclusions

In a network, each arc is assigned a weight. The weight of
a path or a cycle is defined as the minimum weight of its
arcs. The maximum of weights of all paths between two
nodes is defined as the strength of connectedness between
the nodes. In network applications, the reduction in the
strength of connectedness is more relevant than the total
disconnection of the graph. A graph is totally weighted if
both node set and arc set are weighted. Fuzzy graph theory
is finding an increasing number of applications in modeling
real time systems. Since intuitionistic fuzzy models give
more precision, flexibility, and compatibility to the system as
compared to the fuzzy models, we have investigated some
properties of intuitionistic fuzzy cycles, intuitionistic fuzzy
trees, intuitionistic fuzzy bridges, and intuitionistic fuzzy cut
vertices in intuitionistic fuzzy graphs in this paper.We plan to
extend our research of fuzzification to (1) bipolar fuzzy trees,

(2) soft cycles and soft trees, (3), and rough cycles and rough
trees.
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