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1. Introduction

In last 30 years, the theory of ordinary differential equations of fractional order has become
a new important branch (see, e.g., [1–5] and the references therein). Numerous applications
of such equations have been presented [3–10]. Existence of positive solution of fractional
ordinary differential equations has beenwell investigated for fractional functional differential
equations [1, 6, 11–14]. Ye et al. [6] have addressed the question of existence of positive
solutions for the nonlinear fractional functional differential equation

Dα[x(t) − x(0)] = x(t)f(t, xt), t ∈ (0, T],

x(t) = φ(t) ≥ 0, t ∈ [−w, 0],
(1.1)

by using the sub- and supersolution method, where 0 < α < 1, Dα is the standard Riemann-
Liouville fractional derivative, φ ∈ C and f : [0, T] × C → R

+ is continuous, as usual,
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2 Abstract and Applied Analysis

C = C([−w, 0],R+) is the space of continuous function from [−w, 0] to R
+, w > 0, equipped

with the sup norm:

∥
∥φ
∥
∥ = max

−w≤Θ≤0

∣
∣φ(t)

∣
∣, (1.2)

and xt denotes the function in C defined by

xt(θ) = x(t + θ), −w ≤ θ ≤ 0. (1.3)

They require that the nonlinearity f(t, xt) is increasing in xt for each t ∈ [0, T].
As a pursuit of this in the present paper, we deal with the existence of positive

solutions in the case of multiterm differential equations with polynomial coefficients of the
fractional type:

L(D)[x(t) − x(0)] = f(t, xt), t ∈ (0, T],

x(t) = φ(t) ≥ 0, t ∈ [−w, 0],
(1.4)

where

L(D) = Dαn −
n−1∑

j=1

pj(t)Dαn−j , 0 < α1 < · · · < αn < 1, pj(t) =
Nj∑

k=0

ajkt
k,

p
(2m)
j (t) ≥ 0, p

(2m+1)
j (t) ≤ 0, m = 0, 1, . . . ,

[
Nj

2

]

, j = 1, 2, . . . , n − 1,

(1.5)

and Dαj is the standard Riemann-Liouville fractional derivative, T > 0, w > 0, φ ∈ C =
C([−w, 0],R+) and f : I × C → R

+ is a given continuous function, I = [0, T].

2. Preliminaties

Let E be a real Banach space with a coneK.K introduces a partial order ≤ in E in the following
manner [13]:

x ≤ y if y − x ∈ K. (2.1)

Definition 2.1 (see [15]). For x, y ∈ E the order interval 〈x, y〉 is defined as

〈

x, y
〉

=
{

z ∈ E : x ≤ z ≤ y
}

. (2.2)
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Definition 2.2 (see [15]). A cone K is called normal, if there exists a positive constant r such
that f, g ∈ K and ϑ ≺ f ≺ g implies ‖f‖ ≤ r‖g‖, where ϑ denotes the zero element of K.

Definition 2.3 (see [16, 17]). Let f : [a, b] → R, and f ∈ L1[a, b]. The left-sided Riemann-
Liouville fractional integral of f of order α is defined as

Iαaf(x) =
1

Γ(α)

∫x

a

(x − t)α−1f(t)dt, α > 0, x ∈ [a, b]. (2.3)

Definition 2.4 (see [16, 17]). The left-sided Riemann-Liouville fractional derivative of a
function f : [a, b] → R is defined as

Dα
af(x) = Dm[Im−α

a f(x)
]

, x ∈ [a, b], (2.4)

wherem = [α]+1,Dm = dm/dtm. We denoteDα
0 byDα and Iα0 by Iα. If the fractional derivative

Dα
af(x) is integrable, then [16, page 71]

Iαa

(

D
β
af(x)

)

= I
α−β
a f(x) −

[

I
1−β
a f(x)

]

x=a

xα−1

Γ(α)
, 0 < β ≤ α < 1. (2.5)

If f is continuous on [a, b], then [I1−βa f(x)]x=a = 0 and (2.5) reduces to

Iαa

(

D
β
af(x)

)

= I
α−β
a f(x), 0 < β ≤ α < 1. (2.6)

Proposition 2.5. Let y be continuous on [0, T], T > 0 and let n be a nonnegative integer, then

Iα(tnx(t)) =
n∑

k=0

(−α
k

)
[

Dktn
][

Iα+kx(t)
]

=
n∑

k=0

(−α
k

)

n!tn−k

(n − k)!
Iα+kx(t), (2.7)

where

(−α
k

)

= (−1)k Γ(α + 1)
k!Γ(α)

= (−1)k
(

α

k

)

=
Γ(1 − α)

Γ(k + 1)Γ(1 − α − k)
. (2.8)

The proof of the above proposition can be found in [17, page 53].
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Corollary 2.6. Let x ∈ C[0, T], T > 0 and pj(t) =
∑Nj

k=0 ajkt
k, Nj ∈ N ∪ {0}, j = 1, 2, . . . , n, then

Iα

⎛

⎝

n∑

j=1

pj(t)x(t)

⎞

⎠ =
n∑

j=1

Nj∑

k=0

k∑

r=0

ajk

(−α
r

)

k!tk−r

(k − r)!
[Iα+rx(t)]. (2.9)

Theorem 2.7 (see [10]). Let E be a Banach space with C ⊆ E closed and convex. Assume that U
is a relatively open subset of C with 0 ∈ U and F : U → C is a continuous and compact map.
Then either

(1) F has a fixed point inU, or

(2) there exists u ∈ ∂U and λ ∈ (0, 1) with u = λF(u).

3. Existence of Positive Solution

In this section, we discuss the existence of positive solutions for (1.4). Using (2.5), (2.6), and
Corollary 2.6, (1.4) is equivalent to the integral equation

x(t) =

⎧

⎨

⎩

x(0) + I[x(t) − x(0)] + Iαnf(t, xt), t ∈ (0, T],

φ(t), t ∈ [−w, 0],
(3.1)

where

I =
n−1∑

j=1

Nj∑

k=0

k∑

r=0

ajk

(−αn

r

)

k!tk−r

(k − r)!
Iαn−αn−j+r . (3.2)

Let y(·) : [−w, T] → [0,+∞) be the function defined by

y(t) =

⎧

⎨

⎩

φ(0), t ∈ I,

φ(t) ≥ 0, t ∈ [−w, 0],
(3.3)

then y0 = φ, for each z ∈ C(I,R) with z(0) = 0, we denote by z the function define by

z(t) =

⎧

⎨

⎩

z(t), t ∈ I,

0, t ∈ [−w, 0].
(3.4)
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We can decompose x(·) as x(t) = z(t) + y(t), t ∈ [−w, T], which implies xt = zt + yt, for t ∈ I.
Therefore, (3.1) is equivalent to the integral equation

z(t) = Iz(t) + Iαnf
(

t, zt + yt

)

, t ∈ I, (3.5)

where I is defined (3.2). Set A0 = {z ∈ C(I,R) : z0 = 0} and let ‖z‖T be the seminorm in A0

defined by

‖z‖T = ‖z0‖ + ‖z‖ = ‖z‖ =: sup{|z(t)| : t ∈ I}, z ∈ A0, (3.6)

andA0 is a Banach space with norm ‖ ·‖T . LetK be a cone ofA0,K = {z ∈ A0; z(t) ≥ 0, t ∈ I}
and

K∗ =
{

x ∈ C([−w, T],R+); x(t) = φ(t) ≥ 0, t ∈ [−w, 0]
}

. (3.7)

Define the operator F : K → K by

Fz(t) = Iz(t) + Iαnf
(

t, zt + yt

)

, t ∈ I. (3.8)

Theorem 3.1. Suppose that the following conditions hold:

(1) there exist p, q ∈ C(I,R+) such that f(t, xt) ≤ p(t) + q(t)‖xt‖, for t ∈ I, xt ∈ C, and
‖Iαnp‖ = supt∈[0,T]I

αnp(t) < ∞, ‖Iαnq‖ = supt∈[0,T]I
αnq(t) < ∞,

(2) 1 − I(T) − ‖Iαnq‖ > 0, where

I(T) =
n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣
∣
∣
ajk

(−αn

r

)∣
∣
∣
∣
∣

k!Tαn−αn−j+k

(k − r)!Γ
(

αn − αn−j + r
) . (3.9)

Then (1.4) has at least a positive solution x∗ ∈ K∗, satisfying ‖x∗‖ ≤ max{‖φ‖, h}, where

h =
λ
∥
∥φ
∥
∥
∥
∥Iαnq

∥
∥ + λ

∥
∥Iαnp

∥
∥

1 − λI(T) − λ
∥
∥Iαnq

∥
∥

+ 1. (3.10)
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Proof. We will show that the operator F : K → K is continuous and completely continuous.

Step 1. The operator F : K → K is continuous in view of the continuity of f .

Step 2. F maps bounded sets into bounded sets in K.

Let G ⊂ K be bounded; that is, there exists a positive constant l such that ‖z‖T ≤ l, for
all z ∈ G. For each z ∈ G, we have

|Fz(t)| ≤
n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣
∣
∣
ajk

(−αn

r

)∣
∣
∣
∣
∣

k!tk−r

(k − r)!
Iαn−αn−j+r |z(t)| + Iαnf

(

t, zt + yt

)

≤
n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣
∣
∣
ajk

(−αn

r

)∣
∣
∣
∣
∣

lk!tαn−αn−j+k

(k − r)!Γ
(

αn − αn−j + r
) + Iαnf

(

t, zt + yt

)

≤ lI(T) + Iαn
{

p(t) + q(t)
∥
∥zt + yt

∥
∥
}

,

(3.11)

where I(T) is defined in (3.9). It follows that

‖Fz‖T ≤ lI(T) + ∥∥Iαnp
∥
∥ + l
∥
∥Iαnq

∥
∥ +
∥
∥φ(t)

∥
∥
∥
∥Iαnq

∥
∥. (3.12)

Hence FG is bounded.

Step 3. F maps bounded sets into equicontinuous sets of K.

We will show that FG is equicontinuous. For each z ∈ G, t1, t2 ∈ I and t1 < t2, then for
given ε > 0, choose

δ = min

⎧

⎨

⎩

[
εC(j, k, r)

4

]1/(αn−αn−j+r)

,

[

εΓ(αn + 1)
4
(∥
∥p
∥
∥ +
∥
∥q
∥
∥
(

l +
∥
∥φ
∥
∥
))

]1/αn

⎫

⎬

⎭
, (3.13)

where j = 1, 2, . . . , n − 1, k = 0, 1, . . . ,Nj , r = 0, 1, . . . , k,

C
(

j, k, r
)

=
(k − r)!

∑n−1
i=1 (Ni + 1)(Ni + 2)

× Γ
(

αn − αn−j + r + 1
)

∣
∣
∣ajk

( −αn

r

)∣
∣
∣lηk!

(3.14)
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and η = max{1, TNj , j = 1, 2, . . . , n − 1}. If |t1 − t2| < δ,

|Fz(t1) − Fz(t2)|

=

∣
∣
∣
∣
∣
∣
∣

n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣ajk

( −αn

r

)∣
∣
∣k!t1k−r

(k − r)!Γ
(

αn − αn−j + r
)

∫ t1

0
(t1 − s)αn−αn−j+r−1z(s)ds

−
n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣ajk

( −αn

r

)∣
∣
∣k!t2k−r

(k − r)!Γ
(

αn − αn−j + r
)

∫ t2

0
(t2 − s)αn−αn−j+r−1z(s)ds

∣
∣
∣
∣
∣
∣
∣

+
1

Γ(αn)

∣
∣
∣
∣
∣

∫ t1

0
(t1 − s)αn−1f

(

s, zs + ys

)

ds −
∫ t2

0
(t2 − s)αn−1f

(

s, zs + ys

)

ds

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣

n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣ajk

( −αn

r

)∣
∣
∣k!t2k−r

(k − r)!Γ
(

αn − αn−j + r
)

∫ t1

0
(t2 − s)αn−αn−j+r−1z(s)ds

−
n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣ajk

( −αn

r

)∣
∣
∣k!t1k−r

(k − r)!Γ
(

αn − αn−j + r
)

∫ t1

0
(t1 − s)αn−αn−j+r−1z(s)ds

∣
∣
∣
∣
∣
∣
∣

+
n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣ajk

( −αn

r

)∣
∣
∣k!t2k−r

(k − r)!Γ
(

αn − αn−j + r
)

∫ t2

t1

(t2 − s)αn−αn−j+r−1|z(s)|ds

+

∥
∥f
∥
∥
∞

Γ(αn)

{∫ t1

0

[

(t2 − s)αn−1 − (t1 − s)αn−1
]

ds +
∫ t2

t1

(t2 − s)αn−1ds

}

≤
n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣ajk

( −αn

r

)∣
∣
∣lk!Tk−r

(k − r)!Γ
(

αn − αn−j + r
)

×
∫ t2

0

{

(t2 − s)αn−αn−j+r−1 − (t1 − s)αn−αn−j+r−1
}

ds

+

∥
∥p
∥
∥ +
∥
∥q
∥
∥
(

l +
∥
∥φ
∥
∥
)

Γ(αn)

{∫ t1

0

[

(t2 − s)αn−1 − (t1 − s)αn−1
]

ds +
∫ t2

t1

(t2 − s)αn−1ds

}

≤
n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣ajk

( −αn

r

)∣
∣
∣2lk!η(t2 − t1)αn−αn−j+r

(k − r)!Γ
(

αn − αn−j + r + 1
) +

2
(∥
∥p
∥
∥ +
∥
∥q
∥
∥
(

l +
∥
∥φ
∥
∥
))

(t2 − t1)αn

Γ(αn + 1)

=
n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣ajk

( −αn

r

)∣
∣
∣2lk!ηδαn−αn−j+r

(k − r)!Γ
(

αn − αn−j + r + 1
) +

2
(∥
∥p
∥
∥ +
∥
∥q
∥
∥
(

l +
∥
∥φ
∥
∥
))

δαn

Γ(αn + 1)

≤ ε

2
+
ε

2
= ε.

(3.15)
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Hence FG is equicontiuous. The Arzela-Ascoli theorem implies that F(G) is compact and
F : K → K is continuous and completely continuous.

Step 4. We now show that there exists an open set U ⊆ K with z/=λF(z) for λ ∈ (0, 1) and
z ∈ ∂U. Let z ∈ K be any solution of z = λFz, λ ∈ (0, 1), where F is given by (3.8); since
F : K → K is continuous and completely continuous, we have

z(t) = λFz(t)

≤ λ
n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣
∣
∣
ajk

(−αn

r

)∣
∣
∣
∣
∣

k!tk−r

(k − r)!Γ
(

αn − αn−j + r
)

×
∫ t

0
(t − s)αn−αn−j+r−1z(s)ds +

λ

Γ(αn)

∫ t

0
(t − s)αn−1f

(

s, zs + ys

)

ds

≤ λ
n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣
∣
∣
ajk

(−αn

r

)∣
∣
∣
∣
∣

‖z‖k!tk−r
(k − r)!Γ

(

αn − αn−j + r
)

∫ t

0
(t − s)αn−αn−j+r−1ds

+
λ

Γ(αn)

∫ t

0
(t − s)αn−1[p(s) + q(s)

∥
∥zs + ys

∥
∥
]

ds

≤ λ
{‖z‖I(T) + ‖z‖Iαnq(t) +

∥
∥φ
∥
∥Iαnq(t) + Iαnp(t)

}

.

(3.16)

So

‖z‖(1 − λI(T) − λ
∥
∥Iαnp

∥
∥
) ≤ λ

∥
∥φ
∥
∥
∥
∥Iαnq

∥
∥ + λ

∥
∥Iαnp

∥
∥. (3.17)

Now, by (3.10) and (3.17), we know that any solution z of (3.8) satisfies ‖z‖/=h; let

U = {z ∈ K; ‖z‖ < h}. (3.18)

Therefore, Theorem 2.7 guarantees that (3.1) has at least a positive solution z ∈ U. Hence,
(1.4) has at least a positive solution x∗ ∈ K∗, satisfying ‖x∗‖ ≤ max{‖φ‖, h} and the proof is
complete.

Note that we can complete the above mentioned procedure by using only the
continuity of f without condition (1), but with our procedure and details of condition (1)
in Theorem 3.1 answers all the questions exist in the following remark.

Remark 3.2. When f is continuous on (0, T]×C, limt→ 0+f(t, ·) = +∞, (i.e., f is singular at t = 0)
in (1.4). Suppose ∃σ ∈ (0, αn], such that tσf(t, xt) is a continuous function on [0, T] × C, then
Iαnf(t, xt) = Iαnt−σtσf(t, xt) is continuous on I × C by Lemma 2.1 in [12, page 613]. We also
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obtain results about the existence to (1.4) by using a nonlinear alternative of Leray-Schauder
type. The proof is similar to that of Theorem 3.1 as long as we let

(1) tσf(t, xt) ≤ p(t) + q(t)‖xt‖, for t ∈ I, xt ∈ C, and ‖Iαnt−σp‖ < ∞, ‖Iαnt−σq‖ < ∞,

(2) 1−I(T)−‖Iαnt−σq‖ > 0, then (1.4) has at least a positive solution x∗ ∈ K∗, satisfying
‖x∗‖ ≤ max{‖φ‖, h}, where

h =
λ
∥
∥Iαnt−σp

∥
∥ + λ

∥
∥φ
∥
∥
∥
∥Iαnt−σq

∥
∥

1 − λI(T) − λ
∥
∥Iαnt−σq

∥
∥

+ 1. (3.19)

4. Unique Existence of Solution

In this section, we will give uniqueness of positive solution to (1.4).

Theorem 4.1. Let f : I × C → R
+ be continuous and λ ∈ L1([0, T],R+) with ‖Iαnλ‖ < ∞. Further

assume

(i) |f(t, ut + yt) − f(t, vt + yt)| ≤ λ(t)‖ut − vt‖, for all u, v ∈ K, t ∈ [0, T],

(ii) I(T) + ‖Iαnλ‖ < 1.

Then (1.4) has unique solution which is positive, where I(T) is given in (3.9).

Proof. Let u, v ∈ K. Then we obtain

|Fu(t) − Fv(t)| ≤
n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣ajk

( −αn

r

)∣
∣
∣k!tk−r

(k − r)!
Iαn−αn−j+r |u(t) − v(t)|

+ Iαn
∣
∣f
(

t, ut + y + t
) − f

(

t, vt + yt

)∣
∣

≤ ‖u − v‖T

⎧

⎨

⎩

n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣ajk

( −αn

r

)∣
∣
∣k!tαn−αn−j+k

(k − r)!Γ
(

αn − αn−j + r + 1
) + Iαnλ(t)

⎫

⎬

⎭

≤ ‖u − v‖T

⎧

⎨

⎩

n−1∑

j=1

Nj∑

k=0

k∑

r=0

∣
∣
∣ajk

( −αn

r

)∣
∣
∣k!Tαn−αn−j+k

(k − r)!Γ
(

αn − αn−j + r + 1
) + Iαnλ(t)

⎫

⎬

⎭
,

(4.1)

where F is given in (3.8). Hence,

‖Fu − Fv‖T ≤ (I(T) + ‖Iαnλ‖)‖u − v‖T . (4.2)

In view of Banach fixed point theorem F has unique fixed point in K, which is the unique
positive solution of (2.7) and (1.4) has a unique positive solution in K∗.
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Remark 4.2. When λ(t) = L > 0, then condition (i) reduces to the Lipschitz condition.

Example 4.3. Let λ(t) = L > 0 and f(t, xt) = Lxt + et = Lx(t − ω) + et, ω > 0. Consider the
equation

(

D1/2 − at2D1/4 − btD1/6 − cD1/8
)

x = Lx(t −w) + et, t ∈ (0, 64],

x(t) = 0, t ∈ [−w, 0].
(4.3)

Then (4.3) is equivalent to the integral equation,

x(t) =
3∑

j=1

Nj∑

k=0

k∑

r=0

ajk

⎛

⎝
−1
2
r

⎞

⎠
k!tk−r

(k − r)!
I1/2−α3−j+rx(t) + I1/2

(

Lx(t −ω) + et
)

. (4.4)

Here α3 = 1/2, p1(t) =
∑2

k=0 a1kt
k = at2, then N1 = 2, a10 = a11 = 0, a12 = a, p2(t) =

∑1
k=0 a2kt

k = bt, then N2 = 1, a20 = 0, a21 = b and p3(t) =
∑0

k=0 a3kt
k = c, then N3 = 0, a30 = c.

Hence

x(t) = a10

⎛

⎝
−1
2
0

⎞

⎠I1/2−1/4x + a11

⎡

⎣

⎛

⎝
−1
2
0

⎞

⎠tI1/2−1/4x +

⎛

⎝
−1
2
1

⎞

⎠I1/2−1/4+1

⎤

⎦

+ a12

⎡

⎣

⎛

⎝
−1
2
0

⎞

⎠t2I1/2−1/4x + 2

⎛

⎝
−1
2
1

⎞

⎠tI1/2−1/4+1x + 2

⎛

⎝
−1
2
2

⎞

⎠I1/2−1/4+2x

⎤

⎦

+ a20

⎛

⎝
−1
2
0

⎞

⎠I1/2−1/6x + a21

⎡

⎣

⎛

⎝
−1
2
0

⎞

⎠tI1/2−1/6x +

⎛

⎝
−1
2
1

⎞

⎠I1/2−1/6+1x

⎤

⎦

+ a30

⎛

⎝
−1
2
0

⎞

⎠I1/2−1/8x + LI1/2x(t −ω) + I1/2et.

(4.5)

In view of (2.8) and that Γ(1/2) =
√
π , Γ(−1/2) = −2√π and Γ(−3/4) = 4

√
π/3 we obtain

x(t) = a

[

t2I1/4x(t) − tI5/4x(t) +
3
4
I9/4x(t)

]

+ b

[

(1 + t)I1/3x(t) − 1
2
I4/3x(t)

]

+ cI3/8 + LI1/2x(t −ω) + I1/2et.

(4.6)
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If |a| ≤ 3/5, |b| ≤ 2/5, |c| ≤ 1/5, 0 < L < 4/5 in the above equation satisfy the conditions
required in Theorem 4.1, the iterated sequence is

x1(t) = I1/2et = t1/2E1,3/2(t),

x2(t) =
[

a

(

t2I1/4 − tI5/4 +
3
4
I9/4
)

+ b

(

(1 + t)I1/3 − 1
2
I4/3
)

+ cI3/8 + LI1/2
]

x1(t) + x1(t),

xn+1(t) =
n∑

k=0

[

a

(

t2I1/4 − tI5/4 +
3
4
I9/4
)

+ b

(

(1 + t)I1/3 − 1
2
I4/3
)

+ cI3/8 + LI1/2
]n−k

x1(t),

(4.7)

for n = 1, 2, 3, . . . , where Iαx1 = tα+1/2E1,α+3/2(t), α > 0, x(t) = limn→∞xn(t) is the unique
solution, which may not be positive, where Eα,β(t) =

∑∞
k=0(t

k/Γ(αk + β)) is Mittag-Leffler
function.
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