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Berth allocation is the forefront operation performedwhen ships arrive at a port and is a critical task in container port optimization.
Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems.This study focuses on the
discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated
greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results
show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and
outperforms the best-known solutions for 35 out of 90 test instances of the third problem set.

1. Introduction

Containerization has been widely adopted in global freight
transportation since the 1950s. Containerization significantly
reduces shipping costs and accelerates cargo handling at
ports. According to UNCTAD [1], maritime transportation
is an important component of the global supply chain,
with more than 8.7 billion tons of goods shipped annually.
Shippers and carriers benefit from their ships spending as
little time harbored in port as possible. Therefore, terminal
authorities strive to provide efficient and cost-effective ser-
vices that maximize terminal efficiency.

The operations of a container terminal include seaside
operations, yard operations, and land-side operations [2, 3].
One important issue in seaside operations is the assignment
of berthing position to a defined set of ships that must be
served within a defined planning horizon. This is esteemed
as a key process for container terminals. Due to operational
correlation, container terminal operators and ocean carrier
share the common objective in minimizing the time ships
spend in port.The berth allocation problem (BAP) thus arises

in dealing with terminal assignments of berths to ships, and
one of its major aims is to minimize the total service time,
that is, waiting time plus handling time. Various types of
aims/objectives pursued by the BAP exist and can be referred
to as in the excellent reviews of the literature [3] for the
corresponding objective functions.

The BAP can be categorized using temporal and spatial
constraints [3]. In terms of temporal constraints, BAP can be
static or dynamic, while in terms of spatial constraints BAP
can be for discrete, continuous, or hybrid berthing spaces.
The static berth allocation problem (SBAP) disregards ship
arrival time. That is, ships arrive before berth allocation
is planned. The dynamic berth allocation problem (DBAP)
assumes ships can arrive at any time with future arrival
information being known; ships cannot be berthed before
their arrival time. It should be mentioned that the DBAP
solved assumes all data (including arrival times) are known
in advance and therefore no reoptimization is required.

In the discrete BAP, the quay is divided into a set of berths,
each of which can harbor only one ship at a time. In the
continuous BAP, the quay is not partitioned into definitive
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berths, and a vessel can occupy any arbitrary position on
the quay. This improves utilization of quay space at the cost
of greater computational complexity. In the hybrid BAP, the
quay is partitioned into berths, but large ships may need
multiple berths, while small ships require only one berth.

The DBAP is known to be NP-hard [4] and thus is
generally solved using metaheuristics. The iterated greedy
(IG) algorithm is a very effective and efficient metaheuristic
algorithm [5]. The major advantages of the IG algorithm are
its simplicity and its extension property to be applicable to
different problems. IG has exhibited state-of-the-art perfor-
mance for numerous problems [6–8]. Therefore, this study
proposes an IG algorithm to solve the discrete DBAP.

The remainder of the paper is organized as follows.
Section 2 describes the discrete DBAP and reviews the
relevant literature. Section 3 presents the proposed IG algo-
rithm for tackling the discrete DBAP. Section 4 depicts
computational experiments and discusses the results. Finally,
Section 5 presents concluding remarks.

2. Literature Review

Several mixed integer programming (MIP) models for dis-
crete DBAP have been proposed in the literature. Imai et
al. [9] were the first to present a discrete DBAP model
which was an extension of an SBAP. Decision variables
were used to assign ships to berths and scheduled their
processing sequence in each assigned berth. Cordeau et al.
[4] formulated the problem as a multidepot vehicle routing
problem with time windows (MDVRPTW). Their model
included different positions along the berth that resulted in
different handling times for each ship.

Christensen and Holst [10] modeled the discrete DBAP
as a generalized set-partitioning problem (GSPP) which
assumed that the time measurements were integers (discrete
time periods). In their model a column represented a fea-
sible assignment of a single ship to a specific berth at a
specific time. Buhrkal et al. [11] proposed a heterogeneous
vehicle routing problem with time window (HVRPTW)
model which was a simplified version of MDVRPTW. The
HVRPTWmodel defined the problem on a graph rather than
on a multigraph as shown in Cordeau et al. [4] and left the
complexity of the problem unchanged. Furthermore, Buhrkal
et al. [11] proposed an improvedHVRPTWmodel, denoted as
HVRPTW+, by considering break symmetry, variable fixing,
and adding valid inequalities to reduce the computation time
of HVRPTW. Based on various existing models, the GSPP
model optimized solutions of the ship assignment problem
[11]. However, the GSPP was still NP-hard. The number of
columns became excessive when a large number of berthing
time and ship were involved [11]. Furthermore, Vacca et al.
[12] developed an exact algorithm for the integrated planning
of berth allocation and quay crane assignment. Their exact
algorithm could solve the BAP + QCAP (berth allocation
problem and quay crane assignment problem) to optimality
on the same set of instances of [4] using branch-and-
price. Because of the complex nature of the problem, global
optimal solutionsmay be difficult to obtainwhen the problem

involves a large amount of variables. Therefore, researchers
have been seeking efficient approximation algorithms that
obtain near-optimal solutions reasonably fast.

Lai and Shih [13] developed a heuristic algorithm for
solving the DBAP by considering the first-come-first-served
rule and evaluated three different berthing policies using
simulation experiments. Brown et al. [14, 15] explored berth
allocationmodels that allowmultiple ships to occupy a single
berthing position. Imai et al. [16] formulated an SBAP as
a nonlinear integer programming model to minimize the
weighted objective of two conflicting criteria: berth perfor-
mance and berthing satisfaction. Imai et al. [9] introduced a
dynamic version of the problem, where each ship had a given
arrival time and could only receive service after arrival. The
objective was to minimize the accumulative service time of
all ships.

Nishimura et al. [17] extended the DBAP to the mul-
tiwater depth configuration in a public berth system and
proposed a genetic algorithm (GA) to solve the problem.
Imai et al. [18] extended the DBAP to assign service priorities
to ships and developed a GA-based algorithm to solve the
extended problem. Cordeau et al. [4] considered a DBAP
with time windows and proposed a Tabu search algorithm to
solve it. Monaco and Sammarra [19] derived a more compact
formulation than that of Imai et al. [9] and solved it by
using a Lagrangian relaxation algorithm and a nonstandard
multiplier adjustment method. Imai et al. [20] formulated
a BAP that allowed a single berth to simultaneously serve
two ships and solved it using GAs. Imai et al. [21] used the
Lagrangian relaxation with subgradient optimization and the
GA to identify noninferior solutions in a biobjective BAP
model which minimized the service and delay time.

Mauri et al. [22] proposed a population training algo-
rithm with linear programming (PTA/LP) to solve discrete
DBAP. PTA/LP improved incoming columns in the column
generation problem. Hansen et al. [23] presented a minimum
cost berth allocation problem (MCBAP) based on an exten-
sion of the model previously proposed by Imai et al. [18] and
developed a variable neighborhood search algorithm to solve
the problem. Imai et al. [24] studied a variant of the DBAP in
which an external terminal could be available when the port
ran out of berth capacity.

Barros et al. [25] formulated a berth allocation model
with tidal timewindows, where berths could only be operated
when the tide allowed. Their simulation model was based on
the dynamic berth allocation model of Imai et al. [9]. De
Oliveira et al. [26] proposed an approach based on clustering
search (CS) with simulated annealing mechanism. CS was an
iterative method which divided the search space into clusters
and comprised a metaheuristic for solution generation, a
grouping process, and a local search algorithm. Lalla-Ruiz et
al. [27] proposed a Tabu search (T2S∗) approach and a Tabu
search with path relinking (T2S∗ + PR) approach to solve the
discrete DBAP. T2S∗ was an improved version of T2S [4] that
employed different neighborhood structure, and T2S∗ + PR
added the path-relink techniques to the T2S∗. T2S, T2S∗, and
T2S∗ + PRwere tested using the instances fromCordeau et al.
[4] and the newly generated problem set. The experimental
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Figure 1: An example of the solution representation with 3-berth and 15-ship.

results showed that the T2S∗ + PR approach was competitive
with GSPP in small-scale problems and outperformed T2S
and T2S∗. Lin and Ting [28] proposed two versions of
simulated annealing (SA) algorithm to solve the discrete
DBAP. The results showed that both versions obtained the
same solutions as those of GSPP and outperformed the T2S,
PTA/LP, and CS approaches. Furthermore, the version of SA
algorithm with restarting strategy (SARS) outperformed that
without restarting strategy (SAWRS).

3. Development of the Proposed Iterated
Greedy Heuristic

A generic IG algorithm usually starts from an initial solution
𝜋
0
and then generates a sequence of solutions by iterating

the greedy method through the destruction and construction
phases [5]. The destruction phase obtains a partial candidate
solution 𝜋

𝑃
by removing a fixed number (𝛼) of elements

from the current candidate solution 𝜋. In the subsequent
construction phase, a greedy constructive approach is used
to sequentially insert the removed elements into the partial
solution (𝜋

𝑃
) until a full solution is reconstructed. Once a

complete solution is reconstructed, an acceptance criterion is
applied to determinewhether the new solution should replace
the existing one. The process iterates through the destruc-
tion and construction phases until reaching the termination
conditions. Additionally, another local search method may
be applied before both the main loop and acceptance test to
improve the initial solution and the reconstructed solution.

Based on the framework of the generic IG algorithm, the
following subsection further discusses the solution represen-
tation, the objective function calculation, and the main steps
of the proposed IG algorithm.

3.1. Solution Representation and Objective Function Calcula-
tion. A solution can be represented by a numerical sequence
that consists of a permutation of 𝑛 ships and 𝑚 − 1 zeros,
where𝑚 denotes the number of berths.That is, the numerical
sequence contains 𝑚 segments separated by “zeros,” where
each segment corresponds to the service sequence of certain
ships on an assigned berth. Figure 1 represents an example of
a solution, which is explained as follows: 15 ships are to be
processed on three berths, and the service sequences of the
ships on berths 1, 2, and 3 are 3-8-10-9-7, 2-4-15-12-11-5, and
13-14-6-1, respectively.

The completion time of each ship on an assigned berth
is calculated according to its arrival time, the sequence in
the berth, and the availability of the berth. The service time
of each ship is obtained by subtracting its arrival time from

its completion time. Finally, the total service time can be
calculated by summing up the service times of all ships.

3.2. Main Steps of the Proposed IG Algorithm. Themain steps
of the proposed IG algorithm are as follows.

Step 1 (generate the initial solution). The initial solution 𝜋
is generated using the first-come-first-served rule, which is
usually implemented in real world operations. That is, the
ships are sorted in ascending order of their arrival times. Each
ship is then sequentially assigned to the berthwith the earliest
completion time of the ship that has been assigned to it. In the
event of a tie, the berth with the shortest waiting time of the
assigned ship is chosen. If the tie persists, the berth with the
smallest numberwill be selected.Theobtained initial solution
is set as the incumbent solution 𝜋∗ and the best solution𝜋∗best.

Step 2 (destruction and construction phases). Consider the
following.

(a) Randomly choose 𝛼 distinct ships from the 𝑛 ships of
𝜋
∗. The value of 𝛼 is selected randomly between 𝛼min

and 𝛼max, where 𝛼min and 𝛼max are the minimal and
maximal numbers of unrepeated ships to be removed,
respectively. Subtract these numbers from 𝜋∗ and add
them to 𝜋∗

𝐷
in the order in which they are chosen,

where 𝜋∗
𝐷
is a permutation list of the 𝛼 removed ships.

(b) Sequentially reinsert the ships of 𝜋∗
𝐷

into 𝜋∗
𝑃
until

a complete solution 𝜋∗new is obtained, where 𝜋∗
𝑃
is

the partial sequence of 𝜋∗ obtained after removing 𝛼
ships.When inserting a ship into𝜋∗

𝑃
, all possible posi-

tions in all berths of the incumbent partial solution
are considered. The best position is then chosen and
recorded as the incumbent partial solution.

(c) IF TST(𝜋∗new)−TST(𝜋
∗

best) < 0, THEN set𝜋∗best := 𝜋
∗

new
and 𝜋∗ := 𝜋∗new;

ELSE IF TST(𝜋∗new) ≤ TST(𝜋∗), THEN set
𝜋
∗
:= 𝜋
∗

new

ELSE IF 𝑟 < 𝑒(−Δ𝐸/𝑇), THEN set 𝜋∗ := 𝜋∗new,
where 𝑟 ∈ [0, 1] is a random number, Δ𝐸 =
TST(𝜋∗new) −TST(𝜋

∗
), and 𝑇 is the temperature.

Step 3 (stopping criteria). If the computational time exceeds
a specified threshold, stop the algorithm.

In Step 1, an initial solution 𝜋 is generated according
to the first-come-first-served rule. Steps 2(a) and 2(b) are
the destruction and construction phases, which comprise
a perturbation mechanism. In Step 2(c), the Boltzmann
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Figure 2: An example of IG destruction phase and construction phase.

function that is commonly used in the annealing process
of SA algorithms is applied to enable the proposed IG
algorithm to escape the local minimum. This is achieved by
generating a random number 𝑟 ∈ [0, 1] and replacing the
incumbent solution 𝜋∗ with 𝜋∗new if 𝑟 < 𝑒(−Δ𝐸/𝑇), where
Δ𝐸 = TST(𝜋∗new) − TST(𝜋

∗
) > 0. If TST(𝜋∗new) ≤ TST(𝜋

∗
),

the probability of replacing 𝜋∗ with 𝜋∗new is set to one.
Subsequently, the incumbent solution 𝜋∗ can be improved by
the destruction and construction phases of Step 2 iteratively
until the computational time reaching a predetermined limit.
To clearly illustrate the process, Tables 1 and 2 together give
a small discrete DBAP instance with 15-ship and 3-berth.
The start time of berth 𝑘 (𝑠

𝑘
) and finish time of berths

𝑘 (𝑒
𝑘
) are listed in Table 1. The arrival time of ship 𝑖 (𝑎

𝑖
),

the end of the service time window on ship 𝑖 (𝑏
𝑖
), and the

handling time of ship 𝑖 at each berth 𝑘 (𝑡1
𝑖
, 𝑡
2

𝑖
, 𝑡
3

𝑖
) are given

in Table 2. Figure 2 presents an iteration of the proposed IG
algorithm.

The computational complexity of the proposed IG algo-
rithm is as follows. In Step 1, the time complexity needed for
sorting the 𝑛 ships in ascending order of their arrival times
is 𝑂(𝑛log

2
𝑛). When trying to assign each ship to the berth,

there are at most𝑚 berths to be considered. In each iteration
of Step 2, 𝛼 distinct ships are removed from the 𝑛 ships of
current solution in the destruction phase.The computational
complexity is linear. In addition, in each iteration of Step 2, 𝛼
ships are needed to be reinserted to the partial solution in the
construction phase. When trying to find the best position to
reinsert the first one of 𝛼 removed ships, there are (𝑛+𝑚−𝛼)
possible positions to be tested. Therefore, there are (𝑛 + 𝑚 −
𝛼) times to calculate objective function value. In a similar
fashion, when trying to find the best position to reinsert the
𝑖th ship of 𝛼 removed ships, there are (𝑛 + 𝑚 − 1 − 𝛼 + 𝑖)
possible positions to be tested.Therefore, the total number of
calculating objective function is ∑𝛼

𝑖=1
(𝑛 + 𝑚 − 1 − 𝛼 + 𝑖). It

should be noted that recalculation of the objective function is
localized. That is, only the ships whose orders are affected by

Table 1: Information of 3 berths.

𝑘 𝑠
𝑘

𝑒
𝑘

1 12 300
2 12 300
3 12 300

Table 2: Information of 15 ships.

𝑖 𝑎
𝑖

𝑏
𝑖

𝑡
1

𝑖
𝑡
2

𝑖
𝑡
3

𝑖

1 71 300 20 20 40
2 90 300 44 44 88
3 39 300 22 22 44
4 17 300 34 34 68
5 12 300 12 12 24
6 117 300 30 30 60
7 94 300 28 28 56
8 29 300 6 6 12
9 43 300 26 26 52
10 79 300 22 22 44
11 2 300 20 20 40
12 129 300 16 16 32
13 123 300 26 26 52
14 43 300 14 14 28
15 5 300 18 18 36

the inserted ship on the same berth are taken into account
for recalculating the objective function. The proposed IG
algorithm is thus adaptive and efficient.

4. Computational Results and Discussion

This section discusses the computational tests used to evalu-
ate the performance of the proposed IG algorithm.Thedetails
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Table 3: Computational result for I2 problem set.

Instance GSPP SARS IG
Optimal Time Best objective Time to obtain the optimal Best objective Time to obtain the optimal

25 × 5 1 759 5.99 759 0.04 759 0.01
25 × 5 2 964 3.70 964 0.16 964 0.08
25 × 5 3 970 2.95 970 0.63 970 0.10
25 × 5 4 688 2.72 688 0.10 688 0.03
25 × 5 5 955 6.97 955 0.32 955 0.38
25 × 5 6 1129 3.10 1129 0.01 1129 0.01
25 × 5 7 835 2.31 835 0.01 835 0.00
25 × 5 8 627 1.92 627 0.03 627 0.03
25 × 5 9 752 4.76 752 0.07 752 0.20
25 × 5 10 1073 6.38 1073 0.59 1073 0.20
25 × 7 1 657 3.62 657 0.00 657 0.01
25 × 7 2 662 3.15 662 0.03 662 0.00
25 × 7 3 807 4.28 807 0.20 807 0.56
25 × 7 4 648 3.78 648 0.59 648 0.14
25 × 7 5 725 3.85 725 0.02 725 0.19
25 × 7 6 794 3.60 794 0.01 794 0.02
25 × 7 7 734 3.54 734 0.21 734 0.03
25 × 7 8 768 3.93 768 0.07 768 0.05
25 × 7 9 749 3.73 749 0.02 749 0.00
25 × 7 10 825 3.82 825 0.02 825 0.01
25 × 10 1 713 5.83 713 0.04 713 0.02
25 × 10 2 727 6.99 727 0.15 727 0.01
25 × 10 3 761 6.12 761 0.24 761 0.16
25 × 10 4 810 5.38 810 0.19 810 0.20
25 × 10 5 840 6.77 840 0.10 840 0.06
25 × 10 6 689 5.57 689 0.01 689 0.04
25 × 10 7 666 5.83 666 0.00 666 0.00
25 × 10 8 855 5.87 855 0.01 855 0.01
25 × 10 9 711 5.38 711 0.15 711 0.01
25 × 10 10 801 5.96 801 0.04 801 0.09
35 × 7 1 1000 12.57 1000 11.59 1000 0.37
35 × 7 2 1192 15.93 1192 9.07 1192 1.35
35 × 7 3 1201 7.16 1201 3.81 1201 0.47
35 × 7 4 1139 13.59 1139 1.65 1139 0.47
35 × 7 5 1164 11.50 1164 2.25 1164 1.26
35 × 7 6 1686 29.16 1686 8.31 1686 2.02
35 × 7 7 1176 12.89 1176 1.40 1176 0.41
35 × 7 8 1318 17.52 1318 4.95 1318 0.34
35 × 7 9 1245 8.41 1245 0.59 1245 0.25
35 × 7 10 1109 14.39 1109 7.30 1109 0.80
35 × 10 1 1124 19.98 1124 0.19 1124 0.30
35 × 10 2 1189 11.37 1189 4.47 1189 0.87
35 × 10 3 938 8.97 938 0.13 938 0.34
35 × 10 4 1226 10.28 1226 5.63 1226 0.50
35 × 10 5 1349 22.31 1349 0.52 1349 0.27
35 × 10 6 1188 10.92 1188 0.29 1188 0.14
35 × 10 7 1051 9.74 1051 0.21 1051 0.77
35 × 10 8 1194 9.39 1194 0.08 1194 0.06
35 × 10 9 1311 29.45 1311 0.90 1311 0.53
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Table 3: Continued.

Instance GSPP SARS IG
Optimal Time Best objective Time to obtain the optimal Best objective Time to obtain the optimal

35 × 10 10 1189 14.28 1189 0.05 1189 0.08
Average 953.7 8.60 953.7 1.35 953.7 0.28

of the test problems, parameters selection, and the compu-
tational results of the proposed IG algorithm are compared
with those of the state-of-the-art algorithms, including T2S
[4], PTA/LP [22], CS [26], T2S∗ [27], T2S∗ + PR [27], and
SARS [28].

4.1. Test Problems. Three benchmark problem sets were used
in this study. Cordeau et al. [4] provided two sets (I2 and
I3) of instances that were randomly generated based on data
from the port of Gioia Tauro (Italy). The I2 set includes five
instance sizes: 25 ships with 5, 7, and 10 berths; 35 ships
with 7 and 10 berths; and 10 instances generated for each
size. The I3 set includes 30 instances with 60 ships and 13
berths. Lalla-Ruiz et al. [27] provided a new set of instances
that was generated according to Cordeau et al. [4] with
longer time horizon, higher traffic, and fewer available berths.
New instances can be found at https://sites.google.com/site/
gciports/berth-allocation-problem. This site provided nine
instance sizes: 30 ships with 3 and 5 berths; 40 ships with
5, 7, and 10 berths; 55 ships with 5, 7, and 10 berths; and 60
ships with 5 and 7 berths. Ten instances are generated for each
problem size.

4.2. Parameter Selection. The proposed IG algorithm was
implemented using the C language on the Windows XP
operating system and run on a personal computer with an
Intel Core 2 2.66GHz CPU and 2G RAM. Parameter selec-
tion may influence the quality of the results. One instance
was randomly selected from each size in the I2 problem
set and the new problem set, and three instances were
randomly selected in the I3 problem set for preliminary test-
ing. The following combinations of parameters were tested
on these instances: 𝑇 = {0.03, 0.05, 0.10, 0.15, 0.20, 0.25} ×
TP/NBS; 𝛼min = 3, 4, 5, 6, 𝛼max = 5, 6, 7, 8; and Max𝑇 =
{0.03, 0.05, 0.10, 0.15, 0.20, 0.25} × 𝑛 seconds, where TP
denotes total processing time (∑𝑛

𝑖=1
∑
𝑚

𝑗=1
𝑃
𝑖𝑗
), the summation

of handling times that each ship 𝑖 can be assigned to berth
𝑗, NBS is the total number of allowable ship and berth
assignments, and 𝑛 is the number of ships. For each berth, if
the ship can be served, it is an allowable ship for the berth.
Based on the preliminary tests, the following parameter
values exhibit the best performance within a reasonable
computational time: 𝛼min = 4; 𝛼max = 7; 𝑇 = 0.05 × TP/NBS;
Max𝑇 is set to 0.2 × 𝑛 seconds for sets I2 and I3, while Max𝑇
is set to 0.05 × 𝑛 seconds for the new problem set of Lalla-
Ruiz et al. [27]. Therefore, these parameter values were used
for all subsequent experiments in this study. For comparison
with other state-of-the-art algorithms on the same base, each
problem in sets I2 and I3 is solved based on 10 trials, while

each problem in the new problem set of Lalla-Ruiz et al. is
solved based on 30 trials.

4.3. Results and Discussion. Tables 3–6 list the computational
results for the discrete DBAP. The optimal solution was
provided by the GSPP model using CPLEX 11 [10]. CPLEX
was able to get optimal solutions for all small-sized problem
instances of the three benchmark problem sets. However, for
part of medium-sized and all large-sized problem instances,
CPLEX is terminatedwithmemory depletion and no solution
was found [27]. Tables 3, 4, and 5 list the required computa-
tion times for the GSPP model. The proposed IG algorithm
is compared with SARS for the I2 problem set and results are
listed in Table 3. Table 4 lists the results of the PTA/LP, CS,
SARS, and IG algorithms for the I3 problem set. Furthermore,
Table 5 compares the proposed IG algorithmwith T2S∗, T2S∗
+ PR, and SARS for the new problem set with known optimal
solutions, while Table 6 lists the results of T2S∗, T2S∗ + PR,
SARS, and IG for the new problem set with unknown optimal
solutions.

In Table 3, column one represents the name of the
instance, while columns two and three are the optimal
solutions and the computational time required by the GSPP,
respectively. Furthermore, columns four to five display the
best solutions obtained by SARS in 10 trials and the com-
putational times required for SARS to obtain the optimal
solutions, respectively. Columns six and seven show similar
information for IG. As shown in Table 3, both the IG and
SARS can obtain the optimal solutions for all instances of the
I2 problem set.

Table 4 lists the computational results for the discrete case
of the I3 problem set. Besides the above columns in Table 3,
Table 4 lists information for PTA/LP and CS. The CS, SARS,
and IG obtain all optimal solutions, whereas PTA/LP cannot
reach the optimal solution for all instances. In such case,
PTA/LP is only 1 time unit away from optimality. Notably,
if the optimal solution cannot be obtained within a certain
number of trials, the computational time is de facto the
maximum computational time (Max𝑇 = 0.2 × 𝑛 seconds)
for these trials. This table indicates that the proposed IG
algorithm is as effective as CS and SARS in optimally solving
small-scale problems.

In Table 5, columns one and two represent the problem
size and instance number. Columns three and four show
the optimal solutions and the computational time using the
GSPP. Furthermore, columns five to seven display the best
solutions obtained by T2S∗ in 30 trials, the required time, and
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the gaps relative to the optimal solutions for T2S∗, respec-
tively. The gap is calculated as (Sol

ℎ
− SolGSPP)/SolGSPP ×

100%, where Sol
ℎ
is the solution obtained by algorithm ℎ and

SolGSPP is the optimal solution obtained by GPSS. Columns
8–10 listed similar information (best solutions obtained in
30 trails, the required time, and the gaps relative to the
optimal solution) for T2S∗ + PR. Columns 11 to 14 show
the best solutions, the average solutions, the relative gaps
between best solutions to the optimal solutions, the time
required to obtain the optimal solutions, and the maximal
computation time for SARS in 30 trials. Similar information
for the proposed IG algorithm is listed in Columns 15 to 18.
The table shows that 20, 27, 30, and 30 out of 30 optimal
solutions are obtained by T2S∗, T2S∗ + PR, SARS, and
IG, respectively. The SARS and the proposed IG algorithm
perform best for new problem sets with known optimal
solutions.

Table 6 lists similar information to Table 5, except that the
optimal solution is unknown and replaced by the BKS, which
exhibits the best solution among the T2S∗, T2S∗ + PR, SARS,
and IG approaches. For 60 problems, all solutions obtained
by the proposed IG algorithm are equal to BKS, while the 13,
28, and 47 solutions obtained by T2S∗, T2S∗ + PR, and SARS
heuristic are equal to BKS.

The running time of the IG algorithm depends on
various factors, including CPU, operating system, compiler,
computer program, and the precision used during execution.
Therefore, the relative efficiency of the algorithms is hard
to determine. Tables 3–6 show the time required for GSPP,
PTA/LP, CS, T2S∗, T2S∗ + PR, SARS, and IG. The GSPP
formulation was implemented by generating all columns a
priori using a Java program and solving the resulting integer
program using CPLEX 11 (32-bit version) on a PC with an
Intel Xeon 5430 (2.66GHz) processor. T2S was implemented
in ANSI C, and computational experiments were performed
on a Sun workstation (900MHz). Both the PTA/LP and CS
were implemented using C++ and run on a PC with an
AMD Athlon 64 3500 with a 2.2GHz processor and 1GB of
RAM. T2S∗ and T2S∗ + PR were coded in Ansi C and the
experiments were performed on a PCwith a T4300 processor
at 2.10GHz. The computational time and results for GSPP,
PTA/LP, CS, T2S∗, and T2S∗ +PR are cited from their original
papers, while the SARS is recalculated by setting the maximal
computational time to be the same as that of the proposed
IG algorithm. As shown in Tables 3–6, the computational
time is within the acceptable range for the proposed IG
algorithm.

To verify the effectiveness of the proposed IG algorithm,
the proposed algorithm is compared with PTA/LP, CS, SARS,
T2S∗, T2S∗ + PR, and IG by conducting paired 𝑡-tests on the
RER (relative error rate). The RER is calculated as (TSTℎ −
BKS∗)/BKS∗ × 100, where TSTℎ denotes the total service
time from algorithm ℎ. The BKS∗ is obtained from all the
compared algorithms, including those of Cordeau et al.[4],
Mauri et al. [22], Buhrkal et al. [11], de Oliveira et al. [26], Lin
and Ting [28], and the proposed IG approach.

Table 7: Paired 𝑡-tests on the average RER for I2 problem set.

IG vs. SARS

Difference 0.0000
Degree of freedom 49
𝑡-value 0.0000
One-tailed significance 0.5000

Table 8: Paired 𝑡-tests on the average RER for I3 problem set.

IG vs. PTA/LP CS SARS

Difference 2.5212 0.7791 0.0000
Degree of freedom 29 29 29
𝑡-value 13.2444 6.5597 0.0000
One-tailed significance <0.0001 <0.0001 0.5000

Table 9: Paired 𝑡-tests on the average RER for new problem set.

IG vs. T2S∗ T2S∗ + PR SARS

Difference 0.2403 0.0984 0.0128
Degree of freedom 89 89 89
𝑡-value 6.6505 5.3869 3.3017
One-tailed significance <0.0001 <0.0001 0.0007

At a confidence level of 95%, Tables 7 and 8 show that the
proposed IG algorithm outperforms the PTA/LP in terms of
the best objective value obtained for discrete DBAP (PTA/LP
for the I3 set). However, IG is not statistically better than
SARS and CS on the best objective value obtained, probably
because these state-of-the-art algorithms are equally able to
obtain the best solutions as IG. For the new data set, the
proposed IG algorithmoutperforms the T2S∗, T2S∗ +PR, and
SARS approaches, as shown in Table 9. This outperformance
demonstrates the superiority of the proposed IG algorithm.

5. Conclusion

This paper studies the berth allocation problemwith dynamic
arrival time. Because the berth allocation problem is NP-
hard, exact solution approaches cannot optimally solve
realistic large-scale problems while maintaining acceptable
computational complexity. An IG algorithm is proposed as
an alternative method to the problem. The proposed IG
algorithm is tested using three benchmark problem sets
and compared with the optimal solutions (or best known
solutions) from the literature. Computational results indicate
that the proposed IG algorithm is effective. The proposed IG
algorithm obtains all the optimal solutions of the discrete
DBAP instances for the first and the second problem sets,
as well as exhibiting best-known solutions for 35 out of 90
test instances in the third problem set. Future research can
further examine the integration of the berth allocation and
quay crane assignment problems.
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