Minimizing the Total Service Time of Discrete Dynamic Berth Allocation Problem by an Iterated Greedy Heuristic

Shih-Wei Lin, ${ }^{1}$ Kuo-Ching Ying, ${ }^{2}$ and Shu-Yen Wan ${ }^{1}$
${ }^{1}$ Department of Information Management, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan
${ }^{2}$ Department of Industrial Engineering and Management, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 10608, Taiwan

Correspondence should be addressed to Shih-Wei Lin; swlin@mail.cgu.edu.tw
Received 26 May 2014; Revised 14 August 2014; Accepted 17 August 2014; Published 8 September 2014
Academic Editor: Seyed S. Seyedalizadeh
Copyright © 2014 Shih-Wei Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set.

1. Introduction

Containerization has been widely adopted in global freight transportation since the 1950s. Containerization significantly reduces shipping costs and accelerates cargo handling at ports. According to UNCTAD [1], maritime transportation is an important component of the global supply chain, with more than 8.7 billion tons of goods shipped annually. Shippers and carriers benefit from their ships spending as little time harbored in port as possible. Therefore, terminal authorities strive to provide efficient and cost-effective services that maximize terminal efficiency.

The operations of a container terminal include seaside operations, yard operations, and land-side operations [2, 3]. One important issue in seaside operations is the assignment of berthing position to a defined set of ships that must be served within a defined planning horizon. This is esteemed as a key process for container terminals. Due to operational correlation, container terminal operators and ocean carrier share the common objective in minimizing the time ships spend in port. The berth allocation problem (BAP) thus arises
in dealing with terminal assignments of berths to ships, and one of its major aims is to minimize the total service time, that is, waiting time plus handling time. Various types of aims/objectives pursued by the BAP exist and can be referred to as in the excellent reviews of the literature [3] for the corresponding objective functions.

The BAP can be categorized using temporal and spatial constraints [3]. In terms of temporal constraints, BAP can be static or dynamic, while in terms of spatial constraints BAP can be for discrete, continuous, or hybrid berthing spaces. The static berth allocation problem (SBAP) disregards ship arrival time. That is, ships arrive before berth allocation is planned. The dynamic berth allocation problem (DBAP) assumes ships can arrive at any time with future arrival information being known; ships cannot be berthed before their arrival time. It should be mentioned that the DBAP solved assumes all data (including arrival times) are known in advance and therefore no reoptimization is required.

In the discrete BAP, the quay is divided into a set of berths, each of which can harbor only one ship at a time. In the continuous BAP, the quay is not partitioned into definitive
berths, and a vessel can occupy any arbitrary position on the quay. This improves utilization of quay space at the cost of greater computational complexity. In the hybrid BAP, the quay is partitioned into berths, but large ships may need multiple berths, while small ships require only one berth.

The DBAP is known to be NP-hard [4] and thus is generally solved using metaheuristics. The iterated greedy (IG) algorithm is a very effective and efficient metaheuristic algorithm [5]. The major advantages of the IG algorithm are its simplicity and its extension property to be applicable to different problems. IG has exhibited state-of-the-art performance for numerous problems [6-8]. Therefore, this study proposes an IG algorithm to solve the discrete DBAP.

The remainder of the paper is organized as follows. Section 2 describes the discrete DBAP and reviews the relevant literature. Section 3 presents the proposed IG algorithm for tackling the discrete DBAP. Section 4 depicts computational experiments and discusses the results. Finally, Section 5 presents concluding remarks.

2. Literature Review

Several mixed integer programming (MIP) models for discrete DBAP have been proposed in the literature. Imai et al. [9] were the first to present a discrete DBAP model which was an extension of an SBAP. Decision variables were used to assign ships to berths and scheduled their processing sequence in each assigned berth. Cordeau et al. [4] formulated the problem as a multidepot vehicle routing problem with time windows (MDVRPTW). Their model included different positions along the berth that resulted in different handling times for each ship.

Christensen and Holst [10] modeled the discrete DBAP as a generalized set-partitioning problem (GSPP) which assumed that the time measurements were integers (discrete time periods). In their model a column represented a feasible assignment of a single ship to a specific berth at a specific time. Buhrkal et al. [11] proposed a heterogeneous vehicle routing problem with time window (HVRPTW) model which was a simplified version of MDVRPTW. The HVRPTW model defined the problem on a graph rather than on a multigraph as shown in Cordeau et al. [4] and left the complexity of the problem unchanged. Furthermore, Buhrkal et al. [11] proposed an improved HVRPTW model, denoted as HVRPTW+, by considering break symmetry, variable fixing, and adding valid inequalities to reduce the computation time of HVRPTW. Based on various existing models, the GSPP model optimized solutions of the ship assignment problem [11]. However, the GSPP was still NP-hard. The number of columns became excessive when a large number of berthing time and ship were involved [11]. Furthermore, Vacca et al. [12] developed an exact algorithm for the integrated planning of berth allocation and quay crane assignment. Their exact algorithm could solve the BAP + QCAP (berth allocation problem and quay crane assignment problem) to optimality on the same set of instances of [4] using branch-andprice. Because of the complex nature of the problem, global optimal solutions may be difficult to obtain when the problem
involves a large amount of variables. Therefore, researchers have been seeking efficient approximation algorithms that obtain near-optimal solutions reasonably fast.

Lai and Shih [13] developed a heuristic algorithm for solving the DBAP by considering the first-come-first-served rule and evaluated three different berthing policies using simulation experiments. Brown et al. $[14,15]$ explored berth allocation models that allow multiple ships to occupy a single berthing position. Imai et al. [16] formulated an SBAP as a nonlinear integer programming model to minimize the weighted objective of two conflicting criteria: berth performance and berthing satisfaction. Imai et al. [9] introduced a dynamic version of the problem, where each ship had a given arrival time and could only receive service after arrival. The objective was to minimize the accumulative service time of all ships.

Nishimura et al. [17] extended the DBAP to the multiwater depth configuration in a public berth system and proposed a genetic algorithm (GA) to solve the problem. Imai et al. [18] extended the DBAP to assign service priorities to ships and developed a GA-based algorithm to solve the extended problem. Cordeau et al. [4] considered a DBAP with time windows and proposed a Tabu search algorithm to solve it. Monaco and Sammarra [19] derived a more compact formulation than that of Imai et al. [9] and solved it by using a Lagrangian relaxation algorithm and a nonstandard multiplier adjustment method. Imai et al. [20] formulated a BAP that allowed a single berth to simultaneously serve two ships and solved it using GAs. Imai et al. [21] used the Lagrangian relaxation with subgradient optimization and the GA to identify noninferior solutions in a biobjective BAP model which minimized the service and delay time.

Mauri et al. [22] proposed a population training algorithm with linear programming (PTA/LP) to solve discrete DBAP. PTA/LP improved incoming columns in the column generation problem. Hansen et al. [23] presented a minimum cost berth allocation problem (MCBAP) based on an extension of the model previously proposed by Imai et al. [18] and developed a variable neighborhood search algorithm to solve the problem. Imai et al. [24] studied a variant of the DBAP in which an external terminal could be available when the port ran out of berth capacity.

Barros et al. [25] formulated a berth allocation model with tidal time windows, where berths could only be operated when the tide allowed. Their simulation model was based on the dynamic berth allocation model of Imai et al. [9]. De Oliveira et al. [26] proposed an approach based on clustering search (CS) with simulated annealing mechanism. CS was an iterative method which divided the search space into clusters and comprised a metaheuristic for solution generation, a grouping process, and a local search algorithm. Lalla-Ruiz et al. [27] proposed a Tabu search $\left(\mathrm{T}^{2} \mathrm{~S}^{*}\right)$ approach and a Tabu search with path relinking $\left(T^{2} S^{*}+P R\right)$ approach to solve the discrete DBAP. $\mathrm{T}^{2} \mathrm{~S}^{*}$ was an improved version of $\mathrm{T}^{2} \mathrm{~S}[4]$ that employed different neighborhood structure, and $\mathrm{T}^{2} \mathrm{~S}^{*}+\mathrm{PR}$ added the path-relink techniques to the $\mathrm{T}^{2} \mathrm{~S}^{*} . \mathrm{T}^{2} \mathrm{~S}, \mathrm{~T}^{2} \mathrm{~S}^{*}$, and $\mathrm{T}^{2} \mathrm{~S}^{*}+\mathrm{PR}$ were tested using the instances from Cordeau et al. [4] and the newly generated problem set. The experimental

Service sequence of the ships on Berth 1	Service sequence of the ships on Berth 2	Service sequence of the ships on Berth 3

Figure 1: An example of the solution representation with 3-berth and 15-ship.
results showed that the $\mathrm{T}^{2} \mathrm{~S}^{*}+\mathrm{PR}$ approach was competitive with GSPP in small-scale problems and outperformed $\mathrm{T}^{2} \mathrm{~S}$ and $\mathrm{T}^{2} \mathrm{~S}^{*}$. Lin and Ting [28] proposed two versions of simulated annealing (SA) algorithm to solve the discrete DBAP. The results showed that both versions obtained the same solutions as those of GSPP and outperformed the $\mathrm{T}^{2} \mathrm{~S}$, PTA/LP, and CS approaches. Furthermore, the version of SA algorithm with restarting strategy $\left(\mathrm{SA}_{\mathrm{RS}}\right)$ outperformed that without restarting strategy ($\mathrm{SA}_{\mathrm{WRS}}$).

3. Development of the Proposed Iterated Greedy Heuristic

A generic IG algorithm usually starts from an initial solution π_{0} and then generates a sequence of solutions by iterating the greedy method through the destruction and construction phases [5]. The destruction phase obtains a partial candidate solution π_{P} by removing a fixed number (α) of elements from the current candidate solution π. In the subsequent construction phase, a greedy constructive approach is used to sequentially insert the removed elements into the partial solution $\left(\pi_{P}\right)$ until a full solution is reconstructed. Once a complete solution is reconstructed, an acceptance criterion is applied to determine whether the new solution should replace the existing one. The process iterates through the destruction and construction phases until reaching the termination conditions. Additionally, another local search method may be applied before both the main loop and acceptance test to improve the initial solution and the reconstructed solution.

Based on the framework of the generic IG algorithm, the following subsection further discusses the solution representation, the objective function calculation, and the main steps of the proposed IG algorithm.

3.1. Solution Representation and Objective Function Calcula-

 tion. A solution can be represented by a numerical sequence that consists of a permutation of n ships and $m-1$ zeros, where m denotes the number of berths. That is, the numerical sequence contains m segments separated by "zeros," where each segment corresponds to the service sequence of certain ships on an assigned berth. Figure 1 represents an example of a solution, which is explained as follows: 15 ships are to be processed on three berths, and the service sequences of the ships on berths 1,2 , and 3 are 3-8-10-9-7, 2-4-15-12-11-5, and 13-14-6-1, respectively.The completion time of each ship on an assigned berth is calculated according to its arrival time, the sequence in the berth, and the availability of the berth. The service time of each ship is obtained by subtracting its arrival time from
its completion time. Finally, the total service time can be calculated by summing up the service times of all ships.
3.2. Main Steps of the Proposed IG Algorithm. The main steps of the proposed IG algorithm are as follows.

Step 1 (generate the initial solution). The initial solution π is generated using the first-come-first-served rule, which is usually implemented in real world operations. That is, the ships are sorted in ascending order of their arrival times. Each ship is then sequentially assigned to the berth with the earliest completion time of the ship that has been assigned to it. In the event of a tie, the berth with the shortest waiting time of the assigned ship is chosen. If the tie persists, the berth with the smallest number will be selected. The obtained initial solution is set as the incumbent solution π^{*} and the best solution $\pi_{\text {best }}^{*}$.

Step 2 (destruction and construction phases). Consider the following.
(a) Randomly choose α distinct ships from the n ships of π^{*}. The value of α is selected randomly between $\alpha_{\min }$ and $\alpha_{\text {max }}$, where $\alpha_{\text {min }}$ and $\alpha_{\text {max }}$ are the minimal and maximal numbers of unrepeated ships to be removed, respectively. Subtract these numbers from π^{*} and add them to π_{D}^{*} in the order in which they are chosen, where π_{D}^{*} is a permutation list of the α removed ships.
(b) Sequentially reinsert the ships of π_{D}^{*} into π_{P}^{*} until a complete solution $\pi_{\text {new }}^{*}$ is obtained, where π_{P}^{*} is the partial sequence of π^{*} obtained after removing α ships. When inserting a ship into π_{P}^{*}, all possible positions in all berths of the incumbent partial solution are considered. The best position is then chosen and recorded as the incumbent partial solution.
(c) $\operatorname{IF} \operatorname{TST}\left(\pi_{\text {new }}^{*}\right)-\operatorname{TST}\left(\pi_{\text {best }}^{*}\right)<0$, THEN set $\pi_{\text {best }}^{*}:=\pi_{\text {new }}^{*}$ and $\pi^{*}:=\pi_{\text {new }}^{*}$;

$$
\begin{aligned}
& \text { ELSE_IF } \operatorname{TST}\left(\pi_{\text {new }}^{*}\right) \leq \operatorname{TST}\left(\pi^{*}\right) \text {, THEN set } \\
& \pi^{*}:=\pi_{\text {new }}^{*} \\
& \text { ELSE_IF } r<e^{(-\Delta E / T)} \text {, THEN set } \pi^{*}:=\pi_{\text {new }}^{*} \\
& \text { where } r \in[0,1] \text { is a random number, } \Delta E \stackrel{=}{=} \\
& \operatorname{TST}\left(\pi_{\text {new }}^{*}\right)-\operatorname{TST}\left(\pi^{*}\right) \text {, and } T \text { is the temperature. }
\end{aligned}
$$

Step 3 (stopping criteria). If the computational time exceeds a specified threshold, stop the algorithm.

In Step 1, an initial solution π is generated according to the first-come-first-served rule. Steps 2(a) and 2(b) are the destruction and construction phases, which comprise a perturbation mechanism. In Step 2(c), the Boltzmann

Figure 2: An example of IG destruction phase and construction phase.
function that is commonly used in the annealing process of SA algorithms is applied to enable the proposed IG algorithm to escape the local minimum. This is achieved by generating a random number $r \in[0,1]$ and replacing the incumbent solution π^{*} with $\pi_{\text {new }}^{*}$ if $r<e^{(-\Delta E / T)}$, where $\Delta E=\operatorname{TST}\left(\pi_{\text {new }}^{*}\right)-\operatorname{TST}\left(\pi^{*}\right)>0$. If $\operatorname{TST}\left(\pi_{\text {new }}^{*}\right) \leq \operatorname{TST}\left(\pi^{*}\right)$, the probability of replacing π^{*} with $\pi_{\text {new }}^{*}$ is set to one. Subsequently, the incumbent solution π^{*} can be improved by the destruction and construction phases of Step 2 iteratively until the computational time reaching a predetermined limit. To clearly illustrate the process, Tables 1 and 2 together give a small discrete DBAP instance with 15 -ship and 3-berth. The start time of berth $k\left(s_{k}\right)$ and finish time of berths $k\left(e_{k}\right)$ are listed in Table 1. The arrival time of ship $i\left(a_{i}\right)$, the end of the service time window on ship $i\left(b_{i}\right)$, and the handling time of ship i at each berth $k\left(t_{i}^{1}, t_{i}^{2}, t_{i}^{3}\right)$ are given in Table 2. Figure 2 presents an iteration of the proposed IG algorithm.

The computational complexity of the proposed IG algorithm is as follows. In Step 1, the time complexity needed for sorting the n ships in ascending order of their arrival times is $O\left(n \log _{2} n\right)$. When trying to assign each ship to the berth, there are at most m berths to be considered. In each iteration of Step 2, α distinct ships are removed from the n ships of current solution in the destruction phase. The computational complexity is linear. In addition, in each iteration of Step 2, α ships are needed to be reinserted to the partial solution in the construction phase. When trying to find the best position to reinsert the first one of α removed ships, there are $(n+m-\alpha)$ possible positions to be tested. Therefore, there are ($n+m-$ α) times to calculate objective function value. In a similar fashion, when trying to find the best position to reinsert the i th ship of α removed ships, there are $(n+m-1-\alpha+i)$ possible positions to be tested. Therefore, the total number of calculating objective function is $\sum_{i=1}^{\alpha}(n+m-1-\alpha+i)$. It should be noted that recalculation of the objective function is localized. That is, only the ships whose orders are affected by

TABLE 1: Information of 3 berths.

k	s_{k}	e_{k}
1	12	300
2	12	300
3	12	300

Table 2: Information of 15 ships.

i	a_{i}	b_{i}	$t^{1}{ }_{i}$	$t^{2}{ }_{i}$	$t^{3}{ }_{i}$
1	71	300	20	20	40
2	90	300	44	44	88
3	39	300	22	22	44
4	17	300	34	34	68
5	12	300	12	12	24
6	117	300	30	30	60
7	94	300	28	28	56
8	29	300	6	6	12
9	43	300	26	26	52
10	79	300	22	22	44
11	2	300	20	20	40
12	129	300	16	16	32
13	123	300	26	26	52
14	43	300	14	14	28
15	5	300	18	18	36

the inserted ship on the same berth are taken into account for recalculating the objective function. The proposed IG algorithm is thus adaptive and efficient.

4. Computational Results and Discussion

This section discusses the computational tests used to evaluate the performance of the proposed IG algorithm. The details

Table 3: Computational result for I2 problem set.

Instance	GSPP			$S_{R S}$		IG	

Table 3: Continued.

Instance	GSPP		SA $_{R S}$		IG	
	Optimal	Time	Best objective	Time to obtain the optimal	Best objective	Time to obtain the optimal
$35 \times 10 _10$	$\mathbf{1 1 8 9}$	14.28	$\mathbf{1 1 8 9}$	0.05	$\mathbf{1 1 8 9}$	0.08
Average	953.7	8.60	953.7	1.35	953.7	0.28

of the test problems, parameters selection, and the computational results of the proposed IG algorithm are compared with those of the state-of-the-art algorithms, including $\mathrm{T}^{2} \mathrm{~S}$ [4], PTA/LP [22], CS [26], $\mathrm{T}^{2} \mathrm{~S}^{*}$ [27], $\mathrm{T}^{2} \mathrm{~S}^{*}+\mathrm{PR}$ [27], and $S_{\text {RS }}$ [28].
4.1. Test Problems. Three benchmark problem sets were used in this study. Cordeau et al. [4] provided two sets (I2 and I3) of instances that were randomly generated based on data from the port of Gioia Tauro (Italy). The I2 set includes five instance sizes: 25 ships with 5,7 , and 10 berths; 35 ships with 7 and 10 berths; and 10 instances generated for each size. The I3 set includes 30 instances with 60 ships and 13 berths. Lalla-Ruiz et al. [27] provided a new set of instances that was generated according to Cordeau et al. [4] with longer time horizon, higher traffic, and fewer available berths. New instances can be found at https://sites.google.com/site/ gciports/berth-allocation-problem. This site provided nine instance sizes: 30 ships with 3 and 5 berths; 40 ships with 5,7 , and 10 berths; 55 ships with 5,7 , and 10 berths; and 60 ships with 5 and 7 berths. Ten instances are generated for each problem size.
4.2. Parameter Selection. The proposed IG algorithm was implemented using the C language on the Windows XP operating system and run on a personal computer with an Intel Core 22.66 GHz CPU and 2 G RAM. Parameter selection may influence the quality of the results. One instance was randomly selected from each size in the I2 problem set and the new problem set, and three instances were randomly selected in the I3 problem set for preliminary testing. The following combinations of parameters were tested on these instances: $T=\{0.03,0.05,0.10,0.15,0.20,0.25\} \times$ $\mathrm{TP} / \mathrm{NBS} ; \alpha_{\min }=3,4,5,6, \alpha_{\max }=5,6,7,8$; and $\operatorname{Max} T=$ $\{0.03,0.05,0.10,0.15,0.20,0.25\} \times n$ seconds, where TP denotes total processing time $\left(\sum_{i=1}^{n} \sum_{j=1}^{m} P_{i j}\right)$, the summation of handling times that each ship i can be assigned to berth j, NBS is the total number of allowable ship and berth assignments, and n is the number of ships. For each berth, if the ship can be served, it is an allowable ship for the berth. Based on the preliminary tests, the following parameter values exhibit the best performance within a reasonable computational time: $\alpha_{\min }=4 ; \alpha_{\max }=7 ; T=0.05 \times \mathrm{TP} / \mathrm{NBS}$; Max T is set to $0.2 \times n$ seconds for sets I2 and I3, while Max T is set to $0.05 \times n$ seconds for the new problem set of LallaRuiz et al. [27]. Therefore, these parameter values were used for all subsequent experiments in this study. For comparison with other state-of-the-art algorithms on the same base, each problem in sets I2 and I3 is solved based on 10 trials, while
each problem in the new problem set of Lalla-Ruiz et al. is solved based on 30 trials.
4.3. Results and Discussion. Tables 3-6 list the computational results for the discrete DBAP. The optimal solution was provided by the GSPP model using CPLEX 11 [10]. CPLEX was able to get optimal solutions for all small-sized problem instances of the three benchmark problem sets. However, for part of medium-sized and all large-sized problem instances, CPLEX is terminated with memory depletion and no solution was found [27]. Tables 3,4 , and 5 list the required computation times for the GSPP model. The proposed IG algorithm is compared with $\mathrm{SA}_{\mathrm{RS}}$ for the I2 problem set and results are listed in Table 3. Table 4 lists the results of the PTA/LP, CS, $\mathrm{SA}_{\mathrm{RS}}$, and IG algorithms for the I3 problem set. Furthermore, Table 5 compares the proposed IG algorithm with $\mathrm{T}^{2} \mathrm{~S}^{*}, \mathrm{~T}^{2} \mathrm{~S}^{*}$ +PR , and $\mathrm{SA}_{\mathrm{RS}}$ for the new problem set with known optimal solutions, while Table 6 lists the results of $T^{2} S^{*}, T^{2} S^{*}+P R$, $\mathrm{SA}_{\mathrm{RS}}$, and IG for the new problem set with unknown optimal solutions.

In Table 3, column one represents the name of the instance, while columns two and three are the optimal solutions and the computational time required by the GSPP, respectively. Furthermore, columns four to five display the best solutions obtained by $\mathrm{SA}_{\mathrm{RS}}$ in 10 trials and the computational times required for $S A_{R S}$ to obtain the optimal solutions, respectively. Columns six and seven show similar information for IG. As shown in Table 3, both the IG and $\mathrm{SA}_{\mathrm{RS}}$ can obtain the optimal solutions for all instances of the I2 problem set.

Table 4 lists the computational results for the discrete case of the I3 problem set. Besides the above columns in Table 3, Table 4 lists information for PTA/LP and CS. The CS, $\mathrm{SA}_{\mathrm{RS}}$, and IG obtain all optimal solutions, whereas PTA/LP cannot reach the optimal solution for all instances. In such case, PTA/LP is only 1 time unit away from optimality. Notably, if the optimal solution cannot be obtained within a certain number of trials, the computational time is de facto the maximum computational time ($\operatorname{Max} T=0.2 \times n$ seconds) for these trials. This table indicates that the proposed IG algorithm is as effective as CS and $\mathrm{SA}_{\mathrm{RS}}$ in optimally solving small-scale problems.

In Table 5, columns one and two represent the problem size and instance number. Columns three and four show the optimal solutions and the computational time using the GSPP. Furthermore, columns five to seven display the best solutions obtained by $\mathrm{T}^{2} \mathrm{~S}^{*}$ in 30 trials, the required time, and
Table 4: Computational result for I3 problem set.

Instance	GSPP		PTA/LP		CS		$\mathrm{SA}_{\text {RS }}$		IG	
	Optimal	Time	Best objective	Time	Best objective	Time	Best objective	Time to obtain the optimal	Best objective	Time to obtain the optimal
i01	1409	17.92	1409	74.61	1409	12.47	1409	0.51	1409	1.53
i02	1261	15.77	1261	60.75	1261	12.59	1261	0.05	1261	0.11
i03	1129	13.54	1129	135.45	1129	12.64	1129	0.17	1129	0.28
i04	1302	14.48	1302	110.17	1302	12.59	1302	0.09	1302	0.32
i05	1207	17.21	1207	124.70	1207	12.68	1207	0.07	1207	0.07
i06	1261	13.85	1261	78.34	1261	12.56	1261	0.00	1261	0.00
i07	1279	14.60	1279	114.20	1279	12.63	1279	0.40	1279	0.54
i08	1299	14.21	1299	57.06	1299	12.57	1299	0.29	1299	0.71
i09	1444	16.51	1444	96.47	1444	12.58	1444	0.21	1444	0.57
i10	1213	14.16	1213	99.41	1213	12.61	1213	0.11	1213	0.18
i11	1368	14.13	1369	99.34	1368	12.58	1368	1.11	1368	3.29
i12	1325	15.60	1325	80.69	1325	12.56	1325	1.49	1325	3.90
i13	1360	13.87	1360	89.94	1360	12.61	1360	0.04	1360	0.07
i14	1233	15.60	1233	73.95	1233	12.67	1233	0.05	1233	0.09
i15	1295	13.52	1295	74.19	1295	13.80	1295	0.00	1295	0.10
i16	1364	13.68	1365	170.36	1364	14.46	1364	1.86	1364	2.89
i17	1283	13.37	1283	46.58	1283	13.73	1283	0.02	1283	0.07
i18	1345	13.51	1345	84.02	1345	12.72	1345	0.00	1345	0.10
i19	1367	14.59	1367	123.19	1367	13.39	1367	3.67	1367	4.24
i20	1328	16.64	1328	82.30	1328	12.82	1328	1.00	1328	6.37
i21	1341	13.37	1341	108.08	1341	12.68	1341	2.06	1341	4.27
i22	1326	15.24	1326	105.38	1326	12.62	1326	0.50	1326	1.18
i23	1266	13.65	1266	43.72	1266	12.62	1266	0.06	1266	0.12
i24	1260	15.58	1260	78.91	1260	12.64	1260	0.07	1260	0.39
i25	1376	15.80	1376	96.58	1376	12.62	1376	3.60	1376	6.45
i26	1318	15.38	1318	101.11	1318	12.62	1318	0.45	1318	1.33
i27	1261	15.52	1261	82.86	1261	12.64	1261	0.09	1261	0.28
i28	1359	16.22	1360	52.91	1359	12.71	1359	11.41	1359	11.57
i29	1280	15.30	1280	203.36	1280	12.62	1280	1.07	1280	5.25
i30	1344	16.52	1344	71.02	1344	12.58	1344	1.86	1344	2.33
Avg.	1306.8	14.98	1306.9	93.99	1306.8	12.79	1306.8	1.08	1306.8	1.95

TABLE 5: Computational result for new problem set with known optimal solutions.

Size	Instance	GSPP		$\mathrm{T}^{2} \mathrm{~S}^{*}$			$\mathrm{T}^{2} \mathrm{~S}^{*}+\mathrm{PR}$			SA ${ }_{\text {RS }}$				IG			
		Optimal	T (s)	Best objective	T (s)	Gap	Best objective	T (s)	Gap	Best objective	Average objective	T (s)	Gap	Best objective	Average objective	T (s)	Gap
$30 * 03$	1	1763	11.25	1763	0.25	0.00	1763	0.25	0.00	1763	1763.00	0.04	0.00	1763	1763.00	0.03	0.00
	2	2090	22.59	2090	0.26	0.00	2090	0.26	0.00	2090	2090.00	0.03	0.00	2090	2090.00	0.05	0.00
	3	2186	13.68	2186	0.26	0.00	2186	0.26	0.00	2186	2186.00	0.04	0.00	2186	2186.00	0.06	0.00
	4	1538	12.98	1538	0.28	0.00	1538	0.28	0.00	1538	1538.00	0.03	0.00	1538	1538.00	0.02	0.00
	5	2114	16.12	2114	0.22	0.00	2114	0.22	0.00	2114	2114.00	0.05	0.00	2114	2114.00	0.01	0.00
	6	2185	36.97	2187	0.34	0.09	2185	0.34	0.00	2185	2185.00	0.05	0.00	2185	2185.00	0.09	0.00
	7	1845	23.29	1847	0.34	0.11	1845	0.34	0.00	1845	1845.00	0.31	0.00	1845	1845.60	0.89	0.00
	8	1271	9.77	1271	0.31	0.00	1271	0.31	0.00	1271	1271.00	0.14	0.00	1271	1271.00	0.13	0.00
	9	1595	28.25	1595	0.25	0.00	1595	0.25	0.00	1595	1595.00	0.06	0.00	1595	1595.00	0.09	0.00
	10	2195	9.64	2195	0.29	0.00	2195	0.29	0.00	2195	2195.00	0.05	0.00	2195	2195.00	0.05	0.00
$30 * 05$	1	1149	17.93	1149	0.47	0.00	1149	0.47	0.00	1149	1149.53	1.02	0.00	1149	1149.27	0.37	0.00
	2	1475	30.59	1476	0.47	0.07	1475	0.47	0.00	1475	1475.53	1.08	0.00	1475	1475.00	0.33	0.00
	3	1542	26.43	1542	0.50	0.00	1542	0.50	0.00	1542	1542.00	0.12	0.00	1542	1542.00	0.07	0.00
	4	1075	15.72	1075	0.48	0.00	1075	0.48	0.00	1075	1075.00	0.14	0.00	1075	1075.00	0.12	0.00
	5	1463	23.60	1463	0.40	0.00	1463	0.40	0.00	1463	1463.00	0.43	0.00	1463	1463.00	0.03	0.00
	6	1580	30.84	1581	0.48	0.06	1580	0.48	0.00	1580	1580.00	0.22	0.00	1580	1580.00	0.19	0.00
	7	1276	19.39	1276	0.46	0.00	1276	0.46	0.00	1276	1276.00	0.25	0.00	1276	1276.00	0.15	0.00
	8	870	22.06	870	0.42	0.00	870	0.42	0.00	870	870.00	0.47	0.00	870	870.00	0.16	0.00
	9	1134	22.31	1153	0.50	1.68	1134	0.50	0.00	1134	1136.80	0.90	0.00	1134	1134.00	0.26	0.00
	10	1527	18.80	1527	0.46	0.00	1527	0.46	0.00	1527	1527.00	0.10	0.00	1527	1527.00	0.07	0.00
$40 * 05$	1	2301	41.51	2307	0.90	0.26	2303	0.90	0.09	2301	2302.87	1.09	0.00	2301	2301.27	1.01	0.00
	2	2829	59.89	2835	1.09	0.21	2834	1.09	0.18	2829	2829.00	0.40	0.00	2829	2829.27	0.97	0.00
	3	2880	99.20	2880	0.50	0.00	2880	0.50	0.00	2880	2880.67	1.75	0.00	2880	2880.17	1.33	0.00
	4	2001	39.78	2001	0.84	0.00	2001	0.84	0.00	2001	2001.03	0.64	0.00	2001	2002.33	1.24	0.00
	5	2815	74.14	2815	0.76	0.00	2815	0.76	0.00	2815	2816.03	1.00	0.00	2815	2820.63	1.59	0.00
	6	2934	66.46	2934	0.87	0.00	2934	0.87	0.00	2934	2934.00	0.22	0.00	2934	2934.00	0.20	0.00
	7	2632	40.97	2632	0.79	0.00	2632	0.79	0.00	2632	2632.07	0.64	0.00	2632	2632.00	0.48	0.00
	8	1835	40.11	1836	1.28	0.05	1835	1.28	0.00	1835	1835.40	1.18	0.00	1835	1835.00	0.93	0.00
	9	2086	47.70	2095	1.07	0.43	2089	1.07	0.14	2086	2089.57	1.54	0.00	2086	2089.37	1.22	0.00
	10	2962	52.28	2964	1.06	0.07	2962	1.06	0.00	2962	2962.03	0.49	0.00	2962	2962.00	0.20	0.00

Table 6: Computational result for new problem set with unknown optimal solution.

Size	Instance	BKS	$\mathrm{T}^{2} \mathrm{~S}^{*}$			$\mathrm{T}^{2} \mathrm{~S}^{*}+\mathrm{PR}$			SA ${ }_{\text {RS }}$				IG			
			Best objective	T (s)	Gap	Best objective	T (s)	Gap	Best objective	Average objective	T (s)	Gap	Best objective	Average objective	T (s)	Gap
$40 * 10$	1	1458	1467	1.20	0.62	1460	1.11	0.14	1458	1464.13	1.79	0.00	1458	1458.13	1.33	0.00
	2	1375	1381	1.01	0.44	1375	1.32	0.00	1375	1376.87	1.45	0.00	1375	1375.00	0.56	0.00
	3	2119	2119	0.84	0.00	2119	1.17	0.00	2119	2128.07	1.98	0.00	2119	2119.00	0.56	0.00
	4	1591	1600	1.18	0.57	1597	1.78	0.38	1591	1597.23	1.52	0.00	1591	1592.37	0.36	0.00
	5	1847	1849	1.11	0.11	1847	1.45	0.00	1847	1848.53	1.68	0.00	1847	1847.13	1.04	0.00
	6	2080	2080	0.86	0.00	2080	1.37	0.00	2080	2080.00	0.21	0.00	2080	2080.00	0.11	0.00
	7	1841	1845	1.25	0.22	1841	1.56	0.00	1841	1841.80	1.36	0.00	1841	1841.00	0.65	0.00
	8	2025	2026	1.18	0.05	2026	1.70	0.05	2025	2025.87	0.57	0.00	2025	2025.63	0.49	0.00
	9	1880	1888	1.06	0.43	1880	1.48	0.00	1880	1880.47	0.78	0.00	1880	1880.00	0.25	0.00
	10	1883	1905	0.71	1.17	1892	1.59	0.48	1884	1889.27	0.99	0.05	1883	1883.10	0.26	0.00
$55 * 05$	1	4689	4693	1.65	0.09	4689	2.82	0.00	4689	4689.13	1.02	0.00	4689	4689.07	1.21	0.00
	2	5467	5483	1.37	0.29	5467	2.81	0.00	5467	5467.13	0.98	0.00	5467	5472.53	2.01	0.00
	3	5499	5499	1.92	0.00	5499	2.67	0.00	5499	5499.00	0.37	0.00	5499	5499.00	0.23	0.00
	4	4165	4189	1.76	0.58	4179	3.65	0.34	4165	4170.37	1.32	0.00	4165	4171.80	1.79	0.00
	5	5478	5484	1.39	0.11	5478	2.73	0.00	5478	5478.00	0.67	0.00	5478	5478.07	0.80	0.00
	6	5595	5599	1.45	0.07	5595	2.56	0.00	5595	5595.27	0.90	0.00	5595	5595.00	0.22	0.00
	7	4870	4902	1.90	0.66	4882	3.82	0.25	4870	4878.47	1.34	0.00	4870	4877.57	1.32	0.00
	8	3552	3565	1.54	0.37	3552	2.79	0.00	3552	3552.50	1.25	0.00	3552	3562.40	2.40	0.00
	9	4273	4277	1.67	0.09	4275	2.75	0.05	4273	4276.20	2.46	0.00	4273	4273.47	1.41	0.00
	10	5739	5739	1.85	0.00	5739	2.65	0.00	5739	5739.00	0.40	0.00	5739	5739.00	0.22	0.00
$55 * 07$	1	2846	2846	3.60	0.00	2846	4.78	0.00	2846	2853.73	2.56	0.00	2846	2846.97	2.09	0.00
	2	2883	2887	3.03	0.14	2883	4.94	0.00	2883	2888.63	2.70	0.00	2883	2883.13	1.63	0.00
	3	3825	3840	4.31	0.39	3833	5.57	0.21	3831	3837.07	2.57	0.16	3825	3829.70	1.33	0.00
	4	2953	2977	2.51	0.81	2971	4.31	0.61	2953	2966.73	1.64	0.07	2951	2955.50	0.70	0.00
	5	3797	3803	3.75	0.16	3801	3.56	0.11	3797	3799.73	1.49	0.00	3797	3797.40	0.44	0.00
	6	3783	3783	2.59	0.00	3783	3.70	0.00	3783	3783.00	0.68	0.00	3783	3783.00	0.72	0.00
	7	3774	3774	2.43	0.00	3774	3.84	0.00	3774	3774.00	1.10	0.00	3774	3774.00	0.63	0.00
	8	3862	3864	2.09	0.05	3863	3.95	0.03	3862	3864.17	2.18	0.00	3862	3862.93	1.85	0.00
	9	3591	3597	3.03	0.17	3591	5.26	0.00	3591	3592.93	2.39	0.00	3591	3591.93	2.27	0.00
	10	3623	3658	2.61	0.97	3635	4.73	0.33	3630	3638.07	2.33	0.19	3623	3633.60	1.42	0.00
$55 * 10$	1	2742	2745	8.09	0.11	2745	7.31	0.11	2744	2747.70	2.50	0.07	2742	2744.90	1.70	0.00
	2	2527	2549	8.23	0.87	2534	6.10	0.28	2527	2535.20	1.98	0.00	2527	2528.90	1.06	0.00
	3	2544	2545	6.20	0.04	2545	6.53	0.04	2544	2549.57	2.38	0.00	2544	2552.17	2.36	0.00
	4	3315	3315	7.00	0.00	3315	5.59	0.00	3315	3316.13	1.83	0.00	3315	3321.23	2.63	0.00
	5	3109	3147	7.66	1.22	3123	6.12	0.45	3111	3120.10	1.57	0.06	3109	3109.20	0.24	0.00
	6	2283	2283	6.48	0.00	2283	6.54	0.00	2283	2283.07	0.84	0.00	2283	2283.00	0.38	0.00
	7	2144	2146	5.04	0.09	2146	9.17	0.09	2144	2150.67	2.70	0.00	2144	2144.00	0.83	0.00
	8	2720	2743	4.98	0.85	2726	5.18	0.22	2720	2725.13	1.38	0.00	2720	2720.03	0.73	0.00
	9	2149	2162	6.50	0.60	2162	6.50	0.60	2152	2158.53	1.35	0.14	2149	2154.13	0.42	0.00
	10	2814	2815	5.45	0.04	2815	6.05	0.04	2814	2814.57	1.08	0.00	2814	2820.07	1.86	0.00

Table 6: Continued.

Size	Instance	BKS	$\mathrm{T}^{2} \mathrm{~S}^{*}$			$\mathrm{T}^{2} \mathrm{~S}^{*}+\mathrm{PR}$			SARS				IG			
			Best objective	T (s)	Gap	Best objective	T (s)	Gap	Best objective	Average objective	T (s)	Gap	Best objective	Average objective	T (s)	Gap
$60 * 05$	1	5753	5761	1.99	0.14	5753	3.12	0.00	5753	5753.70	1.57	0.00	5753	5753.00	0.96	0.00
	2	6884	6884	2.67	0.00	6884	3.20	0.00	6884	6884.00	0.81	0.00	6884	6884.00	0.42	0.00
	3	6780	6782	2.17	0.03	6780	4.25	0.00	6780	6780.00	0.82	0.00	6780	6780.00	0.74	0.00
	4	5092	5105	2.30	0.26	5105	2.30	0.26	5092	5101.87	1.75	0.00	5092	5100.57	2.08	0.00
	5	6715	6715	2.47	0.00	6715	3.18	0.00	6715	6715.00	0.60	0.00	6715	6715.00	0.66	0.00
	6	6616	6618	2.45	0.03	6616	3.53	0.00	6616	6616.33	1.36	0.00	6616	6616.00	0.50	0.00
	7	6011	6011	2.66	0.00	6011	4.75	0.00	6011	6011.00	0.60	0.00	6011	6014.53	1.73	0.00
	8	4385	4406	2.64	0.48	4385	3.77	0.00	4385	4385.00	0.54	0.00	4385	4396.90	2.36	0.00
	9	5235	5235	2.17	0.00	5235	3.99	0.00	5235	5238.20	2.84	0.00	5235	5235.73	1.93	0.00
	10	7255	7281	2.22	0.36	7281	3.62	0.36	7255	7255.00	0.12	0.00	7255	7255.00	0.06	0.00
$60 * 07$	1	3707	3724	4.40	0.46	3715	9.26	0.22	3709	3714.73	2.12	0.05	3707	3707.77	0.74	0.00
	2	4147	4191	6.39	1.06	4172	6.70	0.60	4150	4166.30	1.64	0.07	4147	4151.87	0.94	0.00
	3	4273	4290	6.78	0.40	4281	5.90	0.19	4275	4282.30	2.14	0.05	4273	4274.90	1.56	0.00
	4	3910	3916	5.32	0.15	3916	7.15	0.15	3911	3914.00	1.68	0.03	3910	3911.67	0.73	0.00
	5	4251	4264	3.99	0.31	4261	6.23	0.24	4251	4259.67	1.86	0.00	4251	4261.93	2.20	0.00
	6	5727	5731	6.56	0.07	5729	4.39	0.03	5727	5729.07	1.87	0.00	5727	5727.57	0.78	0.00
	7	3719	3749	6.61	0.81	3743	8.28	0.65	3721	3739.57	1.71	0.05	3719	3726.47	0.42	0.00
	8	4582	4600	6.96	0.39	4586	6.96	0.09	4582	4588.17	2.34	0.00	4582	4584.97	1.49	0.00
	9	3979	4011	5.39	0.80	4004	5.39	0.63	3985	3995.47	1.04	0.15	3979	3985.07	0.47	0.00
	10	4107	4125	5.66	0.44	4115	7.37	0.19	4107	4116.83	2.60	0.00	4107	4109.67	1.20	0.00

the gaps relative to the optimal solutions for $\mathrm{T}^{2} \mathrm{~S}^{*}$, respectively. The gap is calculated as $\left(\mathrm{Sol}_{h}-\mathrm{Sol}_{\mathrm{GSPP}}\right) / \mathrm{Sol}_{\mathrm{GSPP}} \times$ 100%, where Sol_{h} is the solution obtained by algorithm h and $\mathrm{Sol}_{\text {GSPP }}$ is the optimal solution obtained by GPSS. Columns 8-10 listed similar information (best solutions obtained in 30 trails, the required time, and the gaps relative to the optimal solution) for $\mathrm{T}^{2} \mathrm{~S}^{*}+\mathrm{PR}$. Columns 11 to 14 show the best solutions, the average solutions, the relative gaps between best solutions to the optimal solutions, the time required to obtain the optimal solutions, and the maximal computation time for $\mathrm{SA}_{\mathrm{RS}}$ in 30 trials. Similar information for the proposed IG algorithm is listed in Columns 15 to 18. The table shows that 20,27,30, and 30 out of 30 optimal solutions are obtained by $\mathrm{T}^{2} \mathrm{~S}^{*}, \mathrm{~T}^{2} \mathrm{~S}^{*}+\mathrm{PR}, \mathrm{SA}_{\mathrm{RS}}$, and IG, respectively. The $S A_{R S}$ and the proposed IG algorithm perform best for new problem sets with known optimal solutions.

Table 6 lists similar information to Table 5, except that the optimal solution is unknown and replaced by the BKS, which exhibits the best solution among the $\mathrm{T}^{2} \mathrm{~S}^{*}, \mathrm{~T}^{2} \mathrm{~S}^{*}+\mathrm{PR}, \mathrm{SA}_{\mathrm{RS}}$, and IG approaches. For 60 problems, all solutions obtained by the proposed IG algorithm are equal to BKS , while the 13 , 28 , and 47 solutions obtained by $\mathrm{T}^{2} \mathrm{~S}^{*}, \mathrm{~T}^{2} \mathrm{~S}^{*}+\mathrm{PR}$, and $\mathrm{SA}_{\mathrm{RS}}$ heuristic are equal to BKS.

The running time of the IG algorithm depends on various factors, including CPU, operating system, compiler, computer program, and the precision used during execution. Therefore, the relative efficiency of the algorithms is hard to determine. Tables $3-6$ show the time required for GSPP, PTA/LP, CS, $T^{2} S^{*}, T^{2} S^{*}+P R, S A_{R S}$, and IG. The GSPP formulation was implemented by generating all columns a priori using a Java program and solving the resulting integer program using CPLEX 11 (32-bit version) on a PC with an Intel Xeon $5430(2.66 \mathrm{GHz})$ processor. $\mathrm{T}^{2} \mathrm{~S}$ was implemented in ANSI C, and computational experiments were performed on a Sun workstation (900 MHz). Both the PTA/LP and CS were implemented using C++ and run on a PC with an AMD Athlon 643500 with a 2.2 GHz processor and 1 GB of RAM. $T^{2} S^{*}$ and $T^{2} S^{*}+P R$ were coded in Ansi C and the experiments were performed on a PC with a T4300 processor at 2.10 GHz . The computational time and results for GSPP, PTA/LP, CS, $\mathrm{T}^{2} \mathrm{~S}^{*}$, and $\mathrm{T}^{2} \mathrm{~S}^{*}+\mathrm{PR}$ are cited from their original papers, while the $S A_{R S}$ is recalculated by setting the maximal computational time to be the same as that of the proposed IG algorithm. As shown in Tables 3-6, the computational time is within the acceptable range for the proposed IG algorithm.

To verify the effectiveness of the proposed IG algorithm, the proposed algorithm is compared with PTA/LP, $\mathrm{CS}, \mathrm{SA}_{\mathrm{RS}}$, $\mathrm{T}^{2} \mathrm{~S}^{*}, \mathrm{~T}^{2} \mathrm{~S}^{*}+\mathrm{PR}$, and IG by conducting paired t-tests on the RER (relative error rate). The RER is calculated as (TST ${ }^{h}$ $\left.\mathrm{BKS}^{*}\right) / \mathrm{BKS}^{*} \times 100$, where TST^{h} denotes the total service time from algorithm h. The BKS* is obtained from all the compared algorithms, including those of Cordeau et al.[4], Mauri et al. [22], Buhrkal et al. [11], de Oliveira et al. [26], Lin and Ting [28], and the proposed IG approach.

Table 7: Paired t-tests on the average RER for I2 problem set.

IG vs.	$\mathrm{SA}_{\mathrm{RS}}$
Difference	0.0000
Degree of freedom	49
t-value	0.0000
One-tailed significance	0.5000

Table 8: Paired t-tests on the average RER for I3 problem set.

IG vs.	$\mathrm{PTA} / \mathrm{LP}$	CS	$\mathrm{SA}_{\mathrm{RS}}$
Difference	2.5212	0.7791	0.0000
Degree of freedom	29	29	29
t-value	13.2444	6.5597	0.0000
One-tailed significance	<0.0001	<0.0001	0.5000

Table 9: Paired t-tests on the average RER for new problem set.

IG vs.	$\mathrm{T}^{2} \mathrm{~S}^{*}$	$\mathrm{~T}^{2} \mathrm{~S}^{*}+\mathrm{PR}$	$\mathrm{SA}_{\mathrm{RS}}$
Difference	0.2403	0.0984	0.0128
Degree of freedom	89	89	89
t-value	6.6505	5.3869	3.3017
One-tailed significance	<0.0001	<0.0001	0.0007

At a confidence level of 95%, Tables 7 and 8 show that the proposed IG algorithm outperforms the PTA/LP in terms of the best objective value obtained for discrete DBAP (PTA/LP for the I3 set). However, IG is not statistically better than $\mathrm{SA}_{\mathrm{RS}}$ and CS on the best objective value obtained, probably because these state-of-the-art algorithms are equally able to obtain the best solutions as IG. For the new data set, the proposed IG algorithm outperforms the $\mathrm{T}^{2} \mathrm{~S}^{*}, \mathrm{~T}^{2} \mathrm{~S}^{*}+\mathrm{PR}$, and $\mathrm{SA}_{\mathrm{RS}}$ approaches, as shown in Table 9. This outperformance demonstrates the superiority of the proposed IG algorithm.

5. Conclusion

This paper studies the berth allocation problem with dynamic arrival time. Because the berth allocation problem is NPhard, exact solution approaches cannot optimally solve realistic large-scale problems while maintaining acceptable computational complexity. An IG algorithm is proposed as an alternative method to the problem. The proposed IG algorithm is tested using three benchmark problem sets and compared with the optimal solutions (or best known solutions) from the literature. Computational results indicate that the proposed IG algorithm is effective. The proposed IG algorithm obtains all the optimal solutions of the discrete DBAP instances for the first and the second problem sets, as well as exhibiting best-known solutions for 35 out of 90 test instances in the third problem set. Future research can further examine the integration of the berth allocation and quay crane assignment problems.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors are grateful to the the Ministry of Science and Technology, Taiwan and the Chang Gung Memorial Hospital for financially supporting this research's Grants MOST103-2410-H-182-006 and CARPD3B0012, respectively.

References

[1] UNCTAD, "Review of maritime transportation," in Proceedings of the United Nations Conference on Trade and Development, 2012.
[2] S. Theofanis, M. Boile, and M. M. Golias, "Container terminal berth planning: critical review of research approaches and practical challenges," Transportation Research Record: Journal of the Transportation Research Board, vol. 2100, pp. 22-28, 2009.
[3] C. Bierwirth and F. Meisel, "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, vol. 202, no. 3, pp. 615-627, 2010.
[4] J.-F. Cordeau, G. Laporte, P. Legato, and L. Moccia, "Models and tabu search heuristics for the berth-allocation problem," Transportation Science, vol. 39, no. 4, pp. 526-538, 2005.
[5] R. Ruiz and T. Stützle, "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, vol. 177, no. 3, pp. 2033-2049, 2007.
[6] S.-W. Lin, Z.-J. Lee, K.-C. Ying, and C.-C. Lu, "Minimization of maximum lateness on parallel machines with sequencedependent setup times and job release dates," Computers \& Operations Research, vol. 38, no. 5, pp. 809-815, 2011.
[7] S.-W. Lin, C.-C. Lu, and K.-C. Ying, "Minimization of total tardiness on unrelated parallel machines with sequence- and machine-dependent setup times under due date constraints," International Journal of Advanced Manufacturing Technology, vol. 53, no. 1-4, pp. 353-361, 2011.
[8] S. Bouamama, C. Blum, and A. Boukerram, "A populationbased iterated greedy algorithm for the minimum weight vertex cover problem," Applied Soft Computing Journal, vol. 12, no. 6, pp. 1632-1639, 2012.
[9] A. Imai, E. Nishimura, and S. Papadimitriou, "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, vol. 35, no. 4, pp. 401-417, 2001.
[10] C. G. Christensen and C. T. Holst, Berth allocation in container terminals [M.S. thesis], Department of Informatics and Mathematical Modelling, Technical University of Denmark, 2008 (Danish).
[11] K. Buhrkal, S. Zuglian, S. Ropke, J. Larsen, and R. Lusby, "Models for the discrete berth allocation problem: a computational comparison," Transportation Research E: Logistics and Transportation Review, vol. 47, no. 4, pp. 461-473, 2011.
[12] I. Vacca, M. Salani, and M. Bierlaire, "An exact algorithm for the integrated planning of berth allocation and quay crane assignment," Transportation Science, vol. 47, no. 2, pp. 148-161, 2013.
[13] K. K. Lai and K. Shih, "A study of container berth allocation," Journal of Advanced Transportation, vol. 26, no. 1, pp. 45-60, 1992.
[14] G. G. Brown, S. Lawphongpanich, and K. P. Thurman, "Optimizing ship berthing," Naval Research Logistics, vol. 41, no. 1, pp. 1-15, 1994.
[15] G. G. Brown, K. J. Cormican, S. Lawphongpanich, and D. B. Widdis, "Optimizing submarine berthing with a persistence incentive," Naval Research Logistics, vol. 44, no. 4, pp. 301-318, 1997.
[16] A. Imai, K. Nagaiwa, and C. W. Tat, "Efficient planning of berth allocation for container terminals in Asia," Journal of Advanced Transportation, vol. 31, no. 1, pp. 75-94, 1997.
[17] E. Nishimura, A. Imai, and S. Papadimitriou, "Berth allocation planning in the public berth system by genetic algorithms," European Journal of Operational Research, vol. 131, no. 2, pp. 282-292, 2001.
[18] A. Imai, E. Nishimura, and S. Papadimitriou, "Berth allocation with service priority," Transportation Research B: Methodological, vol. 37, no. 5, pp. 437-457, 2003.
[19] M. F. Monaco and M. Sammarra, "The berth allocation problem: a strong formulation solved by a Lagrangean approach," Transportation Science, vol. 41, no. 2, pp. 265-280, 2007.
[20] A. Imai, E. Nishimura, M. Hattori, and S. Papadimitriou, "Berth allocation at indented berths for mega-containerships," European Journal of Operational Research, vol. 179, no. 2, pp. 579-593, 2007.
[21] A. Imai, J.-T. Zhang, E. Nishimura, and S. Papadimitriou, "The berth allocation problem with service time and delay time objectives," Maritime Economics and Logistics, vol. 9, no. 4, pp. 269-290, 2007.
[22] G. R. Mauri, A. C. M. Oliveira, and L. A. N. Lorena, "A hybrid column generation approach for the berth allocation problem," in Evolutionary Computation in Combinatorial Optimization, vol. 4972 of Lecture Notes in Computer Science, pp. 110-122, Springer, Berlin, Germany, 2008.
[23] P. Hansen, C. Oğuz, and N. Mladenović, "Variable neighborhood search for minimum cost berth allocation," European Journal of Operational Research, vol. 191, no. 3, pp. 636-649, 2008.
[24] A. Imai, E. Nishimura, and S. Papadimitriou, "Berthing ships at a multi-user container terminal with a limited quay capacity," Transportation Research E, vol. 44, no. 1, pp. 136-151, 2008.
[25] V. H. Barros, T. S. Costa, A. C. M. Oliveira, and L. A. N. Lorena, "Model and heuristic for berth allocation in tidal bulk ports with stock level constraints," Computers \& Industrial Engineering, vol. 60, no. 4, pp. 606-613, 2011.
[26] R. M. de Oliveira, G. R. Mauri, and L. A. N. Lorena, "Clustering search for the berth allocation problem," Expert Systems with Applications, vol. 39, no. 5, pp. 5499-5505, 2012.
[27] E. Lalla-Ruiz, B. Melián-Batista, and J. Marcos Moreno-Vega, "Artificial intelligence hybrid heuristic based on tabu search for the dynamic berth allocation problem," Engineering Applications of Artificial Intelligence, vol. 25, no. 6, pp. 1132-1141, 2012.
[28] S.-W. Lin and C.-J. Ting, "Solving the dynamic berth allocation problems by simulated annealing," Engineering Optimization, vol. 43, no. 3, pp. 308-327, 2014.

Advances in Operations Research $-$

The Scientific World Journal

Advances in
Decision Sciences
= -

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Mathematical Problems in Engineering

Journal of Function Spaces
$\underline{=}$

International Journal of Differential Equations 5

