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Let T be an integer with T ≥ 5 and let T2 = {2, 3, . . . , T}. We consider the existence of positive
solutions of the nonlinear boundary value problems of fourth-order difference equations Δ4u(t −
2) − ra(t)f(u(t)) = 0, t ∈ T2, u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0, where r is a constant,
a : T2 → (0,∞), and f : [0,∞) → [0,∞) is continuous. Our approaches are based on the Krein-
Rutman theorem and the global bifurcation theorem.

1. Introduction

An elastic beam in an equilibrium state whose both ends are simply supported can be
described by the fourth-order boundary value problem of the form

y′′′′ = f
(
x, y, y′′), x ∈ (0, 1),

y(0) = y(1) = y′′(0) = y′′(1) = 0;
(1.1)

see Gupta [1, 2]. The existence of solutions of (1.3) and (1.4) has been extensively studied;
see Gupta [1, 2], Aftabizadeh [3], Yang [4], Del Pino and Manásevich [5], Galewski [6], Yao
[7], and the references therein. The existence and multiplicity of positive solutions of the
boundary value problem of ordinary differential equations

y′′′′(x) − λf
(
x, y(x)

)
= 0, x ∈ (0, 1),

y(0) = y(1) = y′′(0) = y′′(1) = 0
(1.2)

have also been studied by many authors; see Ma and Wang [8], Ma [9], Bai and Wang [10],
Chai [11], Yao and Bai [12] for some references along this line.
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Recently, the existence of solutions of boundary value problems (BVPs) of difference
equations has received much attention; see Agarwal andWong [13], Henderson [14], He and
Yu [15], Zhang et al. [16], and the references therein. However, relatively little is known about
the existence of positive solutions of fourth-order discrete boundary value problems. To our
best knowledge, only He and Yu [15] and Zhang et al. [16] dealt with that. In [15], He and
Yu studied the existence of positive solutions of the nonlinear fourth-order discrete boundary
value problem

Δ4u(t − 2) − ra(t)f(u(t)) = 0, t ∈ T2, (1.3)

u(0) = u(T + 2) = Δ2u(0) = Δ2u(T) = 0 (1.4)

(where T ≥ 3 is an integer, T2 := {2, . . . , T}, r is a parameter, a : T2 → [0,∞), f ∈
C([0,∞), [0,∞)) satisfies some growth conditions which are not optimal!). The likely reason
is that the spectrum structure of the linear eigenvalue problem

Δ4u(t − 2) = λa(t)u(t), t ∈ T2, (1.5)

u(0) = u(T + 2) = Δ2u(0) = Δ2u(T) = 0 (1.6)

is not clear. It has been pointed out in [15, 16] that (1.3) and (1.4) are equivalent to the integral
equation of the form

u(t) = r
T+1∑

s=1

G(t, s)
T∑

s=2

G1
(
s, j

)
a
(
j
)
f
(
u
(
j
))

=: A0u(t), j ∈ T2, (1.7)

where

G(t, s) =
1

T + 2

⎧
⎨

⎩

s(T + 2 − t), 1 ≤ s ≤ t ≤ T + 2,

t(T + 2 − s), 0 ≤ t ≤ s ≤ T + 1,

G1(t, i) =
1
T

⎧
⎨

⎩

(T + 1 − t)(i − 1), 2 ≤ i ≤ t ≤ T + 1,

(T + 1 − i)(t − 1), 1 ≤ t ≤ i ≤ T,

(1.8)

and other results on the existence of positive solutions of (1.3) and (1.4) can be found in
the two papers. Notice that in the integral (1.7), two distinct Green’s functions, G and G1,
are used. This makes the construction of cones and the verification of strong positivity of A0

more complex and difficult. Therefore, we think that the boundary condition (1.4) is not very
suitable for the study of the positive solutions of fourth order difference equations.

It is the purpose of this paper to assume the fourth-order difference equation (1.3)
subject to a new boundary condition of the form

u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0. (1.9)
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This will make our approaches muchmore simple and natural, and only one Green’s function
is needed. However, the classical definitions of positive solutions are useless for (1.3) and
(1.9) any more. We have to adopt the following new definition of positive solutions.

Definition 1.1. Denote

T1 := {1, 2, . . . , T + 1}, T0 := {0, 1, . . . , T + 1, T + 2}. (1.10)

A function y : T0 → R
+ is called a positive solution of (1.3) and (1.9) if y satisfies (1.3), (1.9),

and y(t) ≥ 0 on T2 and y(t)/≡ 0 on T2.

Remark 1.2. Notice that the fact y : T0 → R
+ is a positive solution of (1.3) and (1.9) does not

mean that y(t) ≥ 0 on T0. In fact, y satisfies

(1) y(t) ≥ 0 for t ∈ T2,

(2) y(1) = y(T + 1) = 0,

(3) y(0) = −y(2), y(T + 2) = −y(T).

Remark 1.3. In [17], Eleo and Henderson defined a kind of positive solutions which actually
are sign-change solutions. In Definition 1.1, a positive solution may allow to take nonpositive
value at t = 0 and t = T + 2. We think it is useful in this case that T is large enough.

In the rest of the paper, we will use global bifurcation technique; see Dancer [18,
Theorem 2] or Ma and Xu [19, Lemma 2.1], to deal with (1.3) and (1.9). To do this, we have
to study the spectrum properties of (1.5) and (1.9). This will be done in Section 2. Finally, in
Section 3, we will state and prove our main result.

2. Eigenvalues

Recall

T2 := {2, 3, . . . , T}, T1 := {1, 2, . . . , T + 1}, T0 := {0, 1, . . . , T + 1, T + 2}. (2.1)

Let

E := {u | u : T0 −→ R}. (2.2)

Then, dimE = T + 3, and E is a Banach space with the norm

‖u‖E = max
{∣∣u

(
j
)∣∣ | j ∈ T0

}
. (2.3)

Let

Y := {u | u : T2 −→ R}. (2.4)
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Then Y is a Banach space with the norm

‖u‖Y = max
{∣∣u

(
j
)∣∣ | j ∈ T2

}
. (2.5)

Let

E0 :=
{
u ∈ E | u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0

}
. (2.6)

Then the operator χ : E0 → Y

χ(−u(2), 0, u(2), u(3), . . . , u(T), 0,−u(T)) := (u(2), u(3), . . . , u(T)), (2.7)

is a homomorphism.
In this paper, we assume that
(H1) a : T2 → (0,∞).

Definition 2.1. We say that λ is an eigenvalue of linear problem

Δ4u(t − 2) = λa(t)u(t), t ∈ T2,

u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0
(2.8)

if (2.8) has a nontrivial solution.

In the rest of this section, we will prove the existence of the first eigenvalue of (2.8).

Theorem 2.2. Equation (2.8) has an algebraically simple eigenvalue λ1, with an eigenfunction ϕ
satisfying

(i) ϕ(t) > 0 on T2;

(ii) ϕ(0) = −ϕ(2); ϕ(T + 2) = −ϕ(T).
Moreover, there is no other eigenvalue whose eigenfunction is nonnegative on T2.

To prove Theorem 2.2, we need several preliminary results.

Lemma 2.3. For each h = (h(2), . . . , h(T)), the linear problem

Δ4u(t − 2) = h(t), t ∈ T2,

u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0
(2.9)

has a unique solution

u(t) =
T∑

s=2

H(t, s)
T∑

j=2

H
(
s, j

)
h
(
j
)
, t ∈ T1, (2.10)
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where

H(t, s) =
1
T

⎧
⎨

⎩

(t − 1)(T + 1 − s), 1 ≤ t ≤ s ≤ T,

(s − 1)(T + 1 − t), 2 ≤ s ≤ t ≤ T + 1.
(2.11)

Proof. Let Δ2u(t − 2) = w(t − 1) for t ∈ T2. Then (2.9) is equivalent to the system

Δ2w(t − 1) = h(t), t ∈ T2,

Δ2u(t − 1) = w(t), t ∈ T2,

w(1) = w(T + 1) = 0,

u(1) = u(T + 1) = 0.

(2.12)

From Kelly and Peterson [20, Theorem 6.8 and Example 6.12], it follows that

w(t) = −
T∑

s=2

H(t, s)h(s), t ∈ T1

u(t) = −
T∑

s=2

H(t, s)w(s), t ∈ T1.

(2.13)

Therefore, (2.10) holds.

Denote

ρ := 4sin2 π

2T
, e(t) := sin

π(t − 1)
T

, t ∈ T1. (2.14)

Then

Δ2e(t − 1) + ρe(t) = 0, t ∈ T2,

e(1) = e(T + 1) = 0.
(2.15)

Notice that

{(
t − 1
T

, e(t)
)

| t ∈ T1

}
⊂ {(x, sinπx) | x ∈ [0, 1]}. (2.16)

From the assumption T ≥ 5, we have

ρ ≤ 4sin2 π

2 · 5 < 4sin2π

6
= 1. (2.17)
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Lemma 2.4. Let v ∈ E satisfy v(1) = v(T + 1) = Δ2v(0) = Δ2v(T) = 0 and

−γe(t) ≤ −Δ2v(t − 1) ≤ γe(t), t ∈ T2, (2.18)

where γ ∈ (0,∞). Then

−γ
ρ
e(t) ≤ v(t) ≤ γ

ρ
e(t), t ∈ T1. (2.19)

Proof. From (2.18), we get

−γ
T∑

s=2

H(t, s)e(s) ≤ −
T∑

s=2

H(t, s)Δ2v(t − 1) ≤ γ
T∑

s=2

H(t, s)e(s), t ∈ T2. (2.20)

This is

−γ
ρ
e(t) ≤ v(t) ≤ γ

ρ
e(t), t ∈ T2. (2.21)

Combining this with the boundary conditions v(1) = v(T + 1) = Δ2v(0) = Δ2v(T) = 0, it
concludes that

−γ
ρ
e(t) ≤ v(t) ≤ γ

ρ
e(t), t ∈ T1. (2.22)

Let

X :=
{
u ∈ E0 | −γe(t) ≤ −Δ2u(t − 1) ≤ γe(t), t ∈ T1

}
(2.23)

for some γ ∈ (0,∞). Since γ < γ/ρ, from Lemma 2.4 and (2.17), we may define

‖u‖X := inf
{
γ

ρ
| −γe(t) ≤ −Δ2u(t − 1) ≤ γe(t), t ∈ T1

}
. (2.24)

For any x, y ∈ X, we have from the definition of ‖ · ‖X that

−ρe‖x‖X ≤ −Δ2x(t − 1) ≤ ρe‖x‖X, t ∈ T1, −ρe∥∥y∥∥X ≤ −Δ2y(t − 1) ≤ ρe
∥∥y

∥∥
X, t ∈ T1.

(2.25)

It follows that

−ρe(‖x‖X +
∥∥y

∥∥
X

) ≤ −Δ2(x(t − 1) + y(t − 1)
) ≤ ρe

(‖x‖X +
∥∥y

∥∥
X

)
, t ∈ T1. (2.26)
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Thus, x + y ∈ X, and moreover,

∥
∥x + y

∥
∥
X ≤ ‖x‖X +

∥
∥y

∥
∥
X. (2.27)

Therefore, ‖ · ‖X is a norm of X, and (X, ‖ · ‖X) is a normed linear space. Since dimX = T − 1,
(X, ‖ · ‖X) is actually a Banach space. Let

P :=
{
u ∈ X | Δ2u(t − 1) ≤ 0 for t ∈ T2; u(t) ≥ 0 for t ∈ T1

}
. (2.28)

Then the cone P is normal and has nonempty interior intP .

Lemma 2.5. For u ∈ X,

‖u‖∞,1 ≤ (T + 1)2
∥∥∥Δ2u

∥∥∥
∞,2

,
∥∥∥Δ2u

∥∥∥
∞,2

≤ ρ‖u‖X, (2.29)

where

‖u‖∞,1 := max
{∣∣u

(
j
)∣∣ | u ∈ T1

}
,

∥∥∥Δ2u
∥∥∥
∞,2

:= max
{∣∣∣Δ2u

(
j − 1

)∣∣∣ | j ∈ T2

}
. (2.30)

Proof. (i) From the relation

u(t) =
T∑

s=2

H(t, s)
(
−Δ2u(s − 1)

)
, t ∈ T1, (2.31)

it follows that

‖u‖∞,1 ≤ (T + 1)2
∥∥∥Δ2u

∥∥∥
∞,2

. (2.32)

(ii) By (2.14) and the fact that e(t) > 0 on T2, it follows that there exists γ > 0, such that

∣∣∣−Δ2u(t − 1)
∣∣∣ ≤ γe(t), t ∈ T2. (2.33)

Let

γ0 := inf
{
γ |

∣∣∣−Δ2u(t − 1)
∣∣∣ ≤ γe(t), t ∈ T2

}
. (2.34)

Then

∣∣∣−Δ2u(t − 1)
∣∣∣ ≤ γ0e(t), t ∈ T2. (2.35)

This implies ‖Δ2u‖∞,2 ≤ ρ · (γ0/ρ), and accordingly ‖Δ2u‖∞,2 ≤ ρ‖u‖X .
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Proof of Theorem 2.2. For u ∈ E, define a linear operator K : X → Y and J : Y → X by

Ku(t) :=
T∑

s=2

H(t, s)
T∑

j=2

H
(
s, j

)
a
(
j
)
u
(
j
)
, t ∈ T1, (2.36)

J(u(1), . . . , u(T + 1)) = (−u(2), u(1), . . . , u(T + 1),−u(T)). (2.37)

Then (2.8) can be written as

u = λJ ◦Ku, u ∈ X. (2.38)

Since X is finite dimensional, we have that K : X → Y is compact. Obviously, J ◦K(P) ⊆ P .
Next, we show that J ◦K : P → P is strongly positive.
Since a(t) is positive on T2, there exists a constant k > 0 such that a(t) > k on T2.
For u ∈ P \ {0}, we have that

T∑

j=2

H
(
s, j

)
a
(
j
)
u
(
j
) ≥ k

T∑

j=2

H
(
s, j

)
u
(
j
)
> 0, s ∈ T1. (2.39)

It follows that there exists k1 > 0 such that

T∑

j=2

H
(
s, j

)
a
(
j
)
u
(
j
) ≥ k1e(s). (2.40)

Also, for u ∈ P \ {0}, we have from the fact J ◦Ku ∈ P and Ku/= 0 in T2 that

T∑

j=2

H
(
s, j

)
a
(
j
)
u
(
j
) ≤ max

t∈T2

a(t) ·
T∑

j=2

H
(
s, j

)
u
(
j
) ≤ k2e(s), s ∈ T1, (2.41)

for some constant k2 > 0. By (2.39) and (2.41), we get

k1e(s) ≤
T∑

j=2

H
(
s, j

)
a
(
j
)
u
(
j
) ≤ k2e(s), s ∈ T1. (2.42)

Thus

k1
T∑

s=2

H(t, s)e(s) ≤
T∑

s=2

H(t, s)
T∑

j=2

H
(
s, j

)
a
(
j
)
u
(
j
) ≤ k2

T∑

s=2

H(t, s)e(s), t ∈ T1. (2.43)

Since

T∑

s=2

H(t, s)e(s) =
1
ρ
e(t), t ∈ T1. (2.44)
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Using (2.43) and (2.44), it follows that

k1
ρ
e(t) ≤ (Ku)(t) ≤ k2

ρ
e(t), t ∈ T1. (2.45)

Therefore, J ◦Ku ∈ intP .
Now, by the Krein-Rutman theorem [21, Theorem 7.C; 20, Theorem 19.3], K has an

algebraically simple eigenvalue λ > 0 with an eigenvector ϕ(·) ∈ intP . Moreover, there is no
other eigenvalue with an eigenfunction in P .

3. The Main Result

In this section, we will make the following assumptions:
(H2) f : [0,∞) → [0,∞) is continuous and f(s) > 0 for s > 0;
(H3) f0, f∞ ∈ (0,∞), where

f0 = lim
u→ 0+

f(u)
u

, f∞ = lim
u→+∞

f(u)
u

. (3.1)

Remark 3.1. It is not difficult to see that (H2) and (H3) imply that there exists a constant
a0 ∈ (0,∞) such that

f(u) ≥ a0u, u ∈ [0,∞). (3.2)

Theorem 3.2. Let (H1), (H2), and (H3) hold. Assume that either

λ1
rf0

< 1 <
λ1
rf∞

(3.3)

or

λ1
rf∞

< 1 <
λ1
rf0

. (3.4)

Then (1.3) and (1.9) have at least one positive solution.

Remark 3.3. Recently, Ma and Xu [19] considered the nonlinear fourth-order problem

u(4)(t) = f
(
t, u(t), u′′(t)

)
, t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0
(3.5)

under some conditions involved the generalized eigenvalues of the linear problem

u′′′′ = λ
[
A(t)u − B(t)u′′], 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(3.6)
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Our main result, Theorem 3.2, needs f0, f∞ ∈ (0,∞); see (H3). However, in [19, Theorem 3.1],
some weaker conditions of the form

a0(t)u − b0p − ξ1
(
t, u, p

) ≤ f
(
t, u, p

) ≤ a0(t)u − b0p + ξ2
(
t, u, p

)
(3.7)

are used.

Remark 3.4. The first eigenvalue μ1 of the linear problem

Δ2u(t − 1) + μu(t) = 0, t ∈ {2, . . . , T},
u(1) = u(T + 1) = 0,

(3.8)

is μ1 = 4sin2(π/2T), and the first eigenvalue λ1 of the linear problem

Δ4u(t − 1) + λu(t) = 0, t ∈ {2, . . . , T},

u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0,
(3.9)

is

λ1 = 16sin4 π

2T
. (3.10)

It is easy to check that the function

f(s) :=

⎧
⎪⎨

⎪⎩

2λ1s, s ∈ (0, 1),

λ1s

2
+
3
2
λ1, s ∈ [1,∞).

(3.11)

Then, for each r ∈ (1/2, 2), the condition (3.3) holds.

Remark 3.5. The condition (3.3) or (3.4) is optimal since for any ε > 0, the linear problem

Δ4u(t − 2) − (λ1 − ε)a(t)u(t) = 0, t ∈ T2,

u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0,
(3.12)

has the unique solution u(t) ≡ 0. In fact, λ1 is the least eigenvalue of the linear problem

Δ4u(t − 2) − μa(t)u(t) = 0, t ∈ T2,

u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0.
(3.13)

To prove Theorem 3.2, we define L : D(L) → Y by

Lu(t) := −Δ4u(t − 2), u ∈ D(L), t ∈ T2 (3.14)
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where

D(L) =
{
u ∈ X | u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0

}
. (3.15)

It is easy to check that L−1 : Y → X is compact.
Let ζ, ξ : [0,∞) → R be such that

f(u) = f0u + ζ(u),

f(u) = f∞u + ξ(u).
(3.16)

Obviously, (H3) implies

lim
u→ 0+

ζ(u)
u

= 0, lim
u→+∞

ξ(u)
u

= 0. (3.17)

Let

ξ̃(τ) = max
0≤|s|≤τ

|ξ(s)|. (3.18)

Then ξ̃ is nondecreasing and

lim
τ →∞

ξ̃(τ)
τ

= 0. (3.19)

Let us consider

Lu + λra(t)f0u + λra(t)ζ(u) = 0, λ > 0, (3.20)

as a bifurcation problem for the trivial solution u ≡ 0. It is easy to check that (3.20) can be
converted to the equivalent equation

u(t) = λ

⎡

⎣
T∑

s=2

T∑

j=2

H(t, s)H
(
s, j

)(
ra

(
j
)
f0u

(
j
)
+ ra(s)ζ(u(s))

)
⎤

⎦

:=
(
λL−1[ra(·)f0u(·)

]
(t) + λL−1[ra(·)ζ(u(·))](t)

)
.

(3.21)

From the proof process of Theorem 2.2, we have that for each fixed λ > 0, the operator
K : X → X,

Ku(t) =
T∑

s=2

T∑

j=2

H(t, s)H
(
s, j

)
ra

(
j
)
f0u

(
j
)

(3.22)
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is compact and strongly positive. Define F : [0,∞) ×X → X by

F(λ, u) := λ

⎡

⎣
T∑

s=2

T∑

j=2

H(t, s)H
(
s, j

)
ra

(
j
)
ζ
(
u
(
j
))
⎤

⎦. (3.23)

Then we have from (3.17) and Lemma 2.5 that

‖F(λ, u)‖X = o(‖u‖X), as ‖u‖X −→ 0, (3.24)

locally uniformly in λ. Now, we have from a version of Dancer [18, Theorem 2], see Ma [9,
Lemma 2.1] for details, to conclude that there exists an unbounded connected subset C in the
set

{(λ, u) ∈ (0,∞) × P : u = λKu + F(λ, u), u ∈ intP} ∪
{(

λ1
rf0

, 0
)}

(3.25)

such that (λ1/(rf0), 0) ∈ C.

Proof of Theorem 3.2. It is clear that any solution of (3.20) of the form (1, u) yields a solutions
u of (1.3) and (1.9). We will show that C crosses the hyperplane {1} ×X in R ×X. To do this,
it is enough to show that C joins (λ1/rf0, 0) to (λ1/rf∞,∞). Let (μn, yn) ∈ C satisfy

μn +
∥∥yn

∥∥
X −→ ∞, n −→ ∞. (3.26)

We note that μn > 0 for all n ∈ N, since (0, 0) is the only solution of (3.20) for λ = 0 and
C ∩ ({0} ×X) = ∅.

Case 1 (λ1/rf∞ < 1 < λ1/rf0). In this case, we show that

(
λ1
rf∞

,
λ1
rf0

)
⊆ {λ ∈ R | ∃(λ, u) ∈ C}. (3.27)

We divide the proof into two steps.

Step 1. We show that if there exists a constant number M > 0 such that

μn ⊂ (0,M], (3.28)

then Cν
k
joins (λ1/rf0, 0) to (λ1/rf∞,∞).

From (3.28), we have that ‖y‖X → ∞. We divide the equation

Lyn + μnra(t)f∞yn + μnra(t)ξ
(
yn

)
= 0 (3.29)
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by ‖yn‖X and set yn = yn/‖y‖X . Since yn is bounded in X, choosing a subsequence and
relabelling if necessary, we see that yn → y for some y ∈ X with ‖y‖ = 1. Moreover, from
(3.19) and the fact that ξ̃ is nondecreasing, we have that

lim
n→∞

∣
∣ξ
(
yn(t)

)∣∣
∥
∥y

∥
∥
X

= 0, (3.30)

since

ξ
(
yn(t)

)

∥
∥yn

∥
∥
X

≤ ξ̃
(∣∣yn(t)

∣∣)

∥
∥yn

∥
∥
X

≤
ξ̃
(∥
∥yn

∥
∥
∞,1

)

∥
∥yn

∥
∥
X

≤
ξ̃
(
ρ(T + 1)2

∥
∥yn

∥
∥
X

)

∥
∥yn

∥
∥
X

. (3.31)

Thus,

y(t) :=
T∑

s=2

T∑

j=2

G(t, s)G
(
s, j

)
μra

(
j
)
f∞y

(
j
)
, (3.32)

where μ := limn→∞μn, choosing a subsequence and relabelling if necessary. Thus,

Ly + μra(t)f∞y = 0. (3.33)

By Theorem 2.2, we have

μ =
λ1
rf∞

. (3.34)

Thus, C joins (λ1/rf0, 0) to (λ1/rf∞,∞).

Step 2. We show that there exists a constant M such that μn ∈ (0,M] for all n.
By [9, Lemma 2.1], we only need to show that A has a linear minorant V and there

exists a (μ, y) ∈ (0,∞) × P such that ‖y‖X = 1 and μVy ≥ y.
By Remark 3.1, there exist constants a0 ∈ (0,∞) such that

f(u) ≥ a0u, u ∈ [0,∞). (3.35)

For u ∈ X, let

Vu(t) :=
T∑

s=2

T∑

j=2

G(t, s)G
(
s, j

)
a0u(s). (3.36)
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Then V is a linear minorant of R. Moreover,

V

(
e(t)
ρ

)
=

T∑

s=2

T∑

j=2

G(t, s)G
(
s, j

)
a0

e
(
j
)

ρ

=
1
ρ2

a0

T∑

s=2

G(t, s)e(s)

≥ c

ρ
e(t)

(3.37)

for some constant c > 0, independent of t ∈ T0. So,

c−1V
(
e

ρ

)
≥ e

ρ
. (3.38)

Therefore, it follows [9, Lemma 2.1] that

∣∣ηn
∣∣ ≤ c−1. (3.39)

Case 2 (λ1/rf0 < 1 < λ1/rf∞). In this case, if (ηn, yn) ∈ C is such that

lim
n→∞

(
ηn +

∥∥yn

∥∥
X

)
= ∞,

lim
n→∞

ηn = ∞,
(3.40)

then

(
λ1
rf0

,
λ1
rf∞

)
⊂ {λ ∈ (0,∞) | (λ, u) ∈ C} (3.41)

and, moreover,

({1} ×X) ∩ C/= ∅. (3.42)

Assume that there exists M > 0, such that for all n ∈ N,

ηn ∈ (0,M]. (3.43)

Applying a similar argument to that used in Step 1 of Case 1, after taking a subsequence and
relabelling if necessary, if follows that

(
ηn, yn

) −→
(

λ1
rf∞

,∞
)
, n −→ ∞. (3.44)

Again C joins (λ1/rf0, 0) to (λ1/rf∞,∞) and the result follows.
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