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Uncertainty theory is a branch of axiomatic mathematics dealing with experts’ belief degree. Considering the uncertainty with
experts’ belief degree in the evaluation system and the different roles which different indices play in evaluating the overall goal
with a hierarchical structure, a new comprehensive evaluation method is constructed based on uncertainty theory. First, index
scores and weights of indices are described by uncertain variables and evaluation grades are described by uncertain sets. Second,
weights of indices with respect to the overall goal are introduced. Third, a new uncertainty comprehensive evaluation method is
constructed and proved to be a generalization of the weighted average method. Finally, an application is developed in evaluating
software quality, which shows the effectiveness of the new method.

1. Introduction

Due to human language and technology difficulties, it is diffi-
cult to provide an effect and objective evaluation for a system.
Therefore, many scholars attempt to establish new mathe-
matical methods to make evaluation results consistent with
actual situations. Accordingly, Saaty [1] proposed the analytic
hierarchy process (AHP), a method to address multicriteria
decision analysis with quantitative and qualitative informa-
tion. In AHP, human judgments are represented as exact
numbers. However, some decision-makers may be reluctant
or unable to assign exact numbers to comparison judgments
because some evaluation criteria are subjective and qualita-
tive.Therefore,Wu and Tsai [2] used both AHP and decision-
making trial and evaluation laboratory methods to evaluate
the criteria in autospare parts industry in Taiwan. Kumar
et al. [3] presented a new general procedure to construct the
membership and nonmembership functions of the fuzzy
reliability using time-dependent intuitionistic fuzzy set. By
using the finite Markov chain imbedding approach, Zhao
and Cui [4] presented a unified formula with the product
of matrices for evaluating the system state distribution for

generalized multistate 𝑘-out-of-𝑛: 𝐹 systems. Chen et al.
[5] provided an evaluation method for enterprisers making
investment decisions under hybrid cloud environment using
grey system theory. Lee et al. [6] proposed a systematic
approach to evaluation of new service concepts by integrating
the merit of group analytic hierarchy process in modeling
multicriteria decision-making problems. Geng et al. [7] pre-
sented a new integrated design concept evaluation approach
based on vague sets in order to provide a method for
complicated multicriteria decision-making problem under
uncertain environments. Aiming to evaluate the government
and the monopolist about the consumer’s taste, literature
[8] was devoted to the characterization and quantitative
representation of imprecise and vague uncertainties and
measures of information produced by sources of the consid-
ered type. Kramosil [9] introduced the possibilistic variants
of both the minimax (the worst case) and the Bayesian
optimization principles and applied them in decision-making
under uncertainty processed. Using finite-time control and
backstepping control approaches, Li et al. [10] proposed
a new robust adaptive synchronization scheme to make
the synchronization errors of the systems with parameter
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uncertainties zero in a finite time. Lan et al. [11] presented
a bilevel fuzzy principal-agent model for optimal nonlinear
taxation problems with asymmetric information and so on.

The above methods address imprecise information, such
as human language or experts’ degree of belief using fuzzy
set theory (see Zadeh [12]), vague set theory, and grey system
theory. However, for the evaluation system, the observed
data are often not adequate and we have no choice but to
invite some domain experts to evaluate the belief degree that
an index belongs to an evaluation grade. In this situation,
many surveys show that this imprecise information behaves
like neither fuzziness nor randomness (see Liu [13] and Liu
[14]). And it was showed by Kahneman and Tversky [15] that
human beings usually overweight unlikely events. This fact
makes the personal belief degree have much larger variance
than the frequency.

In this case, Liu [13] proposed uncertainty theory to
deal with belief degree, and Liu [14] refined uncertainty
theory. Nowadays, uncertainty theory has become a branch
of axiomatic mathematics. The first fundamental concept in
uncertainty theory is the uncertainmeasure, used tomeasure
the degree of belief in an event. The second concept is the
uncertain variable, used to represent quantities with impre-
cise information (e.g., the exact value of oil field reserve).
The third concept is uncertainty distribution, which is used
to describe uncertain variables. Uncertainty theory has been
applied to many areas. Liu [16] established a theory and prac-
tice of uncertain programming, Liu [17] applied uncertainty
theory to risk analysis and reliability analysis, Liu [18] studied
hybrid logic and uncertain logic, Liu [19] proposed inference
rule with applications to uncertain control, and Liu [20]
studied uncertain process with applications to inference risk
model. To explore the recent developments in uncertainty
theory, readers may consult Liu [21].

Subsequently, Liu [22] described the weights of indices
and the score values of indices with uncertain variables and
proposed a comprehensive evaluation method based on
uncertainty theory. However, in some certain kinds of assess-
ment domains, we find that different bottom indices play dif-
ferent roles in the evaluation of the overall goal. For example,
suppose that 𝑆

1
and 𝑆
2
are two students whose four features

are shown in Table 1.
Therefore, the feature vectors of 𝑆

1
and 𝑆

2
are 𝑉
1
=

(1, 20, 180, 80) and𝑉
2
= (1, 20, 170, 75). Because 𝑆

1
and 𝑆
2
are

with the same “Gender” and “Age,” we cannot identify them
from the two features. In other words, “Gender” and “Age”
do not take effect at all in the identification. Furthermore,
because the “Body Height” of 𝑆

1
and 𝑆

2
is 180 and 170,

respectively, they can be identified by “Body Height.” Of
course, they can also be identified by “Body Weight.” In a
word, the four features play different roles in the identification
of 𝑆
1
and 𝑆

2
. For this reason, a weight for each bottom

index with respect to the overall goal is introduced to show
the different roles of different bottom indices. And without
loss of generality, when different bottom indices play the
same role in other assessment domains, weights of indices
with respect to the overall goal are equal. Considering these
reasons, a new evaluation method is proposed based on
uncertainty theory.

Table 1: Four features of students 𝑆
1
and 𝑆

2
.

Students Gender
(male = 1, female = 0)

Age
(years)

Body height
(cm)

Body weight
(kg)

𝑆
1 1 20 180 80
𝑆
2 1 20 170 75

The structure of this paper is as follows. Section 2 pro-
vides some relevant concepts about uncertainty theory. Sec-
tion 3 establishes a newuncertainty evaluationmethod based
on uncertain sets and uncertain variables. Section 4 gives an
application of the proposed method in evaluating software
quality, and the conclusions are presented in Section 5.

2. Preliminaries

In this section, we provide some useful definitions of uncer-
tainty theory.

Let Γ be a nonempty set, let L be a 𝜎-algebra on Γ, and
let 𝑅 be a set of real numbers. Each element Λ ∈ L is
called an event.The uncertainmeasureM, defined onL, was
proposed by Liu [13] as follows.

Definition 1 (see Liu [13]). The set function M is called an
uncertain measure if it satisfies the following.

Axiom 1 (normality axiom). ConsiderM{Γ} = 1.

Axiom 2 (duality axiom). Consider M{Λ} +M{Λ𝑐} = 1 for
any event Λ.

Axiom 3 (subadditivity axiom). For every countable sequence
of events {Λ

𝑖
}, we have

M{

∞

⋃

𝑖=1

Λ
𝑖
} ≤

∞

∑

𝑖=1

M {Λ
𝑖
} . (1)

The triplet (Γ,L,M) is called an uncertainty space. Let
(Γ
𝑘
,L
𝑘
,M
𝑘
) be uncertainty spaces for 𝑘 = 1, 2, . . .. Write

Γ = Γ
1
× Γ
2
, . . . , L =L

1
×L
2
× ⋅ ⋅ ⋅ . (2)

Then the product uncertain measure M on the product 𝜎-
algebraL is defined by the following product axiom [23].

Axiom 4 (product axiom). Let (Γ
𝑘
,L
𝑘
,M
𝑘
) be uncertainty

spaces for 𝑘 = 1, 2, . . .. The product uncertain measure M
is an uncertain measure satisfying

M{

∞

∏

𝑘=1

Λ
𝑘
} =

∞

⋀

𝑘=1

M {Λ
𝑘
} , (3)

where Λ
𝑘
are arbitrarily chosen events from L

𝑘
for 𝑘 =

1, 2, . . ., respectively.

Remark 2. Uncertain measure is interpreted as the personal
belief degree (not frequency) of an uncertain event that may
occur. It depends on the personal knowledge concerning
the event. The uncertain measure will change if the state of
knowledge changes.
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Figure 1: An uncertainty distribution.

Definition 3 (see Liu [13]). An uncertain variable is a measur-
able function 𝜉 from an uncertainty space (Γ,L,M) to the set
of real numbers. That is, for any Borel set 𝐵 of real numbers,
the set

{𝜉 ∈ 𝐵} = {𝛾 ∈ Γ | 𝜉 (𝛾) ∈ 𝐵} (4)

is an event.

Definition 4 (see Liu [14]). Let 𝑓 be a real-valued measurable
function, and let 𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
be uncertain variables on

(Γ,L,M). Then 𝜉 = 𝑓(𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) is an uncertain variable

defined by

𝜉 (𝛾) = 𝑓 (𝜉
1
(𝛾) , 𝜉

2
(𝛾) , . . . , 𝜉

𝑛
(𝛾)) , ∀𝛾 ∈ Γ. (5)

Definition 5 (see Liu [14]). The uncertainty distributionΦ of
an uncertain variable 𝜉 is defined by

Φ (𝑥) =M {𝜉 ≤ 𝑥} (6)

for any real number 𝑥 (see Figure 1).

Definition 6 (see Liu [14]). An uncertain variable 𝜉 is called
zigzag if it has a zigzag uncertainty distribution

Φ (𝑥) =

{{{{{{{{

{{{{{{{{

{

0, if 𝑥 ≤ 𝑎,
(𝑥 − 𝑎)

2 (𝑏 − 𝑎)
, if 𝑎 ≤ 𝑥 ≤ 𝑏,

(𝑥 + 𝑐 − 2𝑏)

2 (𝑐 − 𝑏)
, if 𝑏 ≤ 𝑥 ≤ 𝑐,

1, if 𝑥 ≥ 𝑐

(7)

denoted by 𝑍(𝑎, 𝑏, 𝑐), where 𝑎, 𝑏, 𝑐 are real numbers with 𝑎 <
𝑏 < 𝑐.

Definition 7 (see Liu [23]). The uncertain variables 𝜉
1
, 𝜉
2
, . . . ,

𝜉
𝑛
are said to be independent if

M{

𝑛

⋂

𝑖=1

(𝜉
𝑖
∈ 𝐵
𝑖
)} =

𝑛

⋀

𝑖=1

M {𝜉
𝑖
∈ 𝐵
𝑖
} (8)

for any Borel sets 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛
of real numbers.

Theorem 8 (see Liu [21]). Assume that 𝜉
1
and 𝜉
2
are indepen-

dent zigzag uncertain variables 𝑍(𝑎
1
, 𝑏
1
, 𝑐
1
) and 𝑍(𝑎

2
, 𝑏
2
, 𝑐
2
),

respectively. Then the sum 𝜉
1
+ 𝜉
2
is also a zigzag uncertain

variable 𝑍(𝑎
1
+ 𝑎
2
, 𝑏
1
+ 𝑏
2
, 𝑐
1
+ 𝑐
2
); that is,

𝑍 (𝑎
1
, 𝑏
1
, 𝑐
1
) + 𝑍 (𝑎

2
, 𝑏
2
, 𝑐
2
) = 𝑍 (𝑎

1
+ 𝑎
2
, 𝑏
1
+ 𝑏
2
, 𝑐
1
+ 𝑐
2
) .

(9)

The product of a zigzag uncertain variable 𝑍(𝑎, 𝑏, 𝑐) and a
scalar number 𝑘 > 0 is also a zigzag uncertain variable
𝑍(𝑘𝑎, 𝑘𝑏, 𝑘𝑐); that is,

𝑘𝑍 (𝑎, 𝑏, 𝑐) = 𝑍 (𝑘𝑎, 𝑘𝑏, 𝑘𝑐) . (10)

Definition 9 (see Liu [13]). Let 𝜉 be an uncertain variable.
Then the expected value of 𝜉 is defined by

𝐸 [𝜉] = ∫

+∞

0

M {𝜉 ≥ 𝑟} 𝑑𝑟 − ∫

0

−∞

M {𝜉 ≤ 𝑟} 𝑑𝑟 (11)

provided that at least one of the two integrals is finite.

Remark 10. Expected value is the average value of uncertain
variable in the sense of uncertain measure and represents the
size of uncertain variable.

Example 11 (see Liu [21]). The zigzag uncertain variable 𝜉 ∼
𝑍(𝑎, 𝑏, 𝑐) has an expected value

𝐸 [𝜉] =
𝑎 + 2𝑏 + 𝑐

4
. (12)

Theorem 12 (see Liu [14]). Let 𝜉 and 𝜂 be independent
uncertain variables with finite expected values. Then for any
real numbers 𝑎 and 𝑏, one has

𝐸 [𝑎𝜉 + 𝑏𝜂] = 𝑎𝐸 [𝜉] + 𝑏𝐸 [𝜂] . (13)

An uncertain set is a set-valued function on an uncer-
tainty space that attempts to model “unsharp concepts,”
which are essentially sets but their boundaries are not sharply
described (because of the ambiguity of human language),
such as “young” and “tall.” A formal definition is given as
follows.

Definition 13 (see Liu [19]). An uncertain set is a measur-
able function 𝜉 from an uncertainty space (Γ,L,M) to a
collection of sets of real numbers. For any Borel set 𝐵 of real
numbers, that is, for any Borel set 𝐵 of real numbers, both of

{𝜉 ⊂ 𝐵} = {𝛾 ∈ Γ | 𝜉 (𝛾) ⊂ 𝐵} ,

{𝐵 ⊂ 𝜉} = {𝛾 ∈ Γ | 𝐵 ⊂ 𝜉 (𝛾)}
(14)

are events.

Definition 14 (see Liu [24]). An uncertain set 𝜉 is said to have
amembership function𝜇 if for anyBorel set𝐵 of real numbers
one has

M {𝐵 ⊂ 𝜉} = inf
𝑥∈𝐵

𝜇 (𝑥) ,

M {𝜉 ⊂ 𝐵} = 1 − sup
𝑥∈𝐵
𝑐

𝜇 (𝑥) .
(15)

The above equations will be called measure inversion
formulas.
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Figure 2: A membership function.

Remark 15. Let R be a set of real numbers. When an uncer-
tain set has a membership function 𝜇 onR, we immediately
have

𝜇 (𝑥) =M {𝑥 ∈ 𝜉} , ∀𝑥 ∈ R. (16)

Liu [24] proved that a real-valued function 𝜇 is amembership
function if and only if 0 ≤ 𝜇(𝑥) ≤ 1 (see Figure 2).

Example 16 (see Liu [21]). By a triangular uncertain set we
mean the uncertain set fully determined by the triplet (𝑎, 𝑏, 𝑐)
of crisp numberswith 𝑎 < 𝑏 < 𝑐, whosemembership function
is

𝜇 (𝑥) =

{{{{{{

{{{{{{

{

(𝑥 − 𝑎)

(𝑏 − 𝑎)
, if 𝑎 ≤ 𝑥 ≤ 𝑏,

(𝑥 − 𝑐)

(𝑏 − 𝑐)
, if 𝑏 ≤ 𝑥 ≤ 𝑐,

0, otherwise.

(17)

Definition 17 (see Liu [24]). Let 𝜉 be an uncertain set with a
membership function 𝜇. Then the set-valued function

𝜇
−1
(𝛼) = {𝑥 ∈ R | 𝜇 (𝑥) ≥ 𝛼} , ∀𝛼 ∈ [0, 1] (18)

is called the inverse membership function of 𝜉.

Definition 18 (see Liu [25]). The uncertain sets 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛

are said to be independent if for any Borel sets 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛

one has

M{

𝑛

⋂

𝑖=1

(𝜉
∗

𝑖
⊂ 𝐵
𝑖
)} =

𝑛

⋀

𝑖=1

M {𝜉
∗

𝑖
⊂ 𝐵
𝑖
} ,

M{

𝑛

⋃

𝑖=1

(𝜉
∗

𝑖
⊂ 𝐵
𝑖
)} =

𝑛

⋁

𝑖=1

M {𝜉
∗

𝑖
⊂ 𝐵
𝑖
} ,

(19)

where 𝜉∗
𝑖
are arbitrarily chosen from {𝜉

𝑖
, 𝜉
𝑐

𝑖
}, 𝑖 = 1, 2, . . . , 𝑛,

respectively.

Theorem 19 (see Liu [24]). Let 𝜉 and 𝜂 be independent
uncertain sets with membership functions 𝜇 and ], respectively.
Then their union 𝜉 ∪ 𝜂 has a membership function

𝜆 (𝑥) = 𝜇 (𝑥) ∨ ] (𝑥) . (20)

Theorem 20 (see Liu [24]). Let 𝜉 and 𝜂 be independent
uncertain sets with membership functions 𝜇 and ], respectively.
Then their intersection 𝜉 ∩ 𝜂 has a membership function

𝜆 (𝑥) = 𝜇 (𝑥) ∧ ] (𝑥) . (21)

Theorem 21 (see Liu [24]). Let 𝜉 be an uncertain set with
membership function 𝜇. Then its complement 𝜉𝑐 has a mem-
bership function

𝜆 (𝑥) = 1 − 𝜇 (𝑥) . (22)

Theorem 22 (see Liu [24]). Let 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
be inde-

pendent uncertain sets with inverse membership functions
𝜇
−1

1
, 𝜇
−1

2
, . . . , 𝜇

−1

𝑛
, respectively. If the function 𝑓 is a measurable

function, then
𝜉 = 𝑓 (𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
) (23)

is an uncertain set with inverse membership function

𝜆
−1
(𝛼) = 𝑓 (𝜇

−1

1
(𝛼) , 𝜇

−1

2
(𝛼) , . . . , 𝜇

−1

𝑛
(𝛼)) . (24)

Definition 23 (see Liu [19]). Let 𝜉 be a nonempty uncertain
set. Then the expected value of 𝜉 is defined by

𝐸 [𝜉] = ∫

+∞

0

M {𝜉 ⪰ 𝑟} 𝑑𝑟 − ∫

0

−∞

M {𝜉 ⪯ 𝑟} 𝑑𝑟 (25)

provided that at least one of the two integrals is finite.

Please note that 𝜉 ⪰ 𝑟 represents “𝜉 is imaginarily
included in [𝑟, +∞)” and 𝜉 ⪯ 𝑟 represents “𝜉 is imaginarily
included in (−∞, 𝑟].”

Example 24 (see Liu [21]). The triangular uncertain set 𝜉 =
(𝑎, 𝑏, 𝑐) has an expected value

𝐸 [𝜉] =
𝑎 + 2𝑏 + 𝑐

4
. (26)

3. Uncertainty Evaluation Method

When making a comprehensive evaluation, factors influenc-
ing the grade of the overall goal should be considered. The
index system is often represented by a three-layer hierarchical
structure with the overall goal, the second layer, and the
bottom layer (namely, the factors influencing the overall goal’s
scaling). Experts always intend to show their own opinions
and expectations of each evaluation index, so the evaluation
results represent human uncertainty and belief degree.There-
fore, the score value and weight of each evaluation index are
represented by uncertain variables, and evaluation grades are
represented by uncertain sets. Therefore, a new evaluation
method based on uncertain variables and uncertain sets is
proposed.

3.1. Establishment of Hierarchical Index Structure. Based on
evaluation criteria, a hierarchical index structure is estab-
lished by experts as in Figure 3. There are 𝑙 indices in the
second level and 𝑚

𝑖
indices immediately below index 𝐵

𝑖

(𝑖 = 1, 2, . . . , 𝑙), where 𝑚
1
+ 𝑚
2
+ ⋅ ⋅ ⋅ + 𝑚

𝑙
= 𝑚. Let the

index (in the bottom level) set be 𝐶 = {𝐶
11
, 𝐶
12
, . . . , 𝐶

1𝑚
1

,

𝐶
21
, 𝐶
22
, . . . , 𝐶

2𝑚
2

, 𝐶
𝑙1
, 𝐶
𝑙2
, . . . , 𝐶

1𝑚
𝑙

}.
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Index B1

Index C11 Index C1m1 Index Cl1

The first level

The second level

The third (or bottom) level

The evaluation grades

The overall goal A

Index Bl

Index Cl,m𝑙

· · ·

· · · · · ·· · ·

“Poor,” “Fair,” ..., “Very good”

Figure 3: A simple hierarchical index structure.

3.2. Weights of Indices. Suppose that there are 𝑟 experts in
the evaluation group and the 𝑛 degrees of importance are
represented by uncertain variables 𝜂

1
, 𝜂
2
, . . . , 𝜂

𝑛
. Each expert

gives a degree of importance for each index. For index 𝐶
𝑖𝑗

(𝑖 = 1, 2, . . . , 𝑡; 𝑗 = 1, 2, . . . , 𝑚
𝑖
), 𝑟
1
experts select 𝜂

1
, 𝑟
2
experts

select 𝜂
2
, . . . , 𝑟

𝑛
experts select 𝜂

𝑛
, where 𝑟

1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
= 𝑟.

Weight 𝑤
𝑖𝑗
of index 𝐶

𝑖𝑗
is represented by

𝑤
𝑖𝑗
=
𝑟
1

𝑟
𝜂
1
+
𝑟
2

𝑟
𝜂
2
+ ⋅ ⋅ ⋅ +

𝑟
𝑛

𝑟
𝜂
𝑛
,

𝑖 = 1, 2, . . . , 𝑡; 𝑗 = 1, 2, . . . , 𝑚
𝑖
.

(27)

According to Definition 3, weight𝑤
𝑖𝑗
is an uncertain variable

and can be described by its uncertainty distributionΦ
𝑖𝑗
.

3.3. Grade Vectors of Bottom Indices. The score values from
experts can be represented by uncertain variables. Let the
𝑡 evaluation grades (e.g., Poor, Fair,. . ., Excellent) be rep-
resented by uncertain sets 𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑡
, with membership

functions 𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑡
, respectively. Let 𝑥

𝑖𝑗
be the index

score of index 𝐶
𝑖𝑗
. Then, the grade vector 𝑠

𝑖𝑗
of index 𝐶

𝑖𝑗
is

represented by

𝑠
𝑖𝑗
= (𝑠
𝑖𝑗1
= 𝜇
1
(𝑥
𝑖𝑗
) , 𝑠
𝑖𝑗2
= 𝜇
2
(𝑥
𝑖𝑗
) , . . . , 𝑠

𝑖𝑗𝑡
= 𝜇
𝑡
(𝑥
𝑖𝑗
)) ,

(28)

where 𝑠
𝑖𝑗𝑘

(𝑘 = 1, 2, . . . , 𝑡) is the membership degree to which
index 𝐶

𝑖𝑗
belongs to grade 𝜉

𝑘
.

The next step is to construct a method to realize the
transformation from the grade vector 𝑠

𝑖𝑗
of the bottom index

𝐶
𝑖𝑗
to the grade vector 𝑠(𝐴) of the overall goal 𝐴.

3.4. Transformation Method. The transformation method
can be obtained with the following three steps.

Step 1. To determine the importance of index 𝐶
𝑖𝑗
in the

grading of the overall goal, the weight of index 𝐶
𝑖𝑗
with

respect to the overall goal𝐴 is introduced beginning with the
following formulas:

𝐻
𝑖𝑗
(𝐴) = −

𝑡

∑

𝑘=1

𝑠
𝑖𝑗𝑘
⋅ lg 𝑠
𝑖𝑗𝑘
,

𝑉
𝑖𝑗
(𝐴) = 1 −

1

lg 𝑡
𝐻
𝑖𝑗
(𝐴) ,

𝜆
𝑖𝑗
(𝐴) =

𝑉
𝑖𝑗
(𝐴)

∑
𝑙

𝑖=1
∑
𝑚
𝑖

𝑗=1
𝑉
𝑖𝑗
(𝐴)

,

(29)

where𝜆
𝑖𝑗
(𝐴) is theweight of index𝐶

𝑖𝑗
with respect to𝐴. From

the above formulas, we have

0 ≤ 𝜆
𝑖𝑗
(𝐴) ≤ 1,

𝑙

∑

𝑖=1

𝑚
𝑖

∑

𝑗=1

𝜆
𝑖𝑗
(𝐴) = 1. (30)

Step 2. Because 𝜆
𝑖𝑗
(𝐴) shows the degree of the effective

information offered by𝐶
𝑖𝑗
in the evaluation of𝐴, we calculate

𝜆
𝑖𝑗
(𝐴) ⋅ 𝑠

𝑖𝑗𝑘
. (31)

Step 3. By weight 𝑤
𝑖𝑗
(𝐵
𝑖
) of index 𝐶

𝑖𝑗
with respect to 𝐵

𝑖
, we

have

𝑁
𝑘
(𝐵
𝑖
) =

𝑚
𝑖

∑

𝑗=1

𝑤
𝑖𝑗
(𝐵
𝑖
) ⋅ 𝜆
𝑖𝑗
(𝐴) ⋅ 𝑠

𝑖𝑗𝑘
,

𝑠
𝑘
(𝐵
𝑖
) =

𝑁
𝑘
(𝐵
𝑖
)

∑
𝑡

𝑘=1
𝑁
𝑘
(𝐵
𝑖
)
.

(32)

From the above formulas, we have

0 ≤ 𝑠
𝑘
(𝐵
𝑖
) ≤ 1,

𝑡

∑

𝑘=1

𝑠
𝑘
(𝐵
𝑖
) = 1. (33)

Thus, we obtain the grade vector 𝑠(𝐵
𝑖
) = (𝑠

1
(𝐵
𝑖
), 𝑠
2
(𝐵
𝑖
), . . . ,

𝑠
𝑡
(𝐵
𝑖
)) of index 𝐵

𝑖
in the second level, where 𝑠

𝑘
(𝐵
𝑖
) indicates

the degree to which 𝐵
𝑖
belongs to evaluation grade 𝜉

𝑘
.
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The grade vector 𝑠(𝐴) = (𝑠
1
(𝐴), 𝑠
2
(𝐴), . . . , 𝑠

𝑡
(𝐴)) of the

overall goal 𝐴 can be obtained in the same way.

Remark 25. From the property of 𝐻
𝑖𝑗
(𝐴), it is obtained that

the larger the 𝜆
𝑖𝑗
(𝐴) is, the more important the role 𝐶

𝑖𝑗
plays

in the evaluation of 𝐴 is. If 𝜆
𝑖𝑗
(𝐴) = 1, then the evaluation

grade of𝐴 can be determined only by index𝐶
𝑖𝑗
. If 𝜆
𝑖𝑗
(𝐴) = 0,

then index𝐶
𝑖𝑗
does not play any role in determining the grade

of 𝐴.

Theorem 26. Theweighted-average method is a special case of
the above method.

Proof. For each row vector (𝑠
𝑗1
, 𝑠
𝑗2
, . . . , 𝑠

𝑗5
), if there is one

component 𝑠
𝑗𝑘
= 1 for some 𝑘 and the rest four components

are 0, then𝐻
𝑖𝑗
(𝐴) = 1,𝑉

𝑖𝑗
(𝐴) = 1, and 𝜆

𝑖𝑗
(𝐴) = 1/𝑛. Thus, by

formulas

𝑁
𝑘
(𝐵
𝑖
) =

𝑚
𝑖

∑

𝑗=1

𝑤
𝑖𝑗
(𝐵
𝑖
) ⋅ 𝜆
𝑖𝑗
(𝐴) ⋅ 𝑠

𝑖𝑗𝑘
,

𝑠
𝑘
(𝐵
𝑖
) =

𝑁
𝑘
(𝐵
𝑖
)

∑
𝑡

𝑘=1
𝑁
𝑘
(𝐵
𝑖
)
,

(34)

we have

𝑠
𝑘
(𝐴) =

𝑛

∑

𝑗=1

𝜆
𝑗
⋅ 𝑠
𝑗𝑘
, 𝑘 = 1, 2, . . . , 𝑡. (35)

That is to say, the weighted-average method is a special case
of the above method.

3.5. Identification. Sometimes, the evaluation scales are com-
parable (e.g., Poor, Fair,. . ., Excellent scale; “Fair” is better
than “Poor”), and a partial order “≻” can be defined according
to the actual situation. If evaluation scale𝐶

1
is better than𝐶

2
,

we denote 𝐶
1
≻ 𝐶
2
; otherwise we denote 𝐶

1
≺ 𝐶
2
. Of course,

whether 𝐶
1
is better than 𝐶

2
depends on the actual situation.

To address the ordered division (e.g., Poor, Fair,. . ., Excellent),
Cheng [26] proposed the confidence degree principle.

Confidence Degree Principle (Cheng [26]). Let “≻” be a partial
order, let 𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑡
be an ordered division, and let 𝜆

(0.5 < 𝜆 < 1) be the confidence level. If 𝐶
1
≻ 𝐶
2
≻ ⋅ ⋅ ⋅ ≻ 𝐶

𝑡
,

𝑘
0
= min{𝑘 :

𝑘

∑

𝑖=1

𝜇
𝑥
(𝐶
𝑖
) ≥ 𝜆, 1 ≤ 𝑘 ≤ 𝑡} , (36)

and if 𝐶
1
≺ 𝐶
2
≺ ⋅ ⋅ ⋅ ≺ 𝐶

𝑡
,

𝑘
0
= max{𝑘 :

𝑘

∑

𝑖=1

𝜇
𝑥
(𝐶
𝑖
) ≥ 𝜆, 1 ≤ 𝑘 ≤ 𝑡} , (37)

and then 𝑥 belongs to 𝐶
𝑘
0

with at least the confidence level 𝜆.

4. An Application in the Evaluation of
Software Quality

In this section, an application of the proposed method in
evaluation of software quality is given.

4.1. Evaluation System and Some Data. A problem of eval-
uating software quality was discussed in Li [27]. Next, we
apply the proposed method to this evaluation problem, and
the evaluation system is shown as in Table 2. Based on the
evaluation criteria, the experts provided the scores of the
bottom indices in Column 5 of Table 2.The evaluation grades
are “Poor,” “Fair,” “Good,” “Very good,” and “Excellent.” They
are represented by uncertain sets 𝜉

1
, 𝜉
2
, . . . , 𝜉

5
with member-

ship functions 𝜇
1
, 𝜇
2
, . . . , 𝜇

5
, respectively, where membership

functions

𝜇
1
(𝑥) =

{{{

{{{

{

1, if 0 ≤ 𝑥 ≤ 0.2,
(1 − 𝑥)

0.8
, if 0.2 < 𝑥 ≤ 1,

0, otherwise,

𝜇
2
(𝑥) =

{{{

{{{

{

(𝑥 − 0.2)

0.8
, if 0.2 ≤ 𝑥 ≤ 1,

2 − 𝑥, if 1 < 𝑥 ≤ 2,
0, otherwise,

𝜇
3
(𝑥) =

{{

{{

{

𝑥 − 1, if 1 ≤ 𝑥 ≤ 2,
3 − 𝑥, if 2 < 𝑥 ≤ 3,
0, otherwise,

𝜇
4
(𝑥) =

{{{

{{{

{

𝑥 − 2, if 2 ≤ 𝑥 ≤ 3,
(3.8 − 𝑥)

0.8
, if 3 < 𝑥 ≤ 3.8,

0, otherwise,

𝜇
5
(𝑥) =

{{{

{{{

{

(𝑥 − 3)

0.8
, if 3 ≤ 𝑥 ≤ 3.8,

1, if 3.8 < 𝑥 ≤ 4,
0, otherwise

(38)

are given by experts according to their personal knowledge
and actual situation of the evaluation. According to the
scores given by experts (Column 5 in Table 2) and the
above membership functions, the grade vectors (Column 4
in Table 2) can be obtained (see Section 4.3).

4.2. Weights of Indices. There are ten experts in the eval-
uation group, and there are five degrees of importance
(namely, “most important,” “more important,” “important,”
“less important,” and “unimportant”), which are represented
by uncertain variables 𝜂

1
, 𝜂
2
, . . . , 𝜂

5
with the same uncertainty

distribution 𝑍(0.54, 0.69, 0.84). Taking indices 𝐶
11
, 𝐶
12
, 𝐶
13
,

𝐶
14
, for examples, the evaluation results from the experts are

shown as in Table 3. Weight 𝑤
1𝑗
of index 𝐶

1𝑗
is an uncertain

variable 𝜂
1𝑗
. By 𝜔

1𝑗
= (𝑟
1
/𝑟)𝜂
1
+ ⋅ ⋅ ⋅ + (𝑟

𝑛
/𝑟)𝜂
𝑛
, 𝑗 = 1, 2, 3, 4,

and Theorem 8, we have 𝜂
1𝑗
∼ 𝑍(0.54, 0.69, 0.84). The vector

𝑤
1
= (𝑤
11
, 𝑤
12
, 𝑤
13
, 𝑤
14
) is obtained by the 99-table, and the

values of 𝑤
1𝑗
are shown in Table 4.

By Example 11 and Theorem 12, the expected value of
𝑤
1
= (𝑤
11
, 𝑤
12
, 𝑤
13
, 𝑤
14
) is (0.78, 0.78, 0.78, 0.78). Normal-

izing the expected value, the weights of indices 𝐶
11
, 𝐶
12
,

𝐶
13
, 𝐶
14

are (0.25, 0.25, 0.25, 0.25). The weights of the other
indices can be obtained in the same way (the numbers in
Column 3 of Table 2).
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Table 2: Evaluation system of software quality.

The overall goal Second-level indices and weights Bottom indices and weights Grade vectors Scores

Software quality 𝐴

Install section 𝐵
1
(0.1)

Install difficulty 𝐶
11
(0.25) (0, 0, 0.50, 0.50, 0) 2.50

Size after installation 𝐶
12
(0.25) (0, 0, 0, 1.00, 0) 3.00

Memory occupation 𝐶
13
(0.25) (0, 0, 0.30, 0.70, 0) 2.70

Shortcuts creation 𝐶
14
(0.25) (0, 0, 0, 0.50, 0.50) 3.40

General structure 𝐵
2
(0.15)

Complete module 𝐶
21
(0.2) (0, 0, 0.41, 0.59, 0) 2.59

Appropriate grade 𝐶
22
(0.2) (0, 0, 0, 0.50, 0.50) 3.40

Reasonable module partition 𝐶
23
(0.2) (0, 0, 1.00, 0, 0) 2.00

Business integration level 𝐶
24
(0.2) (0, 0, 0, 0, 1.00) 4.00

Data import and extraction function 𝐶
25
(0.2) (0, 0, 0.30, 0.70, 0) 2.70

Security mechanism 𝐵
3
(0.15)

Permissions allocation 𝐶
31
(0.25) (0, 1.00, 0, 0, 0) 1.00

Operating log 𝐶
32
(0.25) (0, 0, 0, 1.00, 0) 3.00

Data backup and restoration 𝐶
33
(0.25) (0, 0, 0.30, 0.70, 0) 2.70

Data maintenance 𝐶
34
(0.25) (0, 0, 0.50, 0.50, 0) 2.50

Program and data processing 𝐵
4
(0.2)

Reliability 𝐶
41
(0.25) (0, 0, 0.30, 0.70, 0) 2.70

Efficiency 𝐶
42
(0.25) (0, 0, 1.00, 0, 0) 2.00

Maintainability 𝐶
43
(0.25) (0, 0, 1.00, 0, 0) 2.00

Portability 𝐶
44
(0.25) (0, 0, 0, 0, 1.00) 4.00

Code maintenance 𝐵
5
(0.1)

Definable code 𝐶
51
(0.33) (0, 0, 0, 1.00, 0) 3.00

Gradable code 𝐶
52
(0.33) (0, 0, 0.30, 0.70, 0) 2.70

Proper code maintenance 𝐶
53
(0.34) (0, 0, 0.50, 0.50, 0) 2.50

Operating performance 𝐵
6
(0.3)

Friendly interface 𝐶
61
(0.25) (0, 0, 0.30, 0.70, 0) 2.70

Easy-to-use 𝐶
62
(0.25) (0, 0, 0.50, 0.50, 0) 2.50

Online help 𝐶
63
(0.25) (0, 0, 0.30, 0.70, 0) 2.70

Multitasking switching 𝐶
64
(0.25) (0, 0, 1.00, 0, 0) 2.00

Table 3: Evaluation results given by experts.

Bottom indices Most important More important Important Less important Unimportant
Install difficulty 𝐶

11
1 2 3 2 2

Size after installation 𝐶
12

2 1 3 2 2
Memory occupation 𝐶

13
2 2 3 1 2

Shortcuts creation 𝐶
14

2 3 2 2 1

Table 4: The 99-table of weights for indices 𝐶
11
, 𝐶
12
, 𝐶
13
, 𝐶
14
.

Weights 0.01 0.02 ⋅ ⋅ ⋅ 0.99
𝑤
11

0.54 0.55 ⋅ ⋅ ⋅ 0.84
𝑤
12

0.54 0.55 ⋅ ⋅ ⋅ 0.84
𝑤
13

0.54 0.55 ⋅ ⋅ ⋅ 0.84
𝑤
14

0.54 0.55 ⋅ ⋅ ⋅ 0.84

4.3. Grade Vectors of Bottom Indices. Taking the grade vector
of index 𝐶

11
as an example, the score value 𝑥

11
of index 𝐶

11

is 2.50 and the membership functions of evaluation grades
𝜉
1
, 𝜉
2
, . . . , 𝜉

5
are 𝜇

1
, 𝜇
2
, . . . , 𝜇

5
, respectively. Therefore, the

grade vector of index 𝐶
11
is

𝑠 (𝐶
11
) = (𝜇

1
(𝑥
11
) , 𝜇
2
(𝑥
11
) , . . . , 𝜇

5
(𝑥
11
))

= (0, 0, 0.50, 0.50, 0) .

(39)

Similarly, the other grade vectors of the bottom indices can
be obtained by the scores of the bottom indices (Column 5 in
Table 2).

4.4. Grade Vector of Software Quality 𝐴. In this subsection,
the transformation algorithm established above is used to
realize the transformation from the grade vectors of the
bottom indices to the grade vector of software quality.

4.4.1. Grade Vectors of Indices in the Second Level. We take the
calculation of grade vector 𝑠(𝐵

1
) of index 𝐵

1
(install section)

as an example.
There are four indices, 𝐶

11
, 𝐶
12
, 𝐶
13
, 𝐶
14
, immediately

below 𝐵
1
, and the grade-transition matrix of 𝐵

1
is

𝑈 (𝐵
1
) = (

0 0 0.50 0.50 0

0 0 0 1.00 0

0 0 0.30 0.70 0

0 0 0 0.50 0.50

) . (40)



8 Journal of Applied Mathematics

Table 5: Comparison of the results with the other two methods.

Grades Poor Fair Good Very good Excellent
The proposed method 0 0.0356 0.4319 0.4903 0.0422
Fuzzy weighted-average method 0 0.1051 0.4507 0.4053 0.0389
Fuzzy max-min method 0 0.0822 0.4165 0.4697 0.0516

Table 6: The differences between two adjacent grades.

Differences 𝜉
1
and 𝜉

2
𝜉
2
and 𝜉

3
𝜉
3
and 𝜉

4
𝜉
4
and 𝜉

5

The proposed method 0.0356 0.3963 0.0584 0.4481
Fuzzy weighted-average method 0.1051 0.3456 0.0454 0.3664
Fuzzy max-min method 0.0822 0.3343 0.0532 0.4181

With the weights (𝑤
11
, 𝑤
12
, 𝑤
13
, 𝑤
14
) = (0.25, 0.25, 0.25,

0.25) of indices 𝐶
11
, 𝐶
12
, 𝐶
13
, 𝐶
14
, we can obtain

𝑠 (𝐵
1
) = (0, 0, 0.1706, 0.7262, 0.1032) . (41)

Similarly, we can obtain the grade vectors

𝑠 (𝐵
2
) = (0, 0, 0.3777, 0.2815, 0.3408) , . . . ,

𝑠 (𝐵
6
) = (0, 0, 0.5896, 0.4104, 0) .

(42)

4.4.2. Grade Vector of Software Quality 𝐴. With the grade
vectors 𝑠(𝐵

1
), . . . , 𝑠(𝐵

6
) of indices 𝐵

1
, . . . , 𝐵

6
, we can obtain

the grade-transition matrix of 𝐴 as

𝑈 (𝐴) =(

(

0 0 0.1706 0.7262 0.1032

0 0 0.3777 0.2815 0.3408

0 0.3135 0.1476 0.5389 0

0 0 0.6038 0.3962 0

0 0 0.2172 0.7828 0

0 0 0.5896 0.4104 0

)

)

. (43)

Similar to calculation (1), the grade vector 𝑠(𝐴) of the overall
goal is obtained as

𝑠 (𝐴) = (0, 0.0356, 0.4319, 0.4903, 0.0422) . (44)

4.5. Identification. In this example, the confidence level of 𝐴
belonging to 𝜉

4
(Very good) is no less than 0.53 (0.4903 +

0.0422 ≥ 0.53) and the confidence level of 𝐴 belonging to 𝜉
3

(Good) is no less than 0.96 (0.4903+0.0422+0.4319 ≥ 0.96).
Comparatively, it is more reasonable to define 𝐴 in grade 𝜉

4
.

Therefore, the quality of this software is “Very good.”

4.6. Comparative Analysis. In Li [27], the fuzzy max-min
method is used in the software quality evaluation, and we cal-
culate the results via the fuzzy weighted-averagemethodwith
the same data in Table 2. The results are shown in Table 5.
Table 5 shows that the proposed method and fuzzy max-
min method produced the same result (i.e., the evaluation
result is Very good) and the evaluation result from fuzzy
weighted method is Good. And also there is some difference

in the membership degree of each grade. Furthermore, the
literatures [28, 29] discussed the algorithms for maximizing
the soft margin, which show that the larger the difference
between two adjacent grades is, the stronger the classification
ability of the method is. Therefore, we analyzed the differ-
ences between two adjacent grades in Table 6. From Table 6,
we can see that there are three differences (between 𝜉

4
and 𝜉
5
,

𝜉
3
and 𝜉
4
, and 𝜉

2
and 𝜉
3
) and the proposed method is larger

than the other two methods. Thus, the proposed method has
a stronger classification ability in the evaluation of software
quality.

5. Conclusions

In this paper, weights for bottom indices with respect to the
overall goal in an evaluation system are introduced and a
new uncertainty evaluation method is proposed based on
uncertain sets and uncertain variables. This method gen-
eralizes the weighted average method, and it is applied in
the evaluation of software quality. Comparative analysis with
other two methods shows that the proposed method has a
stronger classification ability in the evaluation of software
quality. More importantly, the proposed method in this
paper can also be used in other evaluation systems with a
hierarchical structure. Therefore, more applications of the
proposed method can be underdeveloped further.
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