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Abstract. One-fluid ideal MHD model is applied for de-
scription of current sheet flapping disturbances appearing
due to a gradient of the normal magnetic field component.
The wave modes are studied which are associated to the flap-
ping waves observed in the Earth’s magnetotail current sheet.
In a linear approximation, solutions are obtained for model
profiles of the electric current and plasma densities across
the current sheet, which are described by hyperbolic func-
tions. The flapping eigenfrequency is found as a function of
wave number. For the Earth’s magnetotail conditions, the
estimated wave group speed is of the order of a few tens
kilometers per second. The current sheet can be stable or
unstable in dependence on the direction of the gradient of
the normal magnetic field component. The obtained disper-
sion function is used for calculation of the flapping wave dis-
turbances, which are produced by the given initial Gaussian
perturbation at the center of the current sheet and propagat-
ing towards the flanks. The propagating flapping pulse has
a smooth leading front, and a small scale oscillating trailing
front, because the short wave oscillations propagate much
slower than the long wave ones.
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1 Introduction

Flapping oscillations of the magnetotail current sheet have
been detected by many spacecraft measurements. Namely,
CLUSTER observations in the Earth’s magnetotail current
sheet indicated the appearance of the wave perturbations
propagating along the current sheet perpendicular to the mag-
netic field lines. The observed cases of such waves were first
described by Zhang et al. (2002). A comprehensive statistical
analysis of Sergeev et al. (2003, 2004), Runov et al. (2005a,
b, 2006), and Petrukovich et al. (2006) has proved the ex-
istence of such kind of waves, which were identified as the
“kink”-like disturbances. The CLUSTER observations are
in favor to the assumption, that the flapping perturbations
appear more frequently in the central part of the tail, than
near the flanks. This statement was also confirmed by Geo-
tail data (Sergeev et al., 2006). In the near-flank tail regions,
the flapping waves propagate predominantly from the cen-
ter to the flanks (Sergeev et al., 2004). These observational
results confirm the hypothesis about an internal origin of
the flapping motions, due to some nonstationary processes
(like magnetic reconnection) localized deep inside the mag-
netotail. The plasma sheet flapping waves are interpreted
as quasi-periodic dynamical structures produced by almost
vertical slippage motions of the neighboring magnetic tubes
(Petrukovich et al., 2006). Data analysis yields a typical fre-
quency of the flapping waveswf ∼0.035 s−1 (Sergeev et al.,
2003). A group speed of the flapping waves, estimated from
data analysis, is in a range of a few tens (30–70) kilome-
ters per second (Runov et al., 2005a). Spatial amplitudes and
wavelengths are of the order of 2–5RE (RE is the Earth’s
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Fig. 1. Displacement of a small element of the current sheet.

radius) (Petrukovich et al., 2006). Using CLUSTER obser-
vations, Laitinen et al. (2007) found a relationship between
the flapping motions and reconnection events.

In spite of good observational background for the flapping
oscillations, a physical mechanism of this phenomenon has
not been understood well. Several theoretical models were
introduced, but each of them has difficulty in application to
this effect. In particular, the Ballooning-type mode was pro-
posed by Golovchanskaya and Maltsev (2005). This balloon-
ing theory implies the condition, that the wave length scale is
much less than the curvature radius of the magnetic field line.
This condition can hardly be fulfilled in the plasma sheet with
a small normal component of the magnetic field.

Volwerk et al. (2003) interpreted flapping oscillations of
the current sheet, which were observed before and after sub-
storm onset, as driven magnetoacoustic kink modes studied
by Smith et al. (1997). However, the magnetoacoustic waves
have too large frequency and wave speed that exceeds the
observed values.

Louarn et al. (2004) investigated the low-frequency pres-
sure and magnetic oscillations observed by CLUSTER in the
plasma sheet with the aim of determining if they are magne-
tohydrodynamic (MHD) eigenmodes. This work was further
continued by Fruit et al. (2004). They found that the ob-
served kink mode (0.04 Hz) and the high-frequency sausage
mode (0.14 Hz) are compatible with the MHD model of Har-
ris sheet oscillations propagating in the x-direction, with
wavelength of 6RE and 3RE .

An interesting physical mechanism addresses to the drift
kink modes investigated by Daughton (1999), Karimabadi
et al. (2003) and Sitnov et al. (2004). A particular feature
of these wave modes is that they can propagate only in the
direction determined by the proton drift velocity. However,
they can be convected by a bulk flow.

Another theoretical model was proposed by Erkaev et
al. (2007, 2008) in a framework of MHD approach. In ac-
cordance to this model, MHD flapping modes can exist due
to a gradient of the normal magnetic field component along
the current sheet.

In our present paper, the approach of Erkaev et al. (2007,
2008) is applied for more realistic background current den-
sity profile and different plasma density profiles. In addition,
we analyze flapping wave propagations towards the flanks
from the given sources localized to the center of the current
sheet.

2 Basic equations and model assumptions

We apply conventional equations of incompressible ideal
magnetohydrodynamics (MHD) for nonstationary plasma
sheet parameters

ρ

(
∂V
∂t

+ V · ∇V
)

+ ∇P =
1

µ0
B · ∇B, (1)

∂B
∂t

+ V · ∇B = B · ∇V, (2)

∂ρ

∂t
+ V · ∇ρ = 0, ∇ · V = 0, ∇ · B = 0. (3)

Here µ0 is the permeability of free space,V, B, ρ, P are
the velocity, magnetic field, plasma density and total pres-
sure (sum of the magnetic and plasma pressures), respec-
tively. We consider specific wave perturbations propagating
across the magnetic field lines, which are much slower than
the magnetosonic modes. In this case the incompressible ap-
proximation is quite reasonable. Our study is focussed on the
wave modes existing due to a gradient of theBz component
in the magnetotail current sheet along the x-direction. Here
theBx component has a gradient along the z-direction, and
thus we consider the two magnetic gradients as key factors
for the current sheet oscillations. This approach, applied by
Erkaev et al. (2008) for the flapping wave oscillations, was
called as “Magnetic double gradient mechanism”.

We begin with a qualitative explanation of the expected
MHD flapping instability and waves. A plasma element of
a unit volume, considered at the center of the current layer,
is shown in Fig. 1. In equilibrium state the total pressure
gradient compensates the magnetic tension,

∂P

∂z
=

1

µ0
Bx

∂Bz

∂x
. (4)

A small displacement of this plasma element along the z-
direction yields the restoring forceFz, which is a difference
of two forces caused by the magnetic tension and the total
pressure gradient,

Fz = −
1

µ0
Bx(δz)

∂Bz

∂x
= −

1

µ0
δz

(
∂Bx

∂z

∂Bz

∂x

)
z=0

. (5)

HereBx(δz) is determined from the Taylor series expansion.
This force accelerates plasma in the z-direction

∂2δz

∂t2
= ω2

f δz, (6)
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where

ωf =

√
1

µ0ρ

∂Bx

∂z

∂Bz

∂x
. (7)

In case of positive product of two magnetic gradients, pa-
rameterωf is real, and it has a meaning of the characteristic
frequency of the flapping wave oscillations. In the opposite
case of negative product of the magnetic gradients the cur-
rent sheet is unstable. The flapping perturbations can grow
up exponentially without propagation, becauseωf is pure
imaginary. These two cases are characterized by different
behavior of the background total pressure. Namely, the to-
tal pressure has a maximum at the center of the current sheet
for the unstable situation, and it has a minimum for the stable
conditions. Further we take into consideration MHD Eqs. (1–
3) and find solutions corresponding to the qualitative scheme
discussed above. The background conditions shown in Fig. 2
are considered to be rather simple with a weak dependence
of theBz component on the x-coordinate

B = [Bx(z/1), 0, Bz(x/Lx)], V = 0. (8)

Here1 is a half-thickness of the current sheet, andLx is a
length scale of theBz variation along the current sheet. We
introduce two dimensionless parametersε=Bz(0)/Bx maxand
ν=1/Lx , which are assumed to be small.

We consider small perturbations of the magnetic field, to-
tal pressure and velocity,

B = (Bx + bx, by, Bz + bz), ρ = ρ0 + ρ̃,

P = P0 + p, V = (vx, vy, vz). (9)

As a first step, we make a simplifying assumption, that all
wave perturbations propagating in the y-direction do not de-
pend on the x-coordinate, and thus they are considered to be
functions of time and two Cartesian coordinates (y, z).

Linearizing Eqs. (1–3) for the small perturbations, we
also neglect small termsBz∇zbz andBz∇zby (∇z is a par-
tial derivative with respect to the axisz), and retain the
main term bx∇xBz. This is justified by the condition
BzLx/(Bx1)=ε/ν�1. This condition is valid for the an-
alytical current sheet equilibrium solution of Kan (1973).
The linearized equations with the underlined terms to be ne-
glected are the following

ρ
∂vx

∂t
+

∂p

∂x
=

1

µ0

(
Bz

∂bx

∂z
+ bz

∂Bx

∂z
+ Bx

∂bx

∂x
+ bx

∂Bx

∂x

)
,

ρ
∂vy

∂t
+

∂p

∂y
=

1

µ0

(
Bx

∂by

∂x
+ Bz

∂by

∂z

)
,

ρ
∂vz

∂t
+

∂p

∂z
=

1

µ0

(
bx

∂Bz

∂x
+ Bx

∂bx

∂x
+ Bz

∂bz

∂z
+ bz

∂Bz

∂z

)
,

∂bx

∂t
+ vz

∂Bx

∂z
− Bz

∂vx

∂z
+ vx

∂Bx

∂x
− Bx

∂vx

∂x
= 0,

∂by

∂t
− Bz

∂vy

∂z
− Bx

∂vx

∂x
= 0,

J

Fig. 2. Geometrical situation of the problem. Background configu-
ration.

∂bz

∂t
− Bz

∂vz

∂z
+ vx

∂Bz

∂x
− Bx

∂vz

∂x
= 0,

∂ρ

∂t
+ vz

∂ρ0

∂z
= 0,

∂vy

∂y
+

∂vz

∂z
= 0. (10)

The neglected terms are responsible for the small effects re-
lated to the Alfv́en waves propagating in the z-direction.

3 Linear analysis of eigenmodes

Substituting Fourier harmonics (∝ exp(iωt−iky)) in
Eq. (10) and neglecting the underlined terms, we obtain
finally a system of equations for Fourier amplitudes

iωρ0vx =
1

µ0

(
bz

dBx

dz
+ Bz

dbx

dz

)
, (11)

iωρ0vy − ikp = 0, iωρ0vz +
dp

dz
=

1

µ0
bx

dBz

dx
, (12)

iωbz − Bz

dvz

dz
+ vx

dBz

dx
= 0, iωby − Bz

dvy

dz
= 0, (13)

ωbx +
dBx

dz
vz = 0, (14)

iωρ̃ + vz

dρ0

dz
, −ikvy +

dvz

dz
= 0. (15)

Hereafter we assume that gradientdBz/dx is constant, and
all other quantities do not depend on the x-coordinate. From
linearized Eqs. (12–15), treated as a system of ordinary equa-
tions with respect toz, we derive a second order ordinary
differential equation for the velocity perturbation

1

ρ0

d

dz

(
ρ0

dvz

dz

)
+ k̄2ṽz

(
U(z̄)

ω̄2
− 1

)
= 0, (16)

where

U(z) =
1

µ0ρ0

∂Bx

∂z

∂Bz

∂x
. (17)

Analytical solution can be obtained forρ0=const, and a
Harris-like variation of the background magnetic field

Bx = B∗ tanh(z/1). (18)
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Fig. 3. Frequencies, group and phase velocities as functions of wave
number for the “kink” and “sausage” wave modes for the uniform
background plasma density.

In this case, Eq. (16) is similar to that known from the the-
ory of tearing mode instabilities (Pritchett et al., 1991). The
eigenfunctions are expressed via Legendre functions (P

µ
λ ) as

follows

Vz = CP
µ
λ (tanh(z/1)),

λ = −1/2 + [1/4 + (k1ωf /ω)2
]
1/2,

µ = −k1, (19)

where

ωf =

√
1

µ0ρ

B∗

1

∂Bz

∂x
=

√
1

µ0ρ

(
∂Bx

∂z

)
z=0

∂Bz

∂x
. (20)

For the “kink” mode,Vz is an even function of thez coor-
dinate, which requires to fulfill conditionλ=−µ=k1. This
relation betweenλ andk yields equation

k1 = −1/2 +

√
1/4 + (k1)2ω2

f /ω2. (21)

From this equation we derive frequency and group speed as
functions of wave number for the “kink” mode

ωk = ωf

√
k1

k1 + 1
, (22)

Vgk = ωf 1F(k1), (23)

F(k1) =
1

2
√

k1(1 + k1)3
. (24)

Fig. 4. Eigenfunctions corresponding to the “kink” mode.

For the sausage mode,Vz is an odd function, which vanishes
at the center of the current sheet. This mode corresponds to
conditionλ=k1+1 which leads to

k1 + 3/2 =

√
1/4 + (k1)2ω2

f /ω2. (25)

This equation determines the “sausage” mode frequency and
group speed as an explicit function of wave number

ωs = ωf

k1√
(k1)2 + 3k1 + 2

, (26)

Vgs = ωf 1
3k1 + 4

2
√

[(k1)2 + 3(k1) + 2]3
. (27)

The normalized frequenciesωk,s/ωf and wave group ve-
locities are shown in Fig. 3. One can see at the figure that
the flapping wave frequency is an increasing function of the
wave number. It has saturation for short wave length pertur-
bations, which propagate much slower than those with long
wave length.

Figure 4 shows the amplitudes of the “kink”-like perturba-
tions of the velocity and magnetic field components as eigen-
functions of z-coordinate for a fixed wave number,k=1−1.
All perturbations have a smooth behavior, and they vanish far
away from the current sheet center. Figure 5 shows the same
quantities as Fig. 4, but for the “sausage”-like oscillations.

Ann. Geophys., 27, 417–425, 2009 www.ann-geophys.net/27/417/2009/
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Fig. 5. Eigenfunctions corresponding to the “sausage” mode.

The flapping wave perturbations are unstable, when the
product of two magnetic gradients is negative. In this case the
flapping frequency is pure imaginary, and the growth timesτk

andτs of the instability for the “kink” and “sausage” modes
are given by formulas

τk = τf

√
1 + 1/(k1), (28)

τs = τf

√
1 + 3/(k1) + 2/(k1)2,

τf =

(
−1

µ0ρ

∂Bx

∂z

∂Bz

∂x

)(−1/2)

. (29)

The “kink” perturbations grow faster than the “sausage”
ones. This instability can take place at some regions of the
Earth’s magnetotail current sheet, where theBz component
decreases towards Earth.

For example, we estimate the flapping frequency for the
reasonable parameters corresponding to the current sheet
conditions in the Earth’s magnetotail,

Bx = 20 nT, Bz = 2 nT, 1 ∼ RE, np = 0.1 cm−3,

k1 = 0.7, ∂Bz/∂x ∼ Bz/Lx, Lx ∼ 5RE . (30)

Applying these parameters to Fig. 3, we find the characteris-
tic flapping frequencyωf ∼0.03 s−1, and also the group ve-
locity Vg=60 km/s, and phase velocityVph=274 km/s.

Fig. 6. Frequencies, group and phase velocities in the case of non-
constant density profile.

To estimate the effects related to variations of the back-
ground plasma density, we also consider model density func-
tion

ρ0(z) = ρ∗

0
1

[cosh(η z/1)]2
. (31)

In this case we found numerical solution of the boundary
eigenvalue problem, and result forη=0.4 is presented in
Fig. 6 that shows the frequency, group and phase velocities as
functions of wave number. One can see that the density vari-
ation effect is pronounced quite strongly for low wave num-
bers, and it is rather small for large wave numbers. For two
cases,η=0 andη=0.4, dispersion functions are rather close to
each other, if the wave number sufficiently large:k1>1. A
noticeable difference between eigenfrequencies appears only
for very small wave numbers,k1�1. A constant density
model (η=0) predicts somewhat lower frequency than that
for nonhomogeneous density model (η=0.4).

4 Propagation of flapping waves produced by a local-
ized source

The dispersion function obtained in the previous section can
be applied for the problem of the flapping wave propagation

www.ann-geophys.net/27/417/2009/ Ann. Geophys., 27, 417–425, 2009
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Fig. 7. Flapping waves propagating from the source localized to the
center of the current sheet.

from a given source. In particular, we consider the ini-
tial “kink”-like Gaussian perturbationξ of the current sheet
which is produced by an external source

ξ(y, 0) = ξ0 exp(−σy2), (32)

whereξ0 andσ are the parameters characterizing the ampli-
tude and length scale of the initial disturbance, respectively.

Using Fourier method and dispersion Eq. (22), we find so-
lution for the initial condition (32)

ξ(y, t) =

∫
∞

−∞

A(k) exp[i(ω(k)t − ky)]dk, (33)

where functionA(k) is given by Fourier integral

A(k) =
1

2π

∫
∞

−∞

ξ(y, 0) exp(iky)dy. (34)

Figure 7 shows the “kink”-like wave perturbations induced
by source (32) as functions of the y-coordinates (in units of

Fig. 8. Oscillations induced by the fixed source localized to the
center of the current sheet.

Fig. 9. Position of the source for the flapping waves.

1) for different times normalized toω−1
f . Figure 8 demon-

strates the “kink”-like current sheet oscillations at the point
of the initial Gaussian perturbation (at the center of the cur-
rent sheet) as a function of time. One can see that these os-
cillations have a rather weak damping. Figure 9 indicates
the position of the initial perturbation, which is a source for
the flapping wave oscillations (Sergeev et al., 2006). Fig-
ure 10 shows perturbations of the magnetic surfaces in the
current sheet in cases of the “kink”-like and “sausage”-like
flapping oscillations. These wave oscillations, produced by
the initial perturbation (Eq.32), propagate towards the flanks
of the current sheet. Next we consider the flapping wave dis-
turbances produced by a moving source, which have to be
bounded by a cone with angleθ

θ = arctan(1/Mf ), (35)

whereMf is the flapping Mach number determined as a ratio
of the source velocity (Vs) to the characteristic wave propa-
gation speed.

Mf =
Vs

Vf

, (36)
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Fig. 10. The “kink”-like disturbances of the current sheet produced
by the fixed source.

whereVf is the flapping wave group velocity. This is an
important dimensionless similarity parameter for flapping
waves (like Alfv́en and sonic Mach numbers for magne-
tosonic waves), which characterizes the interaction between
moving source and flapping waves in the current sheet.

Figure 11 demonstrates the wave disturbances of the cur-
rent sheet, which are initiated by a source rapidly moving
towards the Earth (hypothetically BBF). From top to bottom,
there are shown three pictures corresponding to different nor-
malized velocities (in units ofwf 1) of the moving source.
Taking reasonable parametersV0∼400 km/s,Vg∼60 km/s,
we estimate flapping Mach number aboutMf =V0/Vg∼7.
This means that the real flapping cone angle for typical BBFs
should be rather small.

5 Summary

In a framework of the conventional MHD approach, flapping
waves and instability are analyzed in application to the mag-
netotail current sheet. An important necessary condition for
our theory is a presence of the normal magnetic field compo-
nent (Bz), which has a weak variation along the x-direction.
Analytical MHD solution is obtained for the Harris-like cur-
rent sheet. Dispersion functions are determined for “kink”
and “sausage” modes. The frequency and the growth rate
for the “kink” mode are found to be much larger than those
for the “sausage” mode. For both modes, the frequencies are
monotonic increasing functions of the wave number. The
corresponding wave group velocities are decreasing func-
tions of the wave number, and they vanish asymptotically for
high wave numbers.

Two magnetic gradients,∇zBx and∇xBz, play a crucial
role for the stability of the current sheet. It can be stable or
unstable, if the product of these magnetic gradients is posi-

Fig. 11. The “kink”-like disturbances of the current sheet produced
by the moving source for different normalized velocities.

tive or negative. In particular, the instability can arise in a
vicinity of a localized thinning of the current sheet, where
theBz component has inverse gradient. In this unstable situ-
ation, the frequency is pure imaginary, and the flapping per-
turbations just grow-up without propagation. This means that
initial static equilibrium state can be destroyed by any small
perturbations of the magnetic field and plasma parameters.

www.ann-geophys.net/27/417/2009/ Ann. Geophys., 27, 417–425, 2009
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These perturbations will grow up exponentially during time.
A nonlinear stabilization might be possible when the dis-
placement amplitude will be of the order of the current sheet
thickness

For the typical parameters of the Earth’s current sheet, the
group velocity of the “kink”-like mode is estimated as a few
tens of kilometers per second that is in good agreement with
the CLUSTER observations. A strong decrease of the group
velocity for high wave numbers means that the small scale
oscillations propagate much slower than the large scale os-
cillations. Because of that, the propagating flapping pulse is
expected to have a smooth leading front, and a small scale
oscillating trailing front.

The double gradient flapping waves studied in our model
propagate in the direction perpendicular to the planes of the
background magnetic field lines, and thus they can not be
stabilized by the magnetic tension. For the “kink” mode, the
magnetic field planes are just shifting with respect to each
other.

In the stable region, the flapping oscillations may be
initiated by “Bursty Bulk Flows” (BBFs) related to mag-
netic reconnection pulses in the magnetotail. Existence of
such accelerated BBFs is well known from Angelopoulos
et al. (1992). These BBFs can induce flapping wave dis-
turbances of the current sheet, like a ship moving on a wa-
ter surface. Our model predicts also oscillations behind the
moving source, which have a very weak damping. The flap-
ping wave disturbances produced by the moving source, has
to be bounded by the Mach cone depending on the special
flapping Mach number defined as a ratio of the source veloc-
ity to the characteristic wave propagation speed. This is the
dimensionless similarity parameter for the flapping waves,
which characterizes the interaction between moving source
and flapping waves in the current sheet. For the realistic
simulation of the flapping oscillations produced by BBFs,
moving along the magnetotail current sheet, a further de-
velopment of our approach is required on a basis of three-
dimensional nonlinear MHD model. Elaboration of such
model is a task for future investigation.

Acknowledgements.We thank V. Sergeev for fruitful discussions
and help in preparation of the manuscript. This work is supported
by RFBR grants N 07-05-00776-a, N 07-05-00135, by SFU grant N
10, by Programs 2.16 and 16.3 of RAS, and by project P20341–N16
from the Austrian “Fonds zur F̈orderung der wissenschaftlichen
Forschung”, and also by project I.2/04 from “Österreichischer Aus-
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