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A map f of the ring R into itself is of period 2 if 𝑓2 (𝑥) = 𝑥 for all 𝑥 ∈ 𝑅; involutions are much studied examples. We present some
commutativity results for semiprime and prime rings with involution, and we study the existence of derivations and generalized
derivations of period 2 on prime and semiprime rings.

1. Introduction

Let 𝑅 be a ring with center 𝑍 = 𝑍(𝑅), and for each 𝑥, 𝑦 ∈ 𝑅,
let [𝑥, 𝑦] denote the commutator 𝑥𝑦−𝑦𝑥. Note that [𝑥𝑦, 𝑤] =
𝑥[𝑦, 𝑤] + [𝑥, 𝑤]𝑦 and [𝑤, 𝑥𝑦] = 𝑥[𝑤, 𝑦] + [𝑤, 𝑥]𝑦 for all
𝑥, 𝑦, 𝑤 ∈ 𝑅—facts we will use repeatedly.

Let 𝑆 be a nonempty subset of𝑅. Amap𝑓 : 𝑅 → 𝑅 is said
to be of period 2 on 𝑆 if 𝑓2(𝑥) = 𝑥 for all 𝑥 ∈ 𝑆, and 𝑆 is called
an 𝑓-subset if 𝑓(𝑆) = 𝑆. If [𝑥, 𝑓(𝑥)] = 0 for all 𝑥 ∈ 𝑆, then
𝑓 is said to be commuting on 𝑆; if [𝑥, 𝑦] = [𝑓(𝑥), 𝑓(𝑦)] for
all 𝑥, 𝑦 ∈ 𝑆, then, as in [1], 𝑓 is called strong commutativity-
preserving on 𝑆.

We assume the reader is familiar with the definitions of
derivation and involution. We define an additive map 𝐹 :
𝑅 → 𝑅 to be a right (resp. left) generalized derivation on 𝑅
if 𝐹(𝑥𝑦) = 𝐹(𝑥)𝑦 + 𝑥𝑑(𝑦) (resp., 𝐹(𝑥𝑦) = 𝑑(𝑥)𝑦 + 𝑥𝐹(𝑦)) for
all 𝑥, 𝑦 ∈ 𝑅, where 𝑑 is a derivation on𝑅, called the associated
derivation. If𝐹 is both a right generalized derivation and a left
generalized derivation with the same associated derivation,
we call𝐹 a generalized derivation. (Note that this definition is
different from that of Hvala in [2]; his generalized derivations
are our right generalized derivations.)

Our purpose is to study existence and properties of invo-
lutions, derivations, and generalized derivations of period 2
on certain subsets of semiprime and prime rings.

2. Two Commutativity Results for
Rings with Involution

There are several known commutativity results for rings with
involution (cf. [3, Chapter 3]). We now present a result
showing the equivalence of two commutativity conditions on
a ∗-ideal of a semiprime ring with involution.

Theorem 1. Let 𝑅 be a semiprime ring with involution ∗, and
let 𝑈 be a ∗-ideal of 𝑅. Then ∗ is commuting on 𝑈 if and only
if ∗ is strong commutativity-preserving on 𝑈.

Proof. Assume first that ∗ is commuting on 𝑈; that is,
[𝑥, 𝑥∗] = 0 for all 𝑥 ∈ 𝑈. By linearizing we get

[𝑥, 𝑦∗] = [𝑥∗, 𝑦] ∀𝑥, 𝑦 ∈ 𝑈. (1)

It follows that [𝑥𝑦, 𝑥∗] = [(𝑥𝑦)∗, 𝑥] and hence 𝑥[𝑦, 𝑥∗] =
[𝑦∗, 𝑥]𝑥∗, and by (1) we get

𝑥 [𝑦∗, 𝑥] = [𝑦∗, 𝑥] 𝑥∗ ∀𝑥, 𝑦 ∈ 𝑈. (2)

Since 𝑈 is a ∗-ideal, (2) yields

𝑥 [𝑥, 𝑦] = [𝑥, 𝑦] 𝑥∗ ∀𝑥, 𝑦 ∈ 𝑈. (3)

Substituting 𝑧𝑦 for𝑦, 𝑧 ∈ 𝑈, we now get𝑥[𝑥, 𝑧𝑦] = [𝑥, 𝑧𝑦]𝑥∗,
so that 𝑥𝑧[𝑥, 𝑦] + 𝑥[𝑥, 𝑧]𝑦 = [𝑥, 𝑧]𝑦𝑥∗ + 𝑧[𝑥, 𝑦]𝑥∗. Using
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(3) to replace the last term in this equation by 𝑧𝑥[𝑥, 𝑦]
and the second term by [𝑥, 𝑧]𝑥∗𝑦, we see that [𝑥, 𝑧][𝑥, 𝑦] +
[𝑥, 𝑧][𝑥∗, 𝑦] = 0, so by (1),

[𝑥, 𝑧] [𝑥, 𝑦 + 𝑦∗] = 0 ∀𝑥, 𝑦, 𝑧 ∈ 𝑈. (4)

Replacing 𝑧 by 𝑧𝑤 yields [𝑥, 𝑧]𝑈[𝑥, 𝑦+𝑦∗] = {0} for all 𝑥, 𝑦 ∈
𝑈, so [𝑥, 𝑦 + 𝑦∗]𝑈[𝑥, 𝑦 + 𝑦∗] = {0} for all 𝑥, 𝑦 ∈ 𝑈. Since an
ideal of a semiprime ring is a semiprime ring, we conclude
that

[𝑥, 𝑦 + 𝑦∗] = 0 ∀𝑥, 𝑦 ∈ 𝑈. (5)

Now (5) may be rewritten as

[𝑥, 𝑦] = [𝑦∗, 𝑥] , (6)

so by replacing 𝑥 by 𝑥∗ we get [𝑥∗, 𝑦] = [𝑦∗, 𝑥∗]. But by (6)
[𝑥∗, 𝑦] = [𝑦, 𝑥]; hence [𝑦, 𝑥] = [𝑦∗, 𝑥∗] for all 𝑥, 𝑦 ∈ 𝑈, so
that ∗ is strong commutativity-preserving on 𝑈.

For the converse, we assume that ∗ is strong commu-
tativity-preserving on 𝑈, which means that [𝑥, 𝑦] = [𝑥∗, 𝑦∗]
for all 𝑥, 𝑦 ∈ 𝑈. Substituting 𝑥𝑦 for 𝑦, we get

𝑥 [𝑥, 𝑦] = [𝑥, 𝑦] 𝑥∗ ∀𝑥, 𝑦 ∈ 𝑈. (7)

This is just equation (3), so we may argue as before that

[𝑥, 𝑦 + 𝑦∗] = 0 ∀𝑥, 𝑦 ∈ 𝑈, (8)

and 𝑦 + 𝑦∗ ∈ 𝑍(𝑈) for all 𝑦 ∈ 𝑈. It follows at once that
[𝑦, 𝑦∗] = 0 for all 𝑦 ∈ 𝑈; that is, ∗ is commuting on 𝑈.

The proof just given yields a result for prime rings with
involution. Before stating our theorem, we mention that we
are using the symbols 𝑆 and𝐾 to denote the sets of symmetric
elements and skew elements, respectively, in the ring 𝑅 with
involution ∗.

Theorem 2. Let 𝑅 be a prime ring with involution ∗, with
𝑐ℎ𝑎𝑟(𝑅) ̸= 2. If ∗ is commuting on some nonzero ∗-ideal 𝑈,
then 𝑆 ⊆ 𝑍.

Proof. It follows from (5) that if𝑦 ∈ 𝑆∩𝑈, then𝑦 ∈ 𝑍(𝑈), and
since in a prime ring the center of a nonzero ideal is contained
in the center of 𝑅, 𝑆 ∩ 𝑈 ⊆ 𝑍(𝑅). Suppose that 𝑆 ∩ 𝑈 ̸= {0},
and let 𝑧 ∈ (𝑆 ∩ 𝑈) \ {0}. Then for any 𝑠 ∈ 𝑆, 𝑠𝑧 ∈ 𝑈 ∩ 𝑆, so
𝑠𝑧 ∈ 𝑍(𝑅). Since 𝑧 is not a zero divisor, we get 𝑠 ∈ 𝑍(𝑅).

To complete the proof, we need only show that 𝑆 ∩ 𝑈 ̸=
{0}. Suppose, on the contrary, that 𝑆 ∩ 𝑈 = {0}. Then for any
𝑦 ∈ 𝑈, 𝑦 + 𝑦∗ = 0; hence 𝑈 ⊆ 𝐾. But for any 𝑘 ∈ 𝐾, 𝑘2 ∈ 𝑆;
therefore 𝑦2 = 0 for all 𝑦 ∈ 𝑈, and we have contradicted a
well-known result of Levitzki [4, Lemma 1.1].

3. On Nonexistence of Derivations of Period 2

If 𝑅 is an algebra over 𝐺𝐹(𝑝) with trivial multiplication, the
map given by 𝑑(𝑥) = (𝑝 − 1)𝑥 is a derivation of period 2. We
do not know whether there exist less obvious examples.

Clearly any derivation 𝑑 of period 2 must be a bijection,
so there exists no 𝑐 ̸= 0 such that 𝑑(𝑐) = 0. It follows that a
ring 𝑅 with 1 admits no derivation which is of period 2 on 𝑅.

There do exist semiprime rings 𝑅 admitting a derivation
which is a bijection, for example, the R—algebra with basis
{𝑒𝑘𝑥 | 𝑘 = 1, 2, . . .}, with 𝑑 being the usual differentiation.
Obviously this example is not of period 2, and we will show
that a semiprime ring admits no derivation of period 2 on 𝑅.

Theorem 3. Let 𝑅 be a semiprime ring and 𝑈 a nonzero right
ideal. Then 𝑅 admits no derivation 𝑑 such that 𝑑 is of period 2
on 𝑈.

Proof. Suppose there exists a derivation 𝑑 on 𝑅 such that
𝑑2(𝑥) = 𝑥 for all 𝑥 ∈ 𝑈. For 𝑥, 𝑦 ∈ 𝑈, 𝑥𝑑(𝑦) ∈ 𝑈 and the
condition that 𝑥𝑑(𝑦) = 𝑑2(𝑥𝑑(𝑦)) yields

𝑥𝑑 (𝑦) + 2𝑑 (𝑥) 𝑦 = 0 ∀𝑥, 𝑦 ∈ 𝑈. (9)

Since 𝑑2(𝑥𝑦) = 𝑥𝑦 = 𝑑(𝑑(𝑥)𝑦 + 𝑥𝑑(𝑦)), we get

𝑥𝑦 + 2𝑑 (𝑥) 𝑑 (𝑦) = 0 ∀𝑥, 𝑦 ∈ 𝑈; (10)

and replacing 𝑦 by 𝑦𝑟 in (10), we obtain

2𝑑 (𝑥) 𝑦𝑑 (𝑟) = 0 ∀𝑥, 𝑦 ∈ 𝑈, 𝑟 ∈ 𝑅. (11)

Substituting 𝑟𝑥 for 𝑟 in (11), we get 2𝑑(𝑥)𝑦𝑟𝑑(𝑥) = 0; hence

2𝑑 (𝑥) 𝑦𝑅𝑑 (𝑥) 𝑦 = {0} ∀𝑥, 𝑦 ∈ 𝑈. (12)

But 𝑅 is semiprime, so 2𝑑(𝑥)𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝑈, and by
(9),

𝑥𝑑 (𝑦) = 0 ∀𝑥, 𝑦 ∈ 𝑈. (13)

Therefore

𝑑 (𝑥𝑑 (𝑦)) = 𝑑 (𝑥) 𝑑 (𝑦) + 𝑥𝑑2 (𝑦)

= 𝑑 (𝑥) 𝑑 (𝑦) + 𝑥𝑦 = 0 ∀𝑥, 𝑦 ∈ 𝑈,
(14)

which together with (10) yields 𝑥𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝑈. In
particular, 𝑥2 = 0 for all 𝑥 ∈ 𝑈, contrary to Levitzki’s result.

Corollary 4. A semiprime ring 𝑅 admits no derivation of
period 2 on 𝑅.

Remark 5. Of course any derivation 𝑑 of period 2 on 𝑅

satisfies 𝑑3 = 𝑑. It is shown in [5] that a noncommutative
semiprime ring, though it has no derivations of period 2,
may have many nonzero derivations for which 𝑑3 = 𝑑; for
any noncentral idempotent 𝑒, the inner derivation 𝑑

𝑒
is an

example.

4. Generalized Derivations of Period 2

Any ring admits right generalized derivations of period 2,
namely, the identity map and its negative. Moreover, if 𝑅 has
1 and 𝑐 ∈ 𝑅 with 𝑐2 = 1, then 𝐹(𝑥) = 𝑐𝑥 defines a right
generalized derivation of period 2. We show that, in many
prime rings, there are no other possibilities.
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We will make use of several easy lemmas.

Lemma 6. Let 𝑅 be an arbitrary ring. If 𝐹 is a generalized
derivation on 𝑅, then 𝐹(𝑍) ⊆ 𝑍.

Proof. Let 𝑥 ∈ 𝑅 and 𝑧 ∈ 𝑍. Then 𝐹(𝑧𝑥) = 𝐹(𝑥𝑧), so that
𝐹(𝑧)𝑥 + 𝑧𝑑(𝑥) = 𝑑(𝑥)𝑧 + 𝑥𝐹(𝑧), where 𝑑 is the associated
derivation of 𝐹. Since [𝑧, 𝑑(𝑥)] = 0, the result follows at once.

Lemma 7. Let 𝑅 be a prime ring with 𝑐ℎ𝑎𝑟(𝑅) ̸= 2, and let 𝑑
be a derivation on 𝑅. If the right generalized derivation given
by 𝐹(𝑥) = 𝑥 + 𝑑(𝑥) (resp., 𝐹(𝑥) = −𝑥 + 𝑑(𝑥)) for all 𝑥 ∈ 𝑅 is
of period 2 on 𝑅, then 𝐹 is the identity map (resp., the negative
of the identity map) on 𝑅.

Proof. Consider the case𝐹(𝑥) = 𝑥+𝑑(𝑥) for all𝑥 ∈ 𝑅. If𝐹 is of
period 2, we have 𝑥 = 𝐹2(𝑥) = 𝐹(𝑥+𝑑(𝑥)) = 𝐹(𝑥)+𝐹(𝑑(𝑥)) =
𝑥 + 𝑑(𝑥) + 𝑑(𝑥) + 𝑑2(𝑥); hence

2𝑑 (𝑥) + 𝑑2 (𝑥) = 0 ∀𝑥 ∈ 𝑅. (15)

Replacing 𝑥 by 𝑥𝑦, we get 2(𝑑(𝑥)𝑦 + 𝑥𝑑(𝑦)) + 𝑑2(𝑥)𝑦 +

2𝑑(𝑥)𝑑(𝑦)+𝑥𝑑2(𝑦) = 0; that is, (2𝑑(𝑥)+𝑑2(𝑥))𝑦+𝑥(2𝑑(𝑦)+

𝑑2(𝑦)) + 2𝑑(𝑥)𝑑(𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑅. In view of (15) and
the assumption that 𝑐ℎ𝑎𝑟(𝑅) ̸= 2, this equation gives

𝑑 (𝑥) 𝑑 (𝑦) = 0 ∀𝑥, 𝑦 ∈ 𝑅. (16)

It is well known and easy to prove that if 𝑅 is prime and 𝑑
is a nonzero derivation, then 𝑎 ∈ 𝑅 and 𝑎𝑑(𝑅) = {0} implies
𝑎 = 0.Thus, from (16) we conclude that 𝑑 = 0 and therefore 𝐹
is the identity map on 𝑅. A similar argument works if 𝐹(𝑥) =
−𝑥 + 𝑑(𝑥) for all 𝑥 ∈ 𝑅.

Lemma8. Let𝑅 be a prime ringwith 𝑐ℎ𝑎𝑟(𝑅) ̸= 2, and let𝐹 be
a right generalized derivation on 𝑅 with associated derivation
𝑑. If 𝐹 is of period 2 on 𝑅, then 𝑑(𝑍) = {0}.

Proof. For all 𝑥, 𝑦 ∈ 𝑅, 𝑥𝑦 = 𝐹2(𝑥𝑦) = 𝐹(𝐹(𝑥)𝑦 + 𝑥𝑑(𝑦)) =

𝐹2(𝑥)𝑦 + 𝐹(𝑥)𝑑(𝑦) + 𝐹(𝑥)𝑑(𝑦) + 𝑥𝑑2(𝑦); hence

2𝐹 (𝑥) 𝑑 (𝑦) + 𝑥𝑑2 (𝑦) = 0 ∀𝑥, 𝑦 ∈ 𝑅. (17)

Replacing 𝑥 by 𝐹(𝑥) in (17) yields

2𝑥𝑑 (𝑦) + 𝐹 (𝑥) 𝑑
2 (𝑦) = 0 ∀𝑥, 𝑦 ∈ 𝑅. (18)

Letting 𝑧 ∈ 𝑍 and 𝑥 ∈ 𝑅 and replacing 𝑥 by 𝑥𝑧 in (18),
we get 2𝑥𝑧𝑑(𝑦) + (𝐹(𝑥)𝑧 + 𝑥𝑑(𝑧))𝑑2(𝑦) = 0 = 𝑧(2𝑥𝑑(𝑦) +

𝐹(𝑥)𝑑2(𝑦)) + 𝑑(𝑧)𝑥𝑑2(𝑦), so by (18) we obtain

𝑑 (𝑧) 𝑅𝑑2 (𝑦) = {0} ∀𝑦 ∈ 𝑅. (19)

If 𝑑(𝑍) ̸= {0}, we conclude that 𝑑2 = 0. But since 𝑅 is prime
and 𝑐ℎ𝑎𝑟(𝑅) ̸= 2, it is easy to show that 𝑑 ̸= 0 implies 𝑑2 ̸= 0;
hence 𝑑(𝑍) = {0} as claimed.

Theorem 9. Let 𝑅 be a (not necessarily commutative) domain
with 1, with 𝑐ℎ𝑎𝑟(𝑅) ̸= 2. If 𝐹 is a right generalized derivation
on 𝑅 of period 2, then 𝐹 is the identity map or its negative.

Proof. Note that

𝐹 (𝑥) = 𝐹 (1𝑥) = 𝐹 (1) 𝑥 + 𝑑 (𝑥) ∀𝑥 ∈ 𝑅. (20)

Taking 𝑥 = 1 in (17) and (18) and letting 𝑐 = 𝐹(1), we have
2𝑐𝑑(𝑦) + 𝑑2(𝑦) = 0 and 2𝑑(𝑦) + 𝑐𝑑2(𝑦) = 0 for all 𝑦 ∈ 𝑅. It
follows that 2𝑑(𝑦)+𝑐(−2𝑐𝑑(𝑦)) = 0; that is, (2−2𝑐2)𝑑(𝑦) = 0;
hence

(𝑐2 − 1) 𝑑 (𝑦) = 0 ∀𝑦 ∈ 𝑅. (21)

If 𝑑 ̸= 0, we have 𝑐 = 1 or 𝑐 = −1, so that 𝐹(𝑥) = 𝑥 + 𝑑(𝑥) for
all 𝑥 ∈ 𝑅 or 𝐹(𝑥) = −𝑥 + 𝑑(𝑥) for all 𝑥 ∈ 𝑅. But by Lemma 7
this would imply 𝑑 = 0; hence 𝑑 = 0 and

𝐹 (𝑥) = 𝑐𝑥 ∀𝑥 ∈ 𝑅. (22)

Since 𝐹 is of period 2, 𝑥 = 𝑐2𝑥 and hence (𝑐2 − 1)𝑥 = 0 for all
𝑥 ∈ 𝑅. Thus, 𝑐 = 1 or 𝑐 = −1, so by (22), 𝐹 is the identity map
or its negative.

Corollary 10. Let 𝑅 be a commutative integral domain with
𝑐ℎ𝑎𝑟(𝑅) ̸= 2. If 𝐹 is a right generalized derivation of period 2
on 𝑅, then 𝐹 is the identity map or its negative.

Proof. If 𝑅 has 1, the result is immediate from Theorem 9. If
𝑅 does not have 1, define 𝐹 on the field of fractions 𝐾 by
𝐹(𝑎/𝑏) = 𝐹(𝑎)/𝑏. Using the fact that 𝑑 = 0 by Lemma 8,
we can show that 𝐹 is well defined and is a right generalized
derivation on 𝐾. By Theorem 9, 𝐹 is the identity map or its
negative on 𝐾 and it follows that 𝐹 is the identity map or its
negative on 𝑅.

Theorem 11. Let 𝑅 be a prime ring with 𝑍 ̸= {0} and with
𝑐ℎ𝑎𝑟(𝑅) ̸= 2. If 𝐹 is a generalized derivation of period 2 on 𝑅
with associated derivation 𝑑, then 𝐹 is the identity map or its
negative.

Proof. By Lemma 6, 𝐹(𝑍) ⊆ 𝑍; hence 𝐹 restricts to a
generalized derivation on 𝑍. Since the center of a prime ring
is a commutative domain, it follows from Corollary 10 that
𝐹(𝑧) = 𝑧 for all 𝑧 ∈ 𝑍 or 𝐹(𝑧) = −𝑧 for all 𝑧 ∈ 𝑍. If the
former holds, then 𝐹(𝑧𝑥) = 𝐹(𝑥𝑧), together with the fact that
𝑑(𝑍) = {0}, gives 𝑧(𝐹(𝑥) − 𝑥 − 𝑑(𝑥)) = 0 for all 𝑥 ∈ 𝑅 and
𝑧 ∈ 𝑍. Taking 𝑧 ̸= 0 gives 𝐹(𝑥) = 𝑥 + 𝑑(𝑥) for all 𝑥 ∈ 𝑅, so
by Lemma 7, 𝐹 is the identity map on 𝑅. A similar argument
shows that if 𝐹(𝑧) = −𝑧 for all 𝑧 ∈ 𝑍, 𝐹 is the negative of the
identity map.
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