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Several methods have been proposed for synthesizing computer communication protocol specifications from service specifications.
Some protocol synthesis methods based on the finite state machine (FSM) model assume that primitives in the service
specifications cannot be executed simultaneously. Others either handle only controlled primitive concurrency or have tight
restrictions on the applicable FSM topologies. As a result, these synthesis methods are not applicable to an interesting variety of
inherently concurrent applications, such as the Internet and mobile communication systems. This paper proposes a concurrent-
based protocol synthesis method that eliminates the restrictions imposed by the earlier methods. The proposed method uses a
synthesis method to obtain a sequential protocol specification (P-SPEC) from a given service specification (S-SPEC). The resulting
P-SPEC is then remodeled to consider the concurrency behavior specified in the S-SPEC, while guaranteeing that P-SPEC provides
the specified service.
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1. INTRODUCTION

A protocol can be defined as an agreement for the orderly and
timely exchange of messages among communicating entities.
A full protocol description comprises a precise format
for valid messages (syntax), rules for the orderly message
exchanges (grammar), and vocabulary of valid messages that
can be exchanged with their clear meaning (semantics).

In protocol design, interacting entities are constructed
to provide a set of specified services for distributed service
users. While designing a communication protocol, semantic
and syntactic errors may exist. Semantic design errors cause
incorrect services to be provided to distributed service users.
Syntactic design errors can cause the protocol to deadlock.
There are three common types of syntactic design error,
including (1) an unspecified reception error, when the
protocol reaches a state where it is not able to handle the
message that may arrive; (2) a deadlock error, when the
protocol is at a nonfinal state, all channels are empty, and
no transmission transition is specified; (3) a livelock error,
when the protocol entities are locked in a loop exchanging
messages that are not contributing to the provision of the
desired service.

A communication system is most conveniently struc-
tured in layers. The service access point (SAP) is an
interaction point through which a layer can communicate
with the upper layer or service users, or with the lower
layer. A layer can service several SAPs. The communication
is performed using service primitives (SPs). The SP identifies
the type of the message and the SAP at which it occurs.

From the user’s viewpoint, at a high level of abstrac-
tion, the layer can be viewed as a black box where only
interactions with the user, identified by SPs, are observable.
The specification of the service provided by the layer is
defined by the ordering of the visible SPs and is called
service specification (S-SPEC). At a refined and lower level
of abstraction, the service provided by the layer is performed
using a number of cooperating protocol entities. The number
of protocol entities is equal to the number of SAPs available
at the layer. In a distributed system, the protocol entities are
geographically distributed and exchange protocol messages
through a communication medium. The protocol specifi-
cation (P-SPEC) consists of the specification of each of the
protocol entities, each describing the interactions needed to
deliver the specified service. Figure 1 shows the two levels of
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Figure 1: A communication system at two levels of abstraction.

abstraction of a communication service. Both S-SPEC and
P-SPEC can be modeled using finite state machines (FSMs).

In autonomous communication systems such as the
Internet and mobile communication systems, a user can
initiate a service at any time. As a result, distributed users
at different SAPs may issue simultaneous service requests;
consequently, it is possible that two or more users will simul-
taneously issue service requests to each other. This situation
leads to message collision. If the protocol specification is not
properly designed to deal with this situation, an unspecified
reception error may occur.

For example, mobile games use WiFi and Bluetooth
technologies [1]. In such games, distributed players use
different machines to play with each other simultaneously
and communicate over wireless networks. If the communi-
cation protocol providing this game service is improperly
designed, the game will be blocked indefinitely or will
function improperly.

Concurrent clients and servers can communicate over the
Internet using TCP/IP standard or nonstandard protocols
[2]. For example, a concurrent client for the TIME service
can send requests to multiple servers one at a time and receive
responses in an arbitrary order. An unspecified reception
error may occur or a deadlock may be reached in the client if
its protocol is not designed properly.

Protocol specifications are more complex to specify
than service specifications because of their refined nature.
Therefore, in a top-down design approach, it is quite natural
to start the protocol design process from a complete and
unambiguous service specification. The construction or
derivation of a protocol specification from a given service
specification is called protocol synthesis. Instead of applying a
sequence of design, analysis, error detection, and correction
iteratively until the design is error-free, the protocol synthesis
approach does not require any further validation of the
synthesized protocol specification. The correctness of the
synthesized protocol must be guaranteed as a direct by-
product of the synthesis method [3]. The synthesis approach
is used to construct or complete a partially specified protocol
design, such that the interactions between the constructed
or completed protocol entities proceed without encountering
any logical error while providing the specified service. Several
protocol synthesis methods have appeared in the literature
[4–16]. The methods introduced by Saleh and Probert [4],
Higashino et al. [7], Yamaguchi et al. [8], Bista et al. [11],

Maneerat et al. [12], Yamaguchi et al. [13], Maneerat et al.
[14], Dallal [15], and Stakhanova et al. [16] are either
not based on the FSM model or support only sequential
applications. The method introduced by Saleh and Probert
[9] supports only controlled nonsequential applications. The
methods introduced by Khoumsi [5], Park and Miller [6],
and Kakuda et al. [10] support nonsequential applications
that have restrictions on the service specification model
topology or on the allowed ordering of service primitives in
the service specification.

This paper introduces a method for the synthesis of
protocol specifications that do not necessarily start from
sequential service specifications. The synthesis method
extends the synthesis method introduced in Saleh and
Probert [4] to derive the sequential P-SPEC. The synthesis
method then remodels the sequential P-SPEC to consider the
concurrency behavior specified in the S-SPEC. The synthesis
method supports uncontrolled concurrent applications and
is free of the restrictions imposed on service specification by
the earlier methods. The synthesis method introduced uses
FSMs for modeling both service and protocol specifications.
This paper does not address the multithreading problem in
which an application with different threads runs within one
or more processors. Instead, it addresses the more complex
problem of concurrency in which an application consists of
distributed protocol entities that are running concurrently in
geographically distributed processors.

The paper is organized as follows. Related research is
overviewed in Section 2. In Section 3, the models used for the
service and protocol specifications are defined. In Section 4,
the concurrent protocol synthesis method is introduced.
Finally, Section 5 concludes the paper and discusses possible
extensions in future work.

2. RELATED RESEARCH

Two approaches are used in designing communication
protocols: analysis and synthesis. In the analysis approach, a
sequence of design, analysis, error detection, and correction
is applied iteratively to produce error-free design. In the
synthesis approach, the protocol design is constructed or
completed in such a way that no further validation is needed.
Some protocol synthesis methods start the derivation process
from a complete service specification [4–10, 12–15] and
others do not [17, 18]. The protocol synthesis methods can
be further classified according to the models used, which
include finite state machines [4, 6, 7, 9, 10, 15], Petri nets
[8, 13], and LOTOS-like [5, 12, 14].

Some of the FSM-model-based service-oriented protocol
synthesis methods consider the concurrency behavior of the
protocol entities, including Park and Miller [6], Saleh and
Probert [9], and Kakuda et al. [10]. In Park and Miller [6],
a concurrent timed protocol synthesis method is introduced,
with three restrictions. The first restriction is that the S-SPEC
model is assumed to be cyclic. The second restriction is that
if a path p includes a transition associated with an event that
passes through a SAP s, any other path executed in parallel
with p cannot include a transition associated with an event
that passes through the same SAP s. As a result, the main



J. Al Dallal and K. Saleh 3

concurrency problem, message collision, is not resolved. The
last restriction is that all the outgoing transitions from a
choice state have to be associated with events that pass
through the same SAP.

Kakuda et al. [10] introduced a concurrent protocol
synthesis method, with two restrictions. The first restriction
is that the S-SPEC model must be a tree. The second is
that if a collision occurs between two protocol entities, the
parallel path that has the higher priority proceeds and the
events that have not been executed in the other path yet are
cancelled. This is called controlled concurrency. In controlled
concurrency, if a message collision occurs, the problem is not
solved by handling the collision in such a way that all parallel
paths proceed without canceling some or all of their events.

Finally, in Saleh and Probert [9], a concurrent protocol
synthesis method is introduced. The synthesis method
extends the sequentially based synthesis method introduced
earlier by them in Saleh and Probert [4]. After applying the
three steps of their original method, the extended method
added transitions to solve the controlled concurrency prob-
lem. If a message collision occurs, either all parallel paths
have to be re-executed or the parallel path that has the highest
priority proceeds and the events not yet executed in the other
paths are cancelled. This solution is not practical because it
results in canceling or re-executing some events.

In this paper, the introduced synthesis method solves the
true concurrency problem. In our method, if a message col-
lision occurs, all parallel paths proceed without canceling or
re-executing any event. In addition, our method eliminates
all the restrictions imposed by the methods introduced in
Park and Miller [6] and Saleh and Probert [9], and therefore
is applicable to a wider range of applications.

3. MODEL DEFINITION

Both the service and protocol specifications are modeled
using FSM-based models. A FSM consists of a finite number
of states and transitions. It is only suitable for modeling the
sequential behavior of systems. The work we are develop-
ing here addresses the synthesis of protocol specifications
from a service specification exhibiting concurrent behaviors.
Therefore, in this section, the FSM is extended to model
the concurrent behaviors in the service specification. The
extended model is called the extended finite state machine
(EFSM). Each protocol entity is a sequentially based subsys-
tem, and therefore, a traditional FSM can be used without
extension to model the protocol entities. In this section, the
models used are formally defined in the context of the layered
communication system introduced in Section 1.

3.1. Service specification model

The service specification described in the EFSM defines
sequences of primitives exchanged between users and pro-
cesses through the service access points at both upper and
lower layers. A service specification specifies a concurrent
behavior if two or more service primitives pass through
different SAPs simultaneously.

Definition 1. A service specification S-SPEC is modeled by
an EFSM denoted by a tuple (Ss, Ts, σ), where

(1) Ss is a nonempty finite set of service states; each
state s ∈ Ss is a choice, fork, joint, or leaf state; a
choice state is a state that has one or more outgoing
transitions and only one transition is executed; a fork
state, denoted by ‖, is a state that has two or more
outgoing transitions associated with service primi-
tives that pass through different SAPs, and all these
outgoing transitions are executed simultaneously; a
joint state is a state that has two or more incoming
transitions and one or more outgoing transitions; a
state could be both a fork state and a joint state;
finally, a leaf state is a terminal sink state that does not
have any outgoing transitions; as in [6], we assume in
our work that there exists a unique joint state for each
fork state, and vice versa;

(2) Ts is a finite set of transitions, such that each
transition t ∈ Ts is a 3-tuple 〈tail(t), head(t), SP〉,
where tail(t) and head(t) are, respectively, the tail and
the head states of t, and SP is the service primitive
that defines the service event, its type, and the index
of the SAP, denoted by SAP(SP), at which the SP
is observed; there are two types of service primitive
directions; an SP of type ↑ is directed upward from
the protocol entity to the upper SAP (U-SAP) and
directed to the service user at the upper layer; an SP
of type ↓ is directed downward from the service user
at the U-SAP and directed to a protocol entity; all
service primitives in the S-SPEC involve the U-SAP
only;

(3) σ ∈ Ss is the initial service state.

A path p in the ESFM is specified by the sequence of
states (si, s j , . . . , sk) traversed by a set of successive transitions,
where s j = successive (si)p. The key difference between
the EFSM and the traditional FSM is the presence of the
fork state. Parallel paths are specified by the sequence
(si, s j , . . . , sk), where si is a fork state and sk is either a joint
or leaf state.

Figure 2 shows a service specification S-SPEC. This
example demonstrates a simple data transfer application,
consisting of three entities: a server and two machines
available at three SAPs. The service described in the S-
SPEC is a server-controlled transfer of data between two
machines. The server and the two machines are processing
concurrently. The service is initiated by the server user by
issuing a Next SP downward to the sever machine. This
service request results in two concurrent upward requests
Next SP at SAP2 and SAP3. The user at SAP2 issues a
downward Data SP. Similarly, the user at SAP3 issues a
downward Data SP. The downward Data SP at SAP2 will
result in an upward Data SP at SAP3 and similarly, the
downward Data SP at SAP3 will result in an upward Data
SP at SAP2. Then, the service cycles back after receiving Next
SP downward from the server user. In this example, if one or
both machines have nothing to exchange, they send NULL
data message. In this example, Ss = {s1, s2, s3, s4, s5, s6, s7},
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Figure 2: A service specification example.

Ts = {〈s1, s2, ↓Next1〉, 〈s2, s3, ↑Next3〉, 〈s3, s4, ↓Data3〉, 〈s4, s7,
↑ Data2〉, 〈s2, s5, ↑ Next2〉, 〈s5, s6, ↓ Data2〉, 〈s6, s7, ↑ Data3〉,
〈s7, s2, ↓Next1〉}, and σ = {s1}. For the transition t = 〈s1, s2, ↓
Next1〉, the states s1 and s2 are, respectively, the tail and head
states of t, and the SP is ↓Next1. For the SP, the event is Next,
SAP(SP) = 1, and the type is ↓. States s1, s3, s4, s5, and s6

are choice states and states s2 and s7 are fork and joint states,
respectively. Paths (s2, s3, s4, s7) and (s2, s5, s6, s7) are parallel
paths.

3.2. Protocol specification model

The protocol specification consists of the specifications of
the protocol entities that cooperate to provide the service
described in the service specification.

Definition 2. The protocol entity specification PE-SPECi is
modeled by a FSM denoted by a tuple (Spi, Tpi, σpi), where

(1) Spi is a nonempty finite set of states of protocol entity
i; each state spi ∈ Spi is an image of one or more
S-SPEC states. A state spi can be an image of more
than one S-SPEC state if two or more S-SPEC states
are combined during the protocol synthesis process;
a path pp in the PE-SPECi is an image of path ps in
the S-SPEC if each state in pp is an image of one or
more states in ps, and each state in ps is a preimage of
a state in pp; a parallel path in PE-SPEC is an image
of a parallel path in S-SPEC; each state can be either a
sending or a receiving state; a sending state is a source
state of a transition associated with an SP; a receiving
state is a source state of transitions such that all of
them are associated with receiving events;

(2) Tpi is a finite set of transitions such that each
transition t ∈ Tpi is a 3-tuple 〈tail(t), head(t), Ei〉,
where tail(t) and head(t) are, respectively, the tail and
the head states of t, and Ei is a protocol event that can
be either: (1) an SP that passes through SAPi, (2) an
SP that passes through SAPi and an event message E
sent to PE j denoted by !ej , or (3) an event message
E received from PE j denoted by ?ej ; an event of the
second type is denoted by E/!ej ;

(3) σpi ∈ Spi is the initial protocol state.

Figure 3 shows the three PE-SPECs synthesized from
S-SPEC in Figure 2. For PE-SPEC1, Spi = {s1, s2, s7}, Tpi =
{〈s1, s2, Next/!next2, 3〉, 〈s2, s7, ?data2〉, 〈s2, s7, ?data3〉, 〈s7, s2,
Next/!next2, 3〉}, and σpi = {s1}. States s1 and s7 are,
respectively, the images of states s1 and s7 in the S-SPEC
shown in Figure 2. State s2 is the image of the states s2, s3,
s4, s5, and s6 in the S-SPEC. As a result, the path (s2, s7)
in PE-SPEC1 is the image of path (s2, s3, s4, s7) in S-SPEC,
and it is therefore a parallel path because it is an image of a
parallel path in S-SPEC. Finally, states s1 and s7 are sending
states, and state s2 is a receiving state.

In this paper, we assume that the communication
medium between the protocol entities is reliable, and the
messages are delivered in a first-in-first-out (FIFO) order.

4. SYNTHESIZING CONCURRENT
PROTOCOL SPECIFICATIONS

The synthesis of concurrent protocol specifications method
introduced in this paper extends a sequentially based
synthesis method introduced by Saleh and Probert [4]. In
their method, three steps are applied to obtain the PE-
SPECs. In the first step, projected service specifications are
derived by projecting the S-SPEC onto each SAP. In the
second step, a set of transition synthesis rules are applied
to the transitions of the projected service specifications
to obtain the sequentially based PE-SPECs. In the third
step, the PE-SPECs are optimized to obtain the final PE-
SPECs as shown in Figure 3. When the S-SPEC includes
concurrent behaviors, the PE-SPECs obtained may cause an
unspecified reception error. For instance, the S-SPEC given
in Figure 2 shows that the transitions outgoing from state
s2 is executed simultaneously. When the PE-SPECs function
concurrently, the transitions associated to event Next in both
PE-SPEC2 and PE-SPEC3 execute simultaneously. After that,
the transition associated to event ↓Data/!data3 in PE-SPEC2

is executed causing an unspecified reception error to occur
in PE-SPEC3. Similarly, the transition associated to event
↓Data/!data2 in PE-SPEC3 is executed causing an unspecified
reception error to occur in PE-SPEC2.

In our extension, more states and transitions are added
to the derived protocol entities to handle the concurrency
behaviors. The synthesis algorithm, the additional transition
synthesis rules, and the conditions for applying the transition
synthesis rules are illustrated below. The syntactic and
semantic correctness of our extended synthesis method are
provided in Appendix A.

4.1. The synthesis algorithm

Starting from a service specification modeled in EFSM, the
algorithm outlined in Algorithm 1 automatically derives the
concurrent protocol entities that provide the set of services
given in the S-SPEC. In the first step, the sequential protocol
entities are derived using Saleh and Probert [4] synthesis
method. In the second step, using the algorithm outlined in
Algorithm 2, the protocol entities are remodeled to consider
their concurrent execution.
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Figure 3: The PE-SPECs synthesized from the S-SPEC given in Figure 2.

Synthesis algorithm. Derivation of concurrent protocol specification from a service specification.
Input: EFSM-based service specification.
Output: Concurrent FSM-based PE-SPECs.
Steps:

(1) apply the sequential-based protocol synthesis method introduced in Saleh and Probert [4],
(2) apply the From Sequential To Concurrent PEs procedure given in Algorithm 2 to obtain the concurrent PE-SPECs.

Algorithm 1: The synthesis algorithm.

4.2. Additional transition rules

To obtain the concurrent PE-SPECs from the sequential
ones, the procedure shown in Algorithm 2 is applied.
According to this procedure, only the parallel paths are
remodeled. First the parallel paths are partitioned according
to the type of events associated to the first transition in
each path. Then, the paths in each partition are remodeled
according to the type of the image of the fork state (i.e.,
sending or receiving state).

Step 1: partitioning parallel paths

In the protocol entities, the image of the fork state can have
one or more outgoing transitions. In the case where there is
only one outgoing transition, no message collision can occur.
Hence, no modification is required. In the case where there
is more than one outgoing transition from a state s, which is
an image of a fork state, the outgoing paths from state s are
partitioned into two groups according to the type of the event
associated to the first transition in each path. There are two
possible types of such events: a service primitive or an event
reception. Paths in which the first transition is associated to a
service primitive are placed in the first group and the others
are placed in the second group.

Paths in the first group are initiated by the protocol entity
under consideration. On the other hand, the paths in the
second group are not initiated until the protocol entity has
received the required event. When the protocol entity can
execute more than one path in the first group, it has to select

one of them. Once the first transition of a parallel path in
the first group has been executed, the parallel path is selected
and the other parallel paths in the same group are disabled.
However, this case is different for the parallel paths in the
second group. To summarize, when an image of a fork state
in a protocol entity is reached, one of the paths—if there are
any—in the first group is executed along with all paths in the
second group. The first two steps of the procedure given in
Algorithm 3 illustrate how to partition the parallel paths.

Before the parallel paths are remodeled, one more
refinement action is required for the paths in the second
group. Each path in the second group is divided into
subpaths. Each subpath starts with a transition associated
with a receiving event and contains only one such transition.
The use of these subpaths is illustrated below. The third step
of the procedure given in Algorithm 3 shows how to divide
the paths in the second group into subpaths.

For example, in PE-SPEC1 given in Figure 3, state s2 is
an image of a fork state and has more than one outgoing
transition; therefore, the outgoing parallel paths from state
s2 are partitioned into two groups: G1 and G2. The first
group is empty because none of the outgoing transitions
from state s2 is associated with a service primitive. Figure 4(a)
shows the content of the second group. The subpaths of
the parallel paths given in Figure 4(a) are the same as the
parallel paths because each of the parallel paths contains only
one transition. For PE-SPEC2 given in Figure 3, the outgoing
parallel paths from state s2 are partitioned into two groups.
The first and second groups, G1 and G2, include the paths
that start with a transition associated with a service primitive
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Procedure: From Sequential To Concurrent PEs
Inputs: Sequentially based PE-SPECs modeled using FSMs.
Outputs: Corresponding concurrent-based PE-SPECs modeled using FSMs.
Steps:
for each PE-SPEC do

for each state s which is an image of a fork state in PE-SPEC do
if state s has more than one outgoing transition then

(1) apply Partition Parallel Paths procedure,
(2) if s is a sending state then

(2.1) apply Re-Model Parallel Paths for Sending State procedure,
(2.2) else apply Re-Model Parallel Paths for Receiving State procedure.

Algorithm 2: Procedure for obtaining concurrent-based PE-SPECs from sequentially based PE-SPECs.

Procedure: Partition Parallel Paths
Inputs: A PE-SPEC and an image of a fork state s in the PE-SPEC model.
Outputs: Groups of parallel pathspartitioned at state s and a set of sub-paths of each path in a group.
Steps:
(1) G1 = G2 = { },
(2) for each transition t outgoing from state s do

(2.1) if t, which is the first transition in an image of a parallel path p, is associated
with a service primitive then G1 = G1 ∪ p else G2 = G2 ∪ p,

(3) for each path p in G2 do
(3.1) SUBp = { } {set of sub-paths of p},
(3.2) s0 = s,
(3.3) while (s0 is not a joint or free state) do

(3.3.1) s1 = successive (s0)p,
(3.3.2) while (s1 is not a joint or free state and the outgoing transition from s1 is not

associated with a receiving event) do
(3.3.2.1) s1 = successive (s1)p,

(3.3.3) SUBp = SUBp ∪ subpath of p from s0 to s1,
(3.3.4) s0 = s1.

Algorithm 3: Partitioning procedure.

and a receiving event, respectively. Figure 4(b) shows the
contents of both groups. The subpaths of the parallel path
contained in G2 are the same as the parallel path, because
the parallel path contains only a transition associated with
a receiving event, followed by a transition associated with a
service primitive.

Step 2.1: remodeling parallel paths starting at
a sending image of a fork state

In a PE-SPEC that has a sending image of a fork state, the
first group of the parallel paths is not empty. As discussed
earlier, one of the parallel paths in the first group can be
executed along with all the parallel paths in the second group.
This means that at any state for a path in the first group,
any subpath of any parallel path in the second group has to
be allowed to execute, or an unspecified reception error can
occur. This can be modeled by making each state in the first
group a source state for the first transition in each subpath of
each path in the second group.

This solution solves the unspecified reception error
problem until the protocol entities reach the image of the
joint state. When any of the protocol entities reach the
image of the joint state, they have to wait for the other
protocol entities to reach their images of the joint state,
or an unspecified reception error can occur because of the
divergence between the protocol entities. According to the
solution for the unspecified reception error discussed above,
the protocol entity can either leave the image of the joint state
by executing the outgoing transition from the image of the
joint state or execute one of the subpaths added to the image
of the joint state. An unspecified reception error can occur
if the protocol entity executes the outgoing transition from
the joint state without executing the other added transitions.
Therefore, it is important to ensure that none of the protocol
entities leaves the image of the joint state unless all other
protocol entities have reached their corresponding state. In
other words, it must be ensured that none of the protocol
entities leaves the image of the joint state unless the last
subpath of each parallel path has been executed. This can
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Figure 4: Application of partitioning procedure on the PE-SPECs
given in Figure 3.

be modeled by (1) adding copies of the parallel paths in
the first group, (2) connecting these copies using the last
subpaths of the paths in the second group, and (3) redirecting
the outgoing transition from the image of the joint state
to be initiated from the state reached by executing all the
last subpaths under consideration. Note that if the image
of the joint state is a source state for a transition associated
to a receiving event, the image of the joint state cannot be
left unless the event message is sent by some other protocol
entity. Therefore, the solution illustrated above has to be
applied only in a protocol entity where the image of the joint
state is a source state of a transition associated to a service
primitive.

The solutions for the unspecified reception problem and
the divergence problem discussed above are given formally
in the procedure shown in Algorithm 4. For PE-SPEC2 given
in Figure 3, the procedure given in Algorithm 4 is applied
because s2 is a sending state. Step 1 of the procedure is
not applicable because joint state s7 is not a sending state.
In Step 2, copies of the subpath of G2 are added to each
state contained in G1, as shown in Figure 5(a). Step 3 is
not applicable because Step 1 is not applicable. Step 4 is
not applicable because there are no redundant transitions
connected to the images of the fork and joint states. Finally,
in Step 5, the path contained in G2 is removed from PE-
SPEC2. The resulting PE-SPEC2 is shown in Figure 5(b). PE-
SPEC3 and PE-SPEC2 given in Figure 3 are similar to each
other; therefore, the same synthesis steps apply. The resulting
PE-SPEC3 is shown in Figure 5(c).

Step 2.2: remodeling parallel paths starting at
a receiving image of a fork state

When the image of the fork state is not a source state for
any transition associated to a service primitive, the first
group, formed using the partitioning procedure given in
Algorithm 3, is empty. In this case, to prevent the occurrence
of an unspecified reception error, the subpaths of each
parallel path in the second group have to be added to each

state in each other path in the group. Each state in a parallel
path in the group must be made as a source state for the first
transition in each subpath of each other path in the group. If
the protocol entity under consideration has a sending image
of a joint state, the divergence problem has to be solved using
the same technique illustrated for Step 2.1.

The procedure given in Algorithm 5 formally illustrates
the remodeling technique for the parallel paths starting
at a receiving image of a fork state. For PE-SPEC1 given
in Figure 3, the procedure given in Algorithm 5 is applied
because s2 is a receiving state. Since the paths in G2 given
in Figure 4(a) end at state s7, which is a sending state, Step 1
of the procedure is applied. In Step 1.3, a copy of each of the
parallel paths is added to PE-SPEC1, as shown in Figure 6(a).
In Step 1.4, copies of s2 and their associated transitions are
deleted from the copied paths, as shown in Figure 6(b). In
Step 1.5, the parallel paths are connected to their copies, as
shown in Figure 6(c). In Step 1.6, states s7

′ and s7
′′ are joined

together in state s7
′. In Step 1.8, the outgoing transition from

state s7 is redirected to initiate from state s7
′. Figure 6(d)

shows the application of Steps 1.6 and 1.8. Steps 2, 3, and
4 of the procedure do not make any changes to PE-SPEC1,
given in Figure 6(d), because the first group of parallel paths
is empty, there are just two paths in the second group, and
each of the parallel paths includes one transition.

4.3. Comparison with other methods

In the following, we compare our method for handling
concurrency with the two methods we have surveyed earlier
in the paper in Section 2.

The synthesis method introduced in Park and Miller [6]
cannot be applied to the S-SPEC given in Figure 2 due to
restriction 2. This restriction states that if a path p includes a
transition associated with an event that passes through a SAP
s, any other path executed in parallel with p cannot include
a transition associated with an event that passes through the
same SAP s. In Figure 2, the events that pass through SAPs
2 and 3 are associated with the transitions of both parallel
paths, hence violating the second restriction. As a result, the
main concurrency problem due to message collision is not
resolved.

The synthesis method described in Kakuda et al. [10]
cannot be applied to the S-SPEC in Figure 2 because it
violates the first restriction of their method. This restriction
states that the S-SPEC model must be a tree. Consequently,
their method cannot deal with the specified concurrent
behavior.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a synthesis method for concurrent protocol
specifications from service specifications is introduced. Both
the service and protocol specifications are modeled using
FSM-based models. The service specification FSM-based
model is extended to model concurrency behaviors. The
synthesis method first uses a previously introduced method
to synthesize sequentially based protocol specifications,
then the synthesis method remodels the derived protocol
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Procedure: Re-Model Parallel Paths for Sending State.
Inputs:

– a PE-SPEC that has an image state s of a fork state such that s is a sending state,
– G1, G2, and the subpaths found using the Partition Parallel Paths procedure given in Algorithm 5.

Outputs: a remodeled PE-SPEC that has additional states and transitions to consider the
concurrency behavior of the service specification.
Steps:
(1) if the paths in G1 and G2 end with an image of a joint state and this joint image state is a sending state then

(1.1) LastSUBs = { },
(1.2) for each path in G2 do

(1.2.1) LastSUBs = LastSUBs ∪ last sub-path in SUBp,
(1.2.2) SUBp = SUBp − last sub-path in SUBp.

(1.3) add to the PE-SPEC model
∑n

i=1 C(n, i) copies of each path in G1, where n = |G2| (i.e.,
number of paths in G2) and C(n, i) = n!/(i!(n− i)!),

(1.4) connect each path in G1 and its copies together using all subpaths in LastSUBs such
that each combination of the subpaths is covered once. Connecting two paths using a
subpath includes connecting each state in one of the paths to its corresponding state in
the other path using the subpath,

(1.5) join all copied states that have no outgoing transitions together in a state j,
(1.6) delete all redundant transitions connected to state j,
(1.7) redirect the outgoing transitions from the joint state image to be initiated from state j,

(2) for each state sg in G1 do
(2.1) for each path p in G2,

(2.1.1) for each sub-path in SUBp do
(2.1.1.1) add a copy of the subpath to state sg such that the state sg is, respectively,

the tail and head state of the first and last transitions in the subpath.
(3) if there are copied paths created using Step 1.3 then

(3.1) for each copied path c of an original path p do
(3.1.1) let q be the path from any state in p to its copied state in c,
(3.1.2) for each subpath sp added in Step 2.1.1.1 to a state in p do

(3.1.2.1) if sp is a subpath of a path g and none of the transitions in q is a subpath in path g then
(3.1.2.1.1) for each state sc in path c do

(3.1.2.1.1.1) add a copy of the subpath sp to state sc such that the state sc is, respectively,
the tail and head state of the first and last transitions in the subpath.

(4) Delete redundant transitions connected to the images of the fork and joint states.
(5) Remove all paths in the groups in the set G2 excluding the images of the fork and joint states in these paths.

Algorithm 4: A procedure for remodeling the PE-SPEC to consider the concurrency behavior in the case where there is a sending image of
fork state.

specifications by adding new states and transitions to
handle the concurrency behavior specified in the service
specification. In contrast with methods introduced earlier,
the synthesis method introduced here solves the true con-
currency problem such that if a message collision occurs,
all parallel paths proceed without canceling any event. In
addition, the synthesis method introduced here eliminates
all the restrictions imposed by the earlier methods. As a
result, the synthesis method is applicable to a wider range
of concurrent applications.

The synthesis method introduced in this paper does not
consider medium channel delays and timing requirements
that can be provided in the service specification. In the
future, we plan to study the assignment of timing constraints
to a service specification that has concurrency behavior. In
addition, we plan to extend the introduced synthesis method
to map the timing constraints associated with the transitions
of the service specification model to the transitions of the
protocol specification models.

APPENDIX

A. PROOF OF CORRECTNESS

Proving the correctness of the synthesis method requires
proving that the synthesis method is syntactically and
semantically correct. This proof is necessary to eliminate
the need for further validation of the derived protocol
specifications. In Saleh [19], it is proved that the protocol
entities derived using the first step of the synthesis method
are syntactically and semantically correct. Step 2 of the
synthesis method given in Algorithm 1 remodels only the
paths between the images of the fork and the joint or
leaf states. Therefore, before executing outgoing transitions
from the images of the fork state, all the protocol entities
are proved to be syntactically and semantically correct. In
Lemma 2, it is proved that no protocol entity leaves the image
of the joint state unless all protocol entities reach the image
of the joint state. After reaching the image of the joint state in
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Figure 5: An application of the procedure given in Algorithm 4 for the PE-SPEC2 and PE-SPEC3 given in Figure 3.

all protocol entities, the execution of the protocol entities is
also proved to be syntactically and semantically correct [19].
Therefore, it must only be proved that the execution of the
remodeled paths between the images of the fork and the joint
or leaf states is syntactically and semantically correct.

A.1. Syntactic correctness

Proving the syntactic correctness of the synthesis method
requires proving that the derived protocol specifications
are free of syntactic design errors, including unspecified
reception, deadlock, and livelock.

Lemma 1. The procedures given in Algorithms 4 and 5 prevent
the occurrence of unspecified message reception when parallel
paths outgoing from a fork state are executed.

Proof. In a PE, when any outgoing transition from the fork
state is executed, the execution of the path p that contains
the transition begins. However, the PE has to behave as if
the execution of the other parallel paths is also starting. As
a result, at any state in p, the execution of any subpath of any
other parallel path must be allowed. Otherwise, an unspeci-
fied reception error occurs. This problem is dealt with in the
procedures given in Algorithms 4 and 5 by making each state
in p a source state for the first transition in each subpath of
each path that can be executed in parallel with p (i.e., Steps
2 and 1.4 in the procedure given in Algorithm 4, and Step
2 in the procedure given in Algorithm 5). According to the
Partition Parallel Paths procedure given in Algorithm 3, each
subpath starts with a transition associated with a receiving
event. Therefore, making each state in p a source state
for the first transition in each subpath of each path that
can be executed in parallel with p prevents the occurrence

of unspecified message reception at any state in p. In the
procedure given in Algorithm 4, the copies of the subpaths
of the paths in the second group are added to the states of the
paths in the first group. Copies of the subpaths of a path in
the first group are not added to the states in the other paths in
the same group because the paths in the first group cannot be
executed in parallel. As a result, using the procedure given in
Algorithm 4 prevents the occurrence of unspecified message
reception at any state in any path in the first group. After the
copies of the subpaths of the paths in the second group have
been added to the states in the paths of the first group, the
paths in the second group become redundant and have to be
removed (i.e., Step 5 of the procedure given in Algorithm 4).
Consequently, in the case where there is a sending state that is
an image of a fork state, the procedure given in Algorithm 4
prevents the occurrence of unspecified message reception
when the parallel paths outgoing from the fork state in the
S-SPEC are executed.

In the case where there are no paths in the first group (i.e.,
the case dealt with in the procedure given in Algorithm 5),
the paths in the second group are executed in parallel. To
prevent an unspecified message reception error, additional
transitions are added in Step 2 of the procedure given in
Algorithm 5. These transitions are added to each state in
each path in the second group. The transitions added to
each state in a path p include all the subpaths of all paths—
except p—in the second group. As a result, in the case where
there is a receiving state that is an image of a fork state,
the procedure given in Algorithm 5 prevents the occurrence
of unspecified message reception when the parallel paths
outgoing from the fork state in the S-SPEC are executed. As
a result, in both cases, the procedures given in Algorithms
4 and 5 prevent unspecified message reception when the
parallel paths outgoing from a fork state are executed.
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Procedure: Re-Model Parallel Paths for Receiving State
Inputs:

– a PE-SPEC that has an image state s of a fork state such that s is a receiving state,
– G1, G2, and the subpaths found using the Partition Parallel Paths procedure given in Figure 10.

Outputs: a remodeled PE-SPEC that has additional states and transitions to consider the concurrency
behavior of the service specification.
Steps:
(1) if the paths in G2 end with an image of a joint state and this state is a sending state then

(1.1) LastSUBs = { },
(1.2) for each path p in G2 do

(1.2.1) LastSUBs = LastSUBs ∪ last sub-path in SUBp,
(1.3) add to the PE-SPEC model

∑n
i=1 C(n, i) copies for each path in G2, where n is |G2| − 1,

(1.4) delete the copies of the image of the fork state and their associated transitions from the copied paths,
(1.5) for each path p in G2 do

(1.5.1) LastSUBnp = LastSUBs− last sub-path in SUBp,
(1.5.2) connect the path p and its copies together using all subpaths in LastSUBnp such that each

combination of the subpaths is covered once. Connecting two paths using a subpath
includes connecting each state in one of the paths to its corresponding state in the other
path using the subpath,

(1.6) join all copied states that have no outgoing transitions together in a state j,
(1.7) delete all redundant transitions connected to state j,
(1.8) redirect the outgoing transitions from the joint state image to be initiated from state j,
(1.9) for each path in G2

(1.9.1) SUBp = SUBp − last subpath in SUBp,
(2) for each path g in G2 do

(2.1) for each path p in the set G2 − g do
(2.1.1) for each state sg in path g excluding the image of the fork state do

(2.1.1.1) for each sub-path sp in SUBp do
(2.1.1.1.1) add a copy of the subpath sp to state sg such that the state sg is, respectively,

the tail and head state of the first and last transitions in the subpath sp.
(3) if there are copied paths created using Step 1.3 then

(3.1) for each copied path c of an original path p do
(3.1.1) let q be any path from any state in p to its copied state in c
(3.1.2) for each subpath sp added in Step 2.1.1.1.1 to a state in p do

(3.1.2.1) if sp is a subpath of a path g and none of the transitions in q is a subpath in path g then
(3.1.2.1.1) for each state sc in path c do

(3.1.2.1.1.1) add a copy of the subpath sp to state sc such that the state sc is, respectively,
the tail and head state of the first and last transitions in the subpath.

(4) Delete redundant transitions connected to the image of the joint state.

Algorithm 5: A procedure for remodeling the PE-SPEC to consider the concurrency behavior in the case where there is a receiving image
of fork state.
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Figure 6: An application of the procedure given in Algorithm 5 for the PE-SPEC1 given in Figure 3.



J. Al Dallal and K. Saleh 11

Lemma 2. The procedures given in Algorithms 4 and 5 ensure
that no protocol entity leaves the image of the joint state unless
all the protocol entities reach the image of the joint state.

Proof. A protocol entity that can leave the image of the joint
state first and cause divergence is one that has an outgoing
transition from the image of the joint state, associated with
a service primitive (i.e., a sending state that is an image
of a joint state). This protocol entity can send the service
primitive, which means executing the transition and leaving
the image of the joint state. If all the outgoing transitions
from the image of the joint state in a PE are associated
with receiving events (i.e., the image of the joint state is a
receiving state), the protocol entity is guaranteed not to leave
the image of the joint state unless the event to be received is
sent by another PE, which means that the other PE left the
image of the joint state. As a result, the divergence problem
has to be solved only in the PEs in which the images of
the joint states are sending states. For the sake of simplicity,
these PEs are denoted here as sending PEs. In sending PEs,
it is important to ensure that all transitions immediately
preceding the joint state in the S-SPEC are executed before
leaving the image of the joint state. When the second step
of the synthesis algorithm given in Algorithm 1 is applied,
the transitions incoming to the image of the joint state in
each sending PE are associated with events. This means that
ensuring the execution of all incoming transitions to the
image of the joint state in each sending PE, before leaving
the images of the joint states, guarantees the execution of
all transitions immediately preceding the joint state in the
S-SPEC. Consequently, this means that all protocol entities
reach the image of the joint state. Therefore, to prove the
lemma, it must be proved that all incoming transitions to
the image of the joint state in each sending PE are executed
before leaving the images of the joint states. This is proved
here for both cases: (1) when the image of the fork state is a
sending state (i.e., the case dealt with in the procedure given
in Algorithm 4), and (2) when the image of the fork state is a
receiving state (i.e., the case dealt with in the procedure given
in Algorithm 5).

For the case given in Algorithm 4, only one path in the
first group can be executed. The paths in the second group
are executed as subpaths within the executed path in the first
group. As a result, if the PE is a sending PE, it is necessary
to ensure that for each path p in the first group, the last
subpath in each path that can be executed in parallel with
p is executed before leaving the joint state. The paths in the
second group can be executed in parallel with the paths in
the first group. Therefore, if the PE is a sending PE, it is
necessary to ensure that for each path p in the first group,
the last subpath in each path in the second group is executed
before leaving the joint state.

If only one path exists in the second group, the last
subpath of this path can be executed at any state in the
paths of the first group. To model the execution of the last
subpath ls at any state s in each path of the first group, a
copy of s is added to the PE and the subpath ls is added,
such that the state s and its copy are, respectively, the tail
and head states of the subpath. In this case, when the PE

is initially at state s and the subpath ls is executed, the PE
reaches the added state. Since the subpath can be executed at
any state in any path of the first group, a copy of each path
in the first group has to be added so that subpath ls connects
each state in the original path with its corresponding state
in the added path. When adding a copied state, all subpaths
connected as self-loop subpaths to state s are also added to
the copied state, except the subpaths that belong to the same
path of ls. These subpaths are not copied because executing
the last subpath ls ensures that all the preceding subpaths
that belong to the same path of ls have already been executed
and they cannot be executed again. To ensure not leaving the
joint state without executing the last subpath, the outgoing
transitions from the image of the joint state are redirected
to be outgoing from the copy of the image of the joint state.
The new image of the joint state cannot be reached without
executing the last subpath ls. Consequently, the new image
of the joint state cannot be left without executing the last
subpath ls.

The discussion in the previous paragraph applies to the
case where there is only one path in the second group. If
there are more paths, the solution is generalized to consider
the execution of the last subpath of each path in the second
group before leaving the image of the joint state. In this case,
in the first stage, the number of added paths for each path in
the first group is equal to the number of paths in the second
group. If the number of paths in the second group is n, the
number of created copies of each path in the first group is
mathematically equal to C(n, 1) = n!/(1!(n − 1)!) = n. In
the second stage, it is important to consider the execution
of the last subpaths of two paths. In this case, the number of
different combinations of the last two subpaths is considered.
The total number of copies in this case (i.e., considering the
two stages) is equal to C(n, 1) + C(n, 2). Consequently, in
general, if there are n paths in the first group, the number
of copies to be created for each path in the first group is∑n

i=1 C(n, i). In this case, the new image of the joint state is
the copy of the image of the joint state reached by executing
the last subpaths of all paths in the second group. The
creation of the copied paths and the connections between
them, according to the above discussion, are performed in
Step 1 of the procedure given in Algorithm 4. In addition,
in Step 3 of the procedure, new transitions are added to the
states of the created paths to prevent unspecified receptions
occurring. As a result, in the case where there is a sending
image of a fork state in a sending PE, the procedure given in
Algorithm 4 ensures that no protocol entity leaves the image
of the joint state unless all the protocol entities reach the
image of the joint state.

For the case given in Algorithm 5, the paths in the second
group are executed in parallel and there are no paths in the
first group. In the case where there is a sending PE, Step 1.3 of
the procedure given in Algorithm 5 adds

∑n
i=1 C(n, i) copies

of each path in the second group, where n is equal to (number
of paths in the second group−1) (i.e., n is the number of paths
in the second group that can be executed in parallel with one
of the paths in the same group). In Step 1.5, each original
path and its copies are connected using the same method
discussed earlier for the case where there is at least one path
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in the first group. In addition, the image of the joint state is
modified as before. Finally, in Step 3 of the procedure given
in Algorithm 5, new transitions are added to the states of the
created paths to prevent unspecified receptions occurring. As
a result, in the case where there is a receiving image of a fork
state in a sending PE, the procedure given in Algorithm 5
ensures that no protocol entity leaves the image of the joint
state unless all the protocol entities reach the image of the
joint state.

Lemma 3. The protocol entities derived using the synthesis
method introduced in this paper are free of unspecified
reception errors.

Proof. According to Lemma 1, the execution of the remod-
eled paths between the images of the fork and the joint or
leaf states is free of unspecified reception errors. Therefore,
the protocol entities derived using the synthesis method
introduced in this paper are free of unspecified reception
errors.

Lemma 4. The protocol entities derived using the synthesis
method introduced in this paper are free of deadlock errors.

Proof. Deadlock errors occur when the protocol is at a
nonfinal state, all channels are empty, and no transmission
transition is specified. In other words, deadlock occurs when
the protocol is at a state in which all its outgoing transitions
are associated with receiving events and these events are for
messages that are not to be sent by any other protocol entity.
This case cannot occur in the extended paths because the
added subpaths are added to the original states as self-loop
subpaths. Therefore, it is inevitable that the original path
(i.e., the path that exists before any new states or transitions
are added) will be executed by the added transitions, and
therefore these paths are guaranteed, by the proof provided
in Saleh [19], to proceed without a deadlock error. The
only case where an added transition can prevent the original
parallel path from reaching the image joint state is in the case
where there is a sending PE. In this case, the last subpaths of
all other paths to be executed in parallel are added to prevent
them leaving the image of the joint state without having all
PEs reach the image of the joint state. Since all the parallel
paths are executed, the execution of the last subpaths of each
of these paths added by the procedures in Algorithms 4 and 5
is guaranteed. Therefore, these added subpaths cannot cause
deadlock errors. Finally, the self-loop subpaths added to the
states of the parallel paths by the procedures in Algorithms
4 and 5 always start by transitions associated with receiving
events. Therefore, the subpaths are not executed unless the
events are sent. All the succeeding transitions in the subpaths
are associated with either service primitives or sending
events, and no deadlock can therefore occur when the PE is
at a state within the added subpaths. As a result, the added
transitions and states do not cause any deadlock error. There-
fore, the protocol entities derived using the synthesis method
introduced in this paper are free of deadlock errors.

Lemma 5. The protocol entities derived using the synthesis
method introduced in this paper are free of livelock errors.

Proof. A livelock error occurs when the protocol entities
exchange messages that are meaningless for the provision
of the desired service. There are two types of messages
exchanged within the parallel paths. The first type is a
message derived directly from the service specification using
the algorithm introduced by Saleh and Probert [4], and
therefore these messages are meaningful for the provision of
the desired service. The other type is a message added in Step
2 of the synthesis algorithm given in Algorithm 1. All these
messages are associated with transitions of subpaths of other
paths. These other paths are derived directly from the service
specification using the algorithm introduced in Saleh and
Probert [4], and therefore the messages associated with these
paths are also meaningful for the provision of the desired
service. As a result, the protocol entities derived using the
synthesis method introduced in this paper are free of livelock
errors.

Theorem 1. The protocol entities derived using the synthesis
method introduced in this paper are syntactically correct.

Proof. Since the protocol entities derived using the synthesis
method introduced in this paper are free of unspecified
reception (Lemma 3), deadlock (Lemma 4), and livelock
errors (Lemma 5), the protocol entities are syntactically
correct.

A.2. Semantic correctness

Proving the semantic correctness of the synthesis method
requires proving that the interactions among the derived
protocol entities through a reliable underlying FIFO commu-
nication medium provide the service specified in the S-SPEC.
In other words, it must be proved that all possible orderings
of the service primitives noticed when the protocol entities
are executed are consistent with the ordering of the service
primitives in the S-SPEC.

Theorem 2. The protocol entities derived using the synthesis
method introduced in this paper are semantically correct.

Proof. The remodeled paths consist of three parts: (1) the
original paths, (2) the copied paths, and (3) the subpaths
added to the former two types of paths. Step 2 of the synthesis
algorithm does not modify the order of transitions in the
original paths. Therefore, the original paths are semantically
correct. The copied paths have the same order of transitions
in the original paths, and therefore they are semantically
correct. Finally, each of the added subpaths starts with a
transition associated with a receiving event, succeeded by
a transition associated with a service primitive sp, if any.
The receiving event cannot be executed unless the message
to be received has already been sent. This means that the
service primitive sp cannot be executed unless its former
service primitive in the S-SPEC has already been executed.
Therefore, the order of the service primitives in the paths
executed as subpaths connected to states of other paths is also
maintained. As a result, the remodeled paths using Step 2
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of the synthesis method given in Algorithm 1 are also
semantically correct.
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