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This paper proposes a similar structure method (SSM) to solve the boundary value problem of the extended modified Bessel
equation. The method could efficiently solve a second-order linear homogeneous differential equation’s boundary value problem
and obtain its solutions’ similar structure. A mathematics model is set up on the dual-porosity media, in which the influence
of fractal dimension, spherical flow, wellbore storage, and skin factor is taken into cosideration. Researches in the model found
that it was a special type of the extended modified Bessel equation in Laplace space. Then, the formation pressure and wellbore
pressure under three types of outer boundaries (infinite, constant pressure, and closed) are obtained via SSM in Laplace space.
Combining SSM with the Stehfest algorithm, we propose the similar structure method algorithm (SSMA) which can be used to
calculatewellbore pressure and pressure derivative of reservoir seepagemodels clearly. Type curves of fractal dual-porosity spherical
flow are plotted by SSMA.The presented algorithm promotes the development of well test analysis software.

1. Introduction

Petroleum engineering and percolationmechanics have scale
invariances in non-Euclidean heterogeneous porous media.
References [1, 2] built mathematical models of reservoirs
and described porous media by homogeneous or quasi
homogeneous distribution. The reservoirs distribution and
pore structure are complexities. Reference [3] demonstrated
that the fractal characteristics of porous media affected fluid
flow by studying many geological properties. Reference [4]
discussed the geometric properties and spatial correlation
structure of fractal distributions and reviewed methods for
measuring the fractal character of field data and synthesizing
fields with a similar correlation structure. References [5, 6]
proposed a seepage model of Newtonian fluid in fractal
reservoir and analyzed its well test curve. References [7, 8]
showed that fractal reservoir seepage model can be explained
much more effectively than traditional one and obtained a
conclusion very consistent with well test curve. References [9,
10] discussed that the fractal theory was powerful in analysis
of the fluid flow properties with complex and microscopic
stochastic microstructures in porous media.

Model of flow through dual-porosity formations was
proposed by [11]. Barenblatt et al. considered the medium of
the blocks and that of the fractures as overlapping continua
over entire flow domain. Darcy’s law and conservation of
mass equation are written separately for the fluid in each
medium. A dual-porosity media has fluid exchange between
the two constitutive media. Many natural reservoirs fit with
this scheme, so the fluid flow model of dual-porosity is
particularly popular in mining engineering and petroleum
engineering. The previous studies of fractal dual-porosity
seepage flow model are mostly considered on radial flow.
Reference [12] demonstrated that spherical flow analysis can
model the well test interpretation and provide data insight for
reservoir and production study more suitably.

Reference [13] first presented the concept of solutions’
similar structure for a second-order linear homogeneous
differential equation and the partial differential equation
which can be transformed into ordinary differential equa-
tion system via variable substitution or integral transform.
Expression of their solutions can be simplified as a unified
continued fraction only with different kernel functions.
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The solutions’ similar structure theory of differential equation
has been widely applied in engineering problems, in particu-
lar, solving of reservoir mathematical models. References [14,
15] built mathematical models for fluid flow in porous media
and got their solutions’ similar structure. However, most of
research got their similar solutions and kernel functions via a
complicated process of solutions. So, we sum up the detailed
construction steps of SSM for the extended modified Bessel
equation’s value problem. It is shown that the solutions of the
extendedmodified Bessel equation can be simply constructed
by the coefficients of boundary without toomuch calculating.
A spherical flow of fractal model is designed in dual-porosity
reservoir. The similar structure of formation pressure and
wellbore pressure in Laplace space is conveniently calculated
by SSM. In Section 3, combining SSM with Stehfest [16]
numerical inversion we compile a similar structure method
algorithm (SSMA). Type curves of the fractal dual-porosity
spherical flow model are plotted with SSMA in real time
domain. In Section 4, how the fractal dimension andwellbore
storage affect formation pressure and its derivative of dual-
porosity reservoir are discussed on infinite boundary. In
a word, the SSM is a straightforward method for solving
the differential equation’s boundary value problems with
complex boundary condition, especially in petroleum engi-
neering seepage models. SSMA has the significance meaning
for making well test analysis.

2. The SSM for Solving the Model of
the Fractal Dual-Porosity Reservoir

2.1. The Similar Structure Method (SSM). To solve reservoir
model, we first introduce SSM for the extended modified
Bessel equation’s boundary value problem, which frequently
occurred in reservoir engineering:
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The SSM steps are presented as follows.

Step 1. Find two linearly independent solutions of the
extended modified Bessel equation (1) (see Appendix A for
details). They are
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where 𝑚, 𝑛 are real numbers, the binary function 𝜑(𝑥, 𝜉) can
be rewritten as
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Then, calculate the partial derivative of 𝜑(𝑥, 𝜉) for 𝑥, 𝜉,
respectively:
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Step 3. A similar kernel function is constructed by using the
coefficients of the right boundary (3) and Step 2 definition:
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One can easily get Φ(𝑎).

Step 4. The similar structure of solutions is designed by the
coefficients of the left boundary (2) and
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Consequently, (15) is the similar solutions of the extended
modified Bessel equation’s boundary value problem (1)–(3).

2.2.The SSM for Solving theModel of the Fractal Dual-Porosity
Reservoir. The dimensionless mathematical model of a frac-
tal dual-porosity reservoir is presented in Appendix B. In
order to solve the model, we assume that the fractal dimen-
sion of fissure and matrix block are identical; that is, 𝑑
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. Ideally, all the fluid can be seeped into fissuremedia from
matrix block. We give the hypothesis that fractal exponential
in matrix block approximates at zero (𝜃 = 0). Considering
spherical symmetric flow, we can write the model in the
Laplace space as follows.
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They denote that the outer boundaries of circular reser-
voir are infinite, constant pressure, and closed, respectively.
All the notations are explained in the nomenclature section.
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Equation (23) is a special form of the extended modified
Bessel equation, so we can use SSM to construct the solutions’
similar structure of the dimensionless mathematical mode of
fractal dual-porosity reservoir flow (16)–(20).

Equations (19), (20), and (23) comparing with (1)–(3)
result in
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of outer boundaries, respectively. So we can construct the
similar structure of formation pressure in Laplace space as in
the following expression:
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From formation pressure equation (24), the solution’s expres-
sion of wellbore pressure can be unified as follows:
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Substituting (25), (26), and (27) into (24) and (A.3),
respectively, we can get similar structure of formation pres-
sure and the wellbore pressure of the fractal dual-porosity
reservoir with spherical flow under three types of outer
boundaries (infinite, constant pressure, and closed) in the
Laplace.

3. The Similar Structure
Method Algorithm (SSMA)

This section presents the work of fluid mechanics in porous
medium to establish reservoir seepage mathematical models
according to the given formation, testing well, and fluid
physical parameters. The formation pressure changing law
with time of test well is obtained by solving these models.
The well test analysis is on quantitative interpretation of
the measurable pressure change combined with production
data. Based on this test, we can obtain the parameters which
cannot be directlymeasured.Theparameters are important to
calculate reservoir reserves and make scheme for the oil/gas
field exploration, including pollution situation, improvement
degree, wellbore damage, wellbore effect, flow coefficient and
permeability of the test formation, and reservoir boundary.

For improvement of the modern well test analysis
method, this paper programmed SSMA via SSM and Stehfest
numerical inversion to calculate wellbore pressure and its
derivative of reservoir seepage models. The algorithm is
shown in Figure 1.

4. The Pressure Transient
Characteristics and Flow Regimes

In this section, the dimensionless formation pressure and
derivative responses for fractal dual-porosity reservoir
spherical flow are calculated by SSMA proposed above.

The well test analysis cures of wellbore pressure and pressure
derivative are drew out with 𝑇

𝐷
/𝐶
𝐷

as abscissa and 𝑃
𝑤𝐷

,
𝑃


𝑤𝐷
⋅ 𝑇
𝐷
/𝐶
𝐷
as ordinate. We analyze the effects of relevant

parameters on the behavior.
Figure 2 shows the dimensionless formation pressure

and derivative responses for fractal dual-porosity reservoir
affected by fractal dimension 𝑑

𝑓
in three types of outer

boundaries. In early time wellbore storage period (stage 1)
is observed in both pressure change and derivative aligned
in unite slope trend which follow by a hump representing
the transition flow (stage 2) to radial flow period (stage 3)
impacted by the fractal dimension. After the radial flow,
the fissure produces independently with the flow. This flow
regime is followed by a characteristic dip in the pressure
derivative, which is caused by cross flow (stage 4) in matrix.
Finally, we attain the last-time compound radial flow (stage
5) characterized by different outer boundaries condition.

It should be noted that all the flow regimes described
in the previous paragraph exist for all dual-porosity reser-
voirs. Depending on system properties, particularly wellbore
storage parameter, some of the flow regimes above may be
changed. In this section we present some results to reflect the
effects of reservoir.

Figure 3 presents the dimensionless variables of wellbore
storage and skin factor 𝐶

𝐷
𝑒
2𝑠 on fractal dual-porosity

reservoir with spherical flow. It can be seen that with all
other parameters kept constant, the curve parameters 𝐶

𝐷
𝑒
2𝑠

has obviously impacted on period of radial flow and cross
flow. As the value of 𝐶

𝐷
𝑒
2𝑠 increases, the duration time of

radial flow in fissure decreases. When the faster cross flow
takes place for the matrix to fissure, the earlier reflection on
dimensionless curve appears.

Figure 4 shows the effect of fractal dimension 𝑑
𝑓
on frac-

tal dual-porosity reservoir with spherical flow.The properties
of the reservoir are identical in this case. As shown in Figure 4
increasing the number of fractal dimension significantly
influences the magnitude of the whole regime pressure and
derivatives. That is because of the fact that increasing fractal
dimension will improve the permeability around wellbore.

Figure 5 shows the effect of fractal exponential 𝜃 on
fractal dual-porosity reservoir with spherical flow. As show in
Figure 4, increasing the value of fractal exponent significantly
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Constitute similar solutions in Laplace space

Reservoir seepage mathematical model

Input parameters

Construct a binary function

Assemble similar kernel functions

Stehfest numerical inversion

Calculate pressure derivative

Change parameters

Type curves

Figure 1: The similar structure method algorithm for solving the
reservoir seepage models.
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Figure 2: Well testing curves in fractal dual-porosity reservoir with
three types of outer boundaries (𝜔 = 0.01, 𝜆 = 0.00001, 𝜃 = 0.5,
𝑑
𝑓

= 1.3, 𝐶
𝐷
𝑒
2𝑠

= 3, and 𝑅 = 500m).
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Figure 3: Effects of the curve parameters on pressure responses of
a test well in fractal dual-porosity reservoir (𝜔 = 0.01, 𝜆 = 0.00001,
𝜃 = 0.5, 𝑑

𝑓
= 1.3, and 𝑅 = 500m).

influences the magnitudes of whole regime pressures and
derivatives. Fractal exponent depicts the connectivity of
fractal object. With the fractal exponent increasing, the
pressure curve is on the upward trend. It shows that the more
tortuous fissure system is, the worse connectivity is.
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Figure 4: Effect of fractal demission on pressure responses of a test
well in fractal dual-porosity reservoir (𝜔 = 0.01, 𝜆 = 0.00001, 𝜃 =

0.5, 𝐶
𝐷
𝑒
2𝑠

= 3, and 𝑅 = 500m).
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Figure 5: Effect of fractal exponent on the pressure responses of a
test well in fractal dual-porosity reservoir (𝜔 = 0.01, 𝜆 = 0.00001,
𝑑
𝑓

= 1.3, 𝐶
𝐷
𝑒
2𝑠

= 3, and 𝑅 = 500m).
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Figure 6: Effect of interporosity flow coefficient on the pressure
responses of a test well in fractal dual-porosity (𝜔 = 0.01, 𝜃 = 0.5,
𝑑
𝑓

= 1.3, 𝐶
𝐷
𝑒
2𝑠

= 3, and 𝑅 = 500m).

Figure 6 shows the effect of interporosity 𝜆 on fractal
dual-porosity with spherical flow. Figure 6 indicates that the
reflection of cross flow develops at later times for larger value
of 𝜆. Also, duration of the radial flow in fissure depends on
the value of 𝜆.This is understood as 𝜆 is directly proportional
to cross flow time of oil (gas) in matrix block. Faster
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Figure 7: Effect of storativity ratio on the pressure responses of a
test well in fractal dual-porosity reservoir (𝜆 = 0.00001, 𝜃 = 0.5,
𝑑
𝑓

= 1.3, 𝐶
𝐷
𝑒
2𝑠

= 3, and 𝑅 = 500m).

of the cross flow takes palace, the reflection on the dimension
curve appears earlier.

Figure 7 shows the effect of storativity ratio 𝜔 on fractal
dual-porosity with spherical flow.The storativity significantly
affects on the radial flow and period of cross flow. The
smaller the storativity is, the deeper and wider the dip in
the derivative becomes. The fissure system flowing (stage
2) sustains short time, which will be probability covered by
period of the wellbore storage.

5. Conclusion

The SSM completed the theory of solutions’ similar structure.
When we deal with the boundary value problem, a general
second-order linear differential equation, the formation of
the similar structure is decided by the coefficients of the left
(inner) boundary condition.The kern functions are achieved
by the coefficients of the right (outer) boundary condition.
So the SSM is proposed to solve such complicated problem in
reality.

Many existing reservoir seepage fluid models can be
adapted to the boundary value problem of the extended
modified Bessel equation. In this paper, we propose SSM
which is a convenient, effective, creative method to solve the
problem of fluid flow in porous media since it can avoid
complex procedures. The proposed SMMA optimizes the
programming process of well test analysis software and also
simplifies the processing of Laplace inversion.

When 𝑑
𝑓
1

= 𝑑
𝑓
2

and 𝜃 = 0 (V = 0), it is easy to get
a dual-porosity reservoir mathematic model. With the solu-
tions’ similar structure on the model of fractal dual-porosity
reservoir, it is easy to observe how the wellbore storage,
skin factor, and fractal dimension affect the dimensionless
formation pressure and the wellbore pressure. The model as
well as the corresponding type curves are quite general that
they are useful in predicting the production performance or
analyzing the production data from this type of well-reservoir
systems.

Appendices

A. Derivation of Two Linearly
Independent Solutions of the General
Extended Modified Bessel Equation

In this section, we demonstrate why (1) has two linearly
independent solutions

𝐼V (𝑘𝑥
𝛽
) , 𝐾V (𝑘𝑥

𝛽
) . (A.1)

Substituting the bellow variables into (1)

𝑢 = 𝑥
−𝛼

𝑦, ℎ = 𝑘𝑥
𝛽
, (A.2)

where 𝛼 = (1 −𝐴)/2, 𝛽 = 𝑞/2, and 𝑘 = 2√𝐶/𝑞, we can obtain
the following standard Bessel equation:

ℎ
2 𝑑
2
𝑢

𝑑ℎ
2

+ ℎ

𝑑𝑢

𝑑ℎ

− (ℎ
2
+ V2) 𝑢 = 0, (A.3)

where V = √(1 − 𝐴)
2
− 4𝐵/𝑞.

The general solution of (1) is

𝑢 = 𝐶
1
𝐼V (ℎ) + 𝐶

2
𝐾V (ℎ) , (A.4)

where 𝐶
1
and 𝐶

2
are arbitrary constants. Substituting (A.3)

into (A.5), the general solution of (1) is

𝑦 = 𝑥
𝛼
[𝐶
1
𝐼V (ℎ) + 𝐶

2
𝐾V (ℎ)] . (A.5)

We know that 𝐼V(𝑘𝑥
𝛽
), 𝐾V(𝑘𝑥

𝛽
) are two linearly indepen-

dent solutions for the extended modified Bessel equation (1).

B. Mathematical Model of
Fractal Dual-Porosity Reservoir

The fissure media and matrix block in dual-porosity media
are homogeneously distributed. Due to taking small size in
reservoir volume, the fissure media has low porosity with
high permeability. Whereas, the porosity of the matrix block
is high with low permeability because of sedimentation and
diagenesis. We can ignore the permeability of matrix block
for simplified model.

To formulate the derivation of the mathematical mode
for fractal dual-porosity reservoir with spherical flow, the
basic assumptions used for fluid flow in porous media are as
follows:

(i) flat pitch dual-porosity reservoir, uniform thickness,
and isotropic;

(ii) single-phase micro compressible fluid, spherical flow
which has one production or injection well;

(iii) darcy’s law applies and isothermal curve;
(iv) neglecting the capillary single-phase horizontal flow

without gravity effect;
(v) fracture network becomes deformed under the pres-

sure with fractal feature and the variety of fractal
dimension can be ignored.
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The permeability and porosity distributions of a fractal
reservoir have been defined in various forms in different
studies. Here, we consider skin factor’s influence by 𝑟

𝑤𝑒
=

𝑟
𝑤
𝑒
−𝑠 and embed the fractal dimension 𝑑

𝑓
of fractal network

into the Euclid space with the dimension 𝑑 = 2. Wemake use
of definitions similar to those proposed by [7]:

𝜙
𝑖
= 𝜙
𝑤𝑖

(

𝑟

𝑟
𝑤𝑒

)

𝑑
𝑓𝑖
−𝑑

(𝑖 = 1, 2) , (B.1)

𝑘
𝑖
= 𝑘
𝑤𝑖

(

𝑟

𝑟
𝑤𝑒

)

𝑑
𝑓𝑖
−𝜃
𝑖
−𝑑

(𝑖 = 1, 2) . (B.2)

Darcy’s law says that

V
𝑖
= −

𝑘
𝑖

𝜇

Δ𝑃
𝑖

(𝑖 = 1, 2) . (B.3)

Due to the conservation law, the continuity equation of
the flow in fissure media is described by the following partial
differential equation:

𝜕 (𝜙
1
𝜌)

𝜕𝑡

+ ∇ (𝜌V
1
) − 𝑞
𝜆

= 0. (B.4)

The flow in matrix block is described by the following
partial differential equation:

𝜕 (𝜙
2
𝜌)

𝜕𝑡

+ 𝑞
𝜆

= 0. (B.5)

In (B.5) and (B.6), the second item in the right-hand side
represents the cross flow intensity between fissure media and
matrix block and is defined as follows:

𝑞
𝜆

=

𝛼𝑘
2

𝜇

(𝑝
2
− 𝑝
1
) . (B.6)

Taking (B.2)–(B.4) and (B.7) into (B.5) yields

𝜕
2
𝑝
1

𝜕𝑟
2

+

𝛽
0

𝑟

𝜕𝑝
1

𝜕𝑟

+ 𝛼

𝑘
𝑤2

𝑘
𝑤1

(

𝑟

𝑟
𝑤𝑒

)

(𝑑
𝑓2
−𝑑
𝑓1
)−(𝜃
2
−𝜃
1
)

(𝑝
2
− 𝑝
1
)

=

𝜇𝜙
𝑤1

𝐶
𝑡
1

𝑘
𝑤1

(

𝑟

𝑟
𝑤𝑒

)

𝜃
1
𝜕𝑝
1

𝜕𝑡

.

(B.7)

Taking (B.2)–(B.4) and (B.7) into (B.6) yields

𝜙
𝑤1

𝐶
𝑡
2

𝑘
𝑤1

(

𝑟

𝑟
𝑤𝑒

)

𝜃
2
𝜕𝑝
2

𝜕𝑡

+

𝛼𝑘
𝑤2

𝜇

(𝑝
2
− 𝑝
1
) = 0, (B.8)

where 𝛽
0
= 𝑑
𝑓
1

− 𝜃
1
− 𝑑 + 2, 𝐶

𝑡
𝑖

= 𝐶
0
+ 𝐶
𝑖
(𝑖 = 1, 2) and

𝐶
0
=

1

𝜌

𝜕𝜌

𝜕𝑝
2

, 𝐶
𝑖
=

1

𝜙
𝑖

𝜕𝜙
𝑖

𝜕𝑝
𝑖

. (B.9)

Initial condition is as follows:

𝑝
1
(𝑟, 0) = 𝑝

2
(𝑟, 0) = 𝑝

0
. (B.10)

Inner boundary condition is as follows:

𝑝
𝑤

= 𝑝
1
(𝑟
𝑤𝑒

, 𝑡) ,

(𝑟
2 𝜕𝑝1

𝜕𝑟

)








𝑟=𝑟
𝑤𝑒

=

𝜇

𝛿𝜋𝑘
𝑤1

[𝑞 (𝑡) + 𝐶

𝑑𝑝
𝑤

𝑑𝑡

] .

(B.11)

Three types of outer boundary condition are as follows.

Case 1. Infinite pressure outer boundary condition is

𝑝
1
(∞, 𝑡) = 𝑝

0
. (B.12)

Case 2. Constant pressure outer boundary condition is

𝑝
1
(𝑅, 𝑡) = 𝑝

0
. (B.13)

Case 3. Closed outer boundary condition is

𝜕𝑝
1

𝜕𝑟








𝑟→𝑅

= 𝑝
0
. (B.14)

In terms of convenience of calculation, we define the
dimensionless variables as follows:

𝑃
𝑖𝐷

=

𝛿𝜋𝑘
𝑤1

𝑟
𝑤𝑒

3.685 × 10
−3

𝑞
𝑒
𝜇

(𝑝
0
− 𝑝
𝑖
) (𝑖 = 1, 2) ,

𝑟
𝐷

=

𝑟

𝑟
𝑤𝑒

=

𝑟

𝑟
𝑤

𝑒
𝑠
, 𝑅

𝐷
=

𝑅

𝑟
𝑤𝑒

=

𝑅

𝑟
𝑤

𝑒
𝑠
,

𝑞
𝐷

(𝑡
𝐷
) =

𝑞 (𝑡)

𝑞
𝑒

,

𝑡
𝐷

=

3.6𝑘
𝑤1

𝑡

(𝜙
𝑤1

𝐶
𝑡
1

+ 𝜙
𝑤2

𝐶
𝑡
2

) 𝑟
2

𝑤
𝜇

,

𝐶
𝐷

=

𝑘
𝑤1

𝑒
𝑠

𝛿𝜋 (𝜙
𝑤1

𝐶
𝑡
1

+ 𝜙
𝑤2

𝐶
𝑡
2

)

, 𝜆 =

𝛼𝑟
2

𝑤
𝑘
𝑤2

𝑘
𝑤1

,

𝜔 =

𝜙
𝑤1

𝐶
𝑡
1

𝜙
𝑤1

𝐶
𝑡
1

+ 𝜙
𝑤2

𝐶
𝑡
2

,

𝑇
𝐷

=

𝑡
𝐷

𝐶
𝐷

, 𝛽
𝑖
= 𝑑
𝑓
𝑖

− 𝜃
𝑖

(𝑖 = 1, 2) ,

{

𝛿 = 2 hemisphere,
𝛿 = 4 sphere.

(B.15)
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All the parameters are explained in the nomenclature.The
dimensionless mathematical model for fractal dual-porosity
reservoir model can be obtained as follows:

𝜕𝑃
1𝐷

𝜕𝑟
2

𝐷

+

𝛽
0

𝑟
𝐷

𝜕𝑃
1𝐷

𝜕𝑟
𝐷

+

𝜆𝑟
𝛽
𝑖
−𝜃
𝑖

𝐷

𝑒
2𝑠

(𝑃
2𝐷

− 𝑃
1𝐷

) =

𝜔𝑟
𝜃
1

𝐶
𝐷
𝑒
2𝑠

𝜕𝑃
1𝐷

𝜕𝑇
𝐷

,

(1 − 𝜔) 𝑟
𝜃
1

𝐷

𝜕𝑃
2𝐷

𝜕𝑇
𝐷

+ 𝜆𝐶
𝐷

(𝑃
2𝐷

− 𝑃
1𝐷

) = 0,

𝑃
1𝐷

(𝑟
𝐷
, 0) = 𝑃

2𝐷
(𝑟
𝐷
, 0) = 0,

𝑃
𝑤𝐷

= 𝑃
1𝐷

(1, 𝑇
𝐷
) ,

(𝑟
2

𝐷

𝜕𝑃
𝑤𝐷

𝜕𝑟
𝐷

)








𝑟
𝐷
=1

= −𝑞
𝐷
𝑇
𝐷

+

𝑑𝑃
𝑤𝐷

𝑑𝑇
𝐷

,

𝑃
𝑖𝐷




𝑟
𝐷
→∞

= 0

or 𝑃
𝑖𝐷

(𝑅
𝐷
, 𝑇
𝐷
) = 0

or
𝜕𝑃
𝑖𝐷

𝜕𝑅
𝐷








𝑟→𝑅

𝐷

= 0.

(B.16)

Taking the Laplace transform of 𝑃
1𝐷

with respect to 𝑇
𝐷
,

we get the boundary value problem of the ordinary differ-
ential equation with parameter 𝑧 (where 𝑧 denotes Laplace
space variable); that is,

𝑑
2
𝑃
1𝐷

𝑑𝑟
2

𝐷

+

𝛽
0

𝑟
𝐷

𝑑𝑃
1𝐷

𝑑𝑟
𝐷

+

𝜆𝑟
𝛽
𝑖
−𝜃
𝑖

𝐷

𝑒
2𝑠

(𝑃
2𝐷

− 𝑃
1𝐷

) =

𝜔𝑟
𝜃
1

𝐶
𝐷
𝑒
2𝑠

𝑃
1𝐷

,

(1 − 𝜔) 𝑟
𝜃
1

𝐷
𝑃
2𝐷

+ 𝜆𝐶
𝐷

(𝑃
2𝐷

− 𝑃
1𝐷

) = 0,

𝑃
1𝐷

(𝑟
𝐷
, 0) = 𝑃

2𝐷
(𝑟
𝐷
, 0) = 0,

𝑃
𝑤𝐷

= 𝑃
1𝐷

(1, 𝑇
𝐷
) ,

(𝑟
2

𝐷

𝑑𝑃
𝑤𝐷

𝑑𝑟
𝐷

)









𝑟
𝐷
=1

= −𝑞
𝐷

(𝑧) + 𝑧𝑃
𝑤𝐷

,

𝑃
𝑖𝐷





𝑟
𝐷
→∞

= 0

or 𝑃
𝑖𝐷





𝑟
𝐷
=𝑅
𝐷

= 0

or
𝑑𝑃
𝑖𝐷

𝑑𝑟
𝐷









𝑟→𝑅

𝐷

= 0.

(B.17)

Nomenclature

𝐶: Wellbore storage coefficient, m3/Pa
𝐶
0
: Fluid compressibility, Pa−1

𝐶
𝑡
𝑖

: Compressibility, Pa−1
𝑑: Euclid dimension
𝑑
𝑓
𝑖

: Fractal dimension
𝑘
𝑖
: Permeability, m2

𝑘
𝑤𝑖
: Initial permeability, m2

𝑝
𝑖
: Reservoir pressure, Pa

𝑝
𝑤
: Wellbore pressure, Pa

𝑝
0
: Initial reservoir pressure, Pa

𝑟: Radial distance in spherical coordinate, m
𝑅: Radial distance of outer boundary radius, m
𝑠: Skin factor, dimensionless
𝑡: Time, m
V
𝑖
: Spherical flow velocity, m/s

𝜌: Fluid density, kg/m3
𝛼: Form factor
𝜃
𝑖
: Fractal exponent, dimensionless

𝜇: Viscosity of fluid, Pa⋅s
𝜙
𝑖
: Porosity, fraction

𝜙
𝑤𝑖
: Initial porosity, fraction

𝜔: Storativity ratio, dimensionless
𝜆: Interporosity flow coefficient, dimensionless
𝐼V(⋅): Modified Bessel function of first-order V
𝐾V(⋅): Modified Bessel function of second-order V
𝜑(⋅): A binary function
Φ(⋅): Similar kernel function
𝑧: Laplace space variable.

Superscript

: Laplace domain.

Subscript

𝑖 = 1: Fissure media
𝑖 = 2: Matrix block
𝐷: Dimensionless
𝑜: Initial condition
𝑤: Wellbore parameter
𝑤𝑒: Well effective.
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