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Recent literature highlights the multiple description coding (MDC) as a promising method to solve the problem of resilient
image coding over error-prone networks, where packet losses occur. In this paper, we introduce a novel multiple description
wavelet-based image coding scheme using fractal. This scheme exploits the fractal’s ability, which is to describe the different
resolution scale similarity (redundancy) among wavelet coefficient blocks. When one description is lost, the lost information
can be reconstructed by the proposed iterated function system (IFS) recovering scheme with the similarity and some introduced
information. Compared with the referenced methods, the experimental results suggest that the proposed scheme can achieve
better performance. Furthermore, it is substantiated to be more robust for images transmission and better subjective quality in
reconstructed images even with high packet loss ratios.

1. Introduction

Transmission of compressed images over unreliable networks
has proven to be a significant challenge. The main problem
is the rapid degradation in the reconstructed image quality
due to packet loss, which is unavoidable on the networks,
such as the Internet. Hence, it is important to propose an
effective method to protect compressed images information
transmitted over unreliable networks.

Recently, MD coding has emerged as an attractive frame-
work for robust transmission over unreliable networks. It
can efficiently combat packet loss without any retransmis-
sion thus, satisfying the demand of real-time services and
relieving the network congestion [1]. In MD coding, two or
more bitstreams called descriptions of the same image are
generated, which can be independently decoded. At the same
time, the descriptions should carry correlated information
(redundancy). The correlated information is beneficial in
the case of single description reception in that it helps the
estimation of the missing description from the received
one. So, a minimum fidelity in the reconstruction can be
guaranteed at the receiver when only one channel works.

When more channels work, a higher fidelity reconstruction
can be yielded by combining the descriptions. However, an
extra rate is necessary to encode correlated information,
which impairs the rate-distortion performance. In many
practical situations, only two descriptions of the same image
are generated; throughout this paper, we will make this
assumption.

Lots ofMD coding techniques have been developed using
different strategies for coding variant data like speech, audio,
image, and video. One of the most classical methods is
multiple description scalar quantization (MDSQ) [2], which
was successfully applied in image coding [3]. The pairwise
correlating transform (PCT) was exploited in [4]. Multiple
description lattice vector quantization (MDLVQ) has also
shown promising results for image coding [5]. Among many
others, a feature-oriented multiple description wavelet-based
image coding was recently presented in [6]. In that method,
a wavelet image is partitioned into two parts, for example,
part 1 and part 2, each of which goes through a fine coding
as well as a coarse coding. Then, one description is formed
by concatenating the finely coded part 1 and the coarsely
coded part 2, while the other description is complementarily
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generated by joining the coarsely coded part 1 and the finely
coded part 2. Similar MD coding schemes can also be found
in [7, 8].

From the above analysis, themostMD coding approaches
are based on traditional coding methods, such as quanti-
zation, JPEG, and wavelet. These methods always exploit
the redundancy in the neighboring pixels or coefficients.
This redundancy is partly added to the descriptions for the
recovering in case of some descriptions missed. But the
redundancy among coefficient blocks at different resolution
scales exists in wavelet domain, and this kind of redundancy
is not used in MDC. Fortunately, fractal coding (FC) is
an intensively studied image coding method during recent
decades [9–11], which can exploit this kind of redundancy.

In this paper, we attempt to design an MD wavelet-
based image coding method using fractal. Fractal coding has
some advantages, such as high decompression speed, low
compression bit rate, and decompression resolution indepen-
dence. The basic principle of FC is to find an IFS whose
fixed point approximates to the original data. Therefore,
for the original data, the compressed data is an IFS after
FC. As discussed previously in [12–14], FC relies on self-
similarity of images. The wavelet transform is a tool for
demonstrating the scale invariance of edges. It is obvious
that the subbands in successive wavelet levels are similar.
Therefore, it is natural to use FC in the wavelet domain. The
relationship between fractal and transform-based coders has
been recently investigated in [15–19]; Rinaldo and Calvagno
[16] proposed a predictive pyramid coder (PPC) by exploring
the interscale redundancy. Davis [17] showed that the fractal
contractive mapping could be considered as a prediction
operation in the wavelet domain. And Xing-Yuan et al. [20–
25] proposed a series ofmethods to improve the coding speed
of FC, which is another research direction in FC.

In our study, the wavelet transform decomposes the
original image into different resolution subbands. At each
decomposition level, four subbands are produced. They are
named approximation subband (low-pass version) and detail
subbands (high-pass version). Using the primary descrip-
tions generation method, two subsets are generated at the
encoder. For each subset, we use the extended range blocks
fractal method in [26] to compress the approximation sub-
band and prediction fractal method [17] to compress the
detail subbands. So, IFS in wavelet domain is constructed
as a description, and the difference between the collage and
original wavelet coefficients is also quantized and entropy
coded in order to enhance the coding performance. Mean-
while, redundancy is introduced into each description. At
the decoder, an IFS recovering scheme using the similarity in
intra- and intersubbands is presented to reconstruct IFSwhen
only one description is received. The novelty of this paper
is (1) compared with the classical MDSQ method; iterated
function system is used to replace the SQ in MD coding so
that a better performance of MD coder can be achieved. (2)
Further, smultiple channel generation and reconstruction for
MD coding based on IFS are designed.

The rest of this paper is organized as follows. In Section 2,
basic idea and related techniques are formulated. In Section 3,
the design method of multiple description using fractal is

proposed.The experimental results are given in Section 4.We
conclude the paper in Section 5.

2. Basic Idea and Related Techniques

2.1. Basic Idea. MD coding can tolerate loss from the
estimation of missing data with help of a certain amount
of introduced redundancy. So, the interests of MD coding
are mainly two points; first, in what way the descriptions
and redundancy should be created to benefit the lost data
estimation; second, how can we efficiently recover the lost
data?

Therefore, in this paper, anMDwavelet-based image cod-
ing schemeusing fractal is proposed.Wavelet is a popular tool
for image analysis and compression. The different subbands
of wavelet coefficients have similarity, which can be exploited
by fractal codingmethods. In summary, the proposed scheme
partitions the mappings of IFS in wavelet domain with the
checkerboard pattern and recovers the lost mappings using
IFS recovering schemes.

2.2. FC and IFS. FC partitions data image 𝑥orig of size𝑁×𝑁

into nonoverlapping range blocks𝑅𝑗 of a predefined size𝐵×𝐵,
where 𝐵 ∈ 2𝑍

+

. Then a domain pool (DP) is created to take
all the square blocks of size 2𝐵 × 2𝐵. For each range block 𝑅𝑗,
a mapping 𝜔𝑗(𝐷) = 𝑠𝑗 × 𝐷 + 𝑜𝑗 is constructed to satisfy the
following minimization equation:

(𝐷𝑖, 𝜔𝑗) = arg min
(𝐷𝑖 ,𝜔𝑖)

󵄩󵄩󵄩󵄩󵄩
𝜔𝑗 (𝐷𝑖) − 𝑅𝑗

󵄩󵄩󵄩󵄩󵄩2

s.t. 𝐷𝑖 ∈ DP for 𝑗 = 1, 2, . . . ,
𝑁2

𝐵2
,

(1)

where𝐷𝑖 is the 𝑖th domain block inDP and argmeans finding
the best parameters (𝐷𝑖 and 𝜔𝑗 here) to fit the minimum
problems. ‖‖2 is the norm of vector.

Note that the range-domain matching process initially
consists of a shrinking operation in each domain block that
averages its pixel intensities forming a block of size 𝐵 × 𝐵.
Then, for each range block𝑅𝑗, we can find themapping𝜔𝑗 and
a domain block𝐷𝑖 to satisfy (1). The 𝑠𝑗 and 𝑜𝑗 in 𝜔𝑗 are called
scale and offset parameters, respectively, corresponding to the
𝑗th range block. And solving the minimization problem (1),
the optimal affine parameters can be obtained

𝑠𝑗 =
⟨𝑅𝑗 − 𝑟𝑗𝐼, 𝐷𝑖 − 𝑑𝑖𝐼⟩

󵄩󵄩󵄩󵄩󵄩
𝐷𝑖 − 𝑑𝑖𝐼

󵄩󵄩󵄩󵄩󵄩

2

2

, 𝑜𝑗 = 𝑟𝑗 − 𝑠𝑗 × 𝑑𝑖, (2)

where 𝐼 is a matrix whose elements are all ones, 𝑟𝑗, 𝑑𝑖 are the
average pixel intensity of the range block and the contracted
domain block, respectively. And ⟨⋅, ⋅⟩ is inner product, and
in this paper, 𝑠𝑗 and 𝑜𝑗 are real numbers. So in FC, the
parameters that basically need to be placed in the encoded
bit stream are 𝑠𝑗, 𝑜𝑗, position of domain block. And we use
the sliding windows method to find the best domain block
𝐷𝑖 for each range block.
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Assuming that 𝜔𝑗 is contractive in the pixel intensity
shifting, that is,

󵄨󵄨󵄨󵄨󵄨
𝑠𝑗
󵄨󵄨󵄨󵄨󵄨
< 1, ∀𝑗, (3)

then an IFS Γ can be constructed by combining all 𝜔𝑗:

Γ = 𝜔1 ∘ 𝜔2 ∘ ⋅ ⋅ ⋅ ∘ 𝜔𝑁2/𝐵2 , (4)

where ∘ is series operation for different 𝜔s.
Thefixedpoint theory and the collage theory are twobasic

theorems for IFS.

2.2.1. The Fixed Point Theory. Let (𝑋, 𝑑) denote a metric
space, where𝑑 is a given distortionmetric. If a transformation
Γ satisfies (5), we call Γ a contractive IFS in (𝑋, 𝑑).

For any two points 𝜇, ] ∈ 𝑋,

𝑑 (Γ (𝜇) , Γ (])) ≤ 𝑠 ⋅ 𝑑 (𝜇, ]) , (5)

where −1 < 𝑠 = max(𝑠𝑗) < 1, 𝑠 is called contraction factor.
For any contractive transformations, theremust be a fixed

point 𝑥∗, that is,

Γ (𝑥
∗
) = 𝑥
∗
, (6)

and the fixed point can be obtained from any point 𝑥, such
that

lim
𝑛󳨀→∞

Γ
𝑛
(𝑥) = 𝑥

∗
. (7)

2.2.2. The Collage Theory. Let (𝑋, 𝑑) be a metric space, a
contractive IFS Γ : 𝑋 → 𝑋 with contractive factor 𝑠 and
fixed point 𝑥∗ is in this space. Then, for any 𝑥 ∈ 𝑋,

𝑑 (𝑥, 𝑥
∗
) ≤

1

1 − 𝑠
𝑑 (𝑥, Γ (𝑥)) . (8)

The fixed point theory ensures that IFS Γ has a unique fixed
point, and the fixed point can be found by iteration of Γ.
According to the collage theory, 𝑥orig can be approximately
reconstructed by applying Γ on any initial data image 𝑥

iteratively if Γ(𝑥orig) ≈ 𝑥orig. If Γ can be stored compactly,
then it is called the compressed data of 𝑥orig. The process of
constructing the mappings of IFS can be seen in Figure 1.

The decoder is simple; it is shown in [12] that if IFS is
performed iteratively, beginning froman arbitrary data image
of equal size, the result will be an attractor resembling the
original data image at the chosen resolution.

2.3. Wavelet-Based Image Coding Using Fractal with Redun-
dancy. In our study, in case of recovering the lost mappings,
a wavelet coefficient image is compressed by the fractal coder
with redundancy. It is well known that the different wavelet
coefficient subbands have a different kind of similarity, for
example, the approximation subband has much similarity in
intrasubband and the detail subbands have much similarity
in intersubbands. Therefore, in the proposed method, the
different FCs are selected according to the different subbands.
In the approximation subband, we use the extended range
block FC method. And prediction fractal coding method is
used in detail subbands.

Partition scheme
(range blocks)

Domain pool
(domain blocks)

Figure 1: Constructing the mappings of IFS.

2.3.1. The Extended Range Block Fractal Coding. The basic
idea of the extended range block fractal coding is sending the
image twice with the same amount of data as the single image
and using double-sized range blocks and a new criterion to
determine the domain block [26].

This method extends the original range blocks into new
range blocks which are overlapped just like Figure 2.The new
range block consists of two parts.Thewhite part is called basic
range block, and the gray part is called extended range block.
In Figure 2, the approximation subband is firstly partitioned
into nonoverlapping basic range blocks. And each basic range
block extends somepixels to construct extended range blocks.
Each basic range block is overlapped by the extended range
blocks from its neighboring basic range blocks. Let us take
the basic range block 𝑅 as an example, 𝑅 is overlapped by the
expanded block 1 from basic range block 𝑅𝑢, the expanded
block 2 from basic range block 𝑅𝑙, the expanded block 3 from
basic range block 𝑅𝑑, and the expanded block 4 from basic
range block𝑅𝑟. So, all the basic range blocks can construct the
approximation subband, and all the extended range blocks
can construct the approximation subband too.

The process of finding an IFSwith new range blocks is just
like Section 2.2. Note that the criterion has a little bit changed.
Different weights are used in different blocks to guarantee the
decoded quality. So, the new criterion can be expressed as

(𝐷𝑖, 𝜔𝑗) = arg min
(𝐷𝑖 ,𝜔𝑗)

󵄩󵄩󵄩󵄩󵄩
𝑔𝑗 ∗ (𝜔𝑗 (𝐷𝑖) − 𝑅𝑗)

󵄩󵄩󵄩󵄩󵄩2

s.t. 𝐷𝑖 ∈ DP for 𝑗 = 1, 2, . . . ,
𝑁2

𝐵2
,

(9)

where𝑅𝑗 has two parts, one is the basic range block, the other
is the extended blocks. 𝑔𝑗 is the weight for the extended range
blocks. The weight for the basic range blocks is 1.

2.3.2. Prediction Fractal Coding. We use prediction fractal
coding [17] to compress the detail subbands, because the
detail subbands havemuch similarity in intersubbands. Davis
showed that the fractal contractive mapping could be consid-
ered as a prediction operation in the wavelet domain.That is,
coefficients of higher subbands are predicted from those of
the lower subbands.The isometry, scale, and prunes operator
used in spatial fractal operators are still used in the wavelet
domain. And the coding process is shown in Figure 3.
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New range block Partition of an approximation subband

Approximation subband

1

Expanded
range block

Basic range
block

Basic range
block

123 4

𝑅

𝑅𝑢

𝑅𝑟𝑅𝑙

𝑅𝑑

Figure 2: New range block and partition of extended range block FC.

Coded area Decoded area

Wavelet coefficients Decoded wavelet coefficients

𝑅𝐿𝑖

𝐷𝐿−1𝑖

𝜔𝑗

𝜔𝑖

Figure 3: Coding process of prediction fractal coding method.

In Figure 3, the shadow area has already been coded (left)
or decoded (right). For each range block in subband 𝐿, we
find the best matched domain block in subband 𝐿 − 1 of
decoded wavelet coefficients. So, the following equationmust
be satisfied:

(𝐷
𝐿−1
𝑖 , 𝜔𝑖) = arg min

(𝐷𝐿−1
𝑖
,𝜔
𝑖)

󵄩󵄩󵄩󵄩󵄩
𝜔𝑖 (𝐷
𝐿−1
𝑖 ) − 𝑅

𝐿
𝑖

󵄩󵄩󵄩󵄩󵄩2

for 𝑖 = 1, 2, . . . ,
𝑁2

𝐵2
,

(10)

where 𝑅𝐿𝑖 is range block in coded subband 𝐿,𝐷𝐿−1𝑖 is domain
block in decoded subband𝐿−1, and𝜔𝑖(𝐷

𝐿−1
𝑖 ) = 𝑠𝑖∗𝐷

𝐿−1
𝑖 . And

solving the minimization problem (10), the optimal affine
parameters can be obtained

𝑠𝑖 =
⟨𝑅𝐿𝑖 , 𝐷

𝐿−1
𝑖 ⟩

󵄩󵄩󵄩󵄩𝐷
𝐿−1
𝑖

󵄩󵄩󵄩󵄩2
. (11)

The difference between the original coefficients and decoded
coefficients is quantized and transformed for improving the
quality of decoded image.

2.4. Generating the PrimaryDescriptions. Afterwavelet trans-
form, each subband is divided into a group of blocks,
the block size may vary for different subbands, then these
blocks are partitioned into two nonoverlapping subsets; the
mappings corresponding to the blocks in subset are defined
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Range block Range block mapping

𝜔𝑗𝜔𝑖

Description 2 (𝑃2)Description 1 (𝑃1)

Figure 4: Primary description generation.

as primary descriptions 𝑃𝑖 (𝑖 = 1, 2). Figure 4 illustrates this
decomposition.The range blocks are divided into two groups
with checkerboard pattern. Thus, the mappings correspond-
ing to the range blocks are divided into two groups. Each
mapping group is assigned to one of the primary descriptions.
In Figure 4, the mapping 𝜔𝑗 is included in 𝑃1 and 𝜔𝑖 is
included in 𝑃2.

Redundancy which is defined as correlated information
𝐶𝑖 (𝑖 = 1, 2) is appended to the primary descriptions. The
correlated information is used for IFS reconstruction when
only one description is received. 𝐶𝑖 (𝑖 = 1, 2) will guarantee
the reconstructing quality when one description is lost, but
it will also reduce achievable compression gains. In the next
Section, we will explain how to generate a desired amount
of correlated information for each description. By symmetry,
the rest discussion is devoted for one description, while the
other description can be done in the same manner.

2.5. IFS Recovering Scheme

2.5.1. IFS Recovery in Approximation Subband. In approx-
imation subband, the extended range block fractal coding
method is exploited to compress wavelet coefficients. When
only one description is available, the received data is con-
sidered as an error IFS of the original image. Because the
extended range blocks can cover the lost basic range blocks,
we use the basic range blocks in received description and
its extended range blocks as new range blocks. In this way,
iteratively applying half mappings of IFS with the new range
blocks to an initial data image, we can acheive the decoded
subband. Note that, in each iterative step, the correlated
information is added to the lost basic range blocks.

In Figure 5, the black block is the lost block and the gray
block is extended range block. When one description is lost,
the lost basic range blocks can be recovered by the extended
range blocks in the other description.

When both descriptions are available, we use the basic
range blocks as the range blocks. With the completed IFS, the
decoded subband can be calculated just like the traditional
fractal decoding process.

2.5.2. IFS Recovery in Detail Subbands. In detail subbands,
prediction fractal image coding method is used to compress
the wavelet coefficients. When only one description is avail-
able, halfmappings of IFS are lost in the checkerboard pattern
manner. So, the fractal extrapolation method is presented
to estimate the lost mappings. This method exploits the
similarity in intrasubbands and the introduced correlated
information (redundancy).

In detail subbands, there is the similarity in intersubbands
at the same direction. So in our study, the lost mapping
in subband 𝐿 is estimated by the mapping parameters in
subband 𝐿 − 1. Note that the range block and the domain
block corresponding to the lost mapping in subband 𝐿 must
have the same location with the estimation range block and
the domain block in subband 𝐿 − 1 in spatial domain. In
other words, the range blocks corresponding to the lost
mapping and estimation mapping are included in the same
wavelet tree, and the domain blocks of the lost mapping and
the estimation are in the same wavelet tree too. Figure 6 is
given to explain this fractal extrapolation method, and it is
expressed by

𝜔 (𝐷𝑖󸀠) = 𝜔 (𝐷𝑖󸀠) , (12)

where 𝜔 is the estimated mapping, 𝜔 is the range block
mapping of lower subband in the samewavelet tree computed
in Section 2.3.2. 𝐷𝑖󸀠 denotes the corresponding domain
block of𝐷𝑖.

For each estimated block, the correlated information is
added on it.

3. The Proposed MDC Scheme

3.1. System Outline. The proposed MDC can be depicted in
Figure 7 in which (a) is MD encoder and (b) is MD decoder.
In Figure 7, Q1 means quantizer for channel 1. DQ1 means
dequantizer for channel 1. Q2 means quantizer for channel 2.
DQ2 means dequantizer for channel 2. DWT means digital
wavelet transform and IDWT means inverse digital wavelet
transform.

At the encoder, a given input image is decomposed by
wavelet transform, and the wavelet coefficients are parti-
tioned into two descriptions by the primary description gen-
eration method. In each description, for the approximation
subband, extended range block fractal coding method is
used to compress the approximation subband coefficients.
we use prediction fractal image coding scheme to compress
the detail subband. The detail has been given in Section 2.
With the correlated information 𝐶𝑖, the final descriptions
are generated. At the decoder, if only one description is
received, the side decoder is used to decode the image. When
both descriptions are received, the central decoder is used to
reconstruct the image.
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Approximation subband

Lost basic block

Extended approximation subband

Basic range block and
extended range block

Figure 5: Lost blocks are recovered by extended range blocks.

1

2

3

4

5

Lost block
Estimation block

Wavelet coefficients (5 subbands)

𝑅

𝜔(𝐷𝑖)

𝜔(𝐷
󳰀

𝑖 )

𝐷𝑖

𝐷
󳰀

𝑖

Figure 6: Example of fractal extrapolation.

Let 𝑅𝑡 = 2(𝑅
𝑝
𝑡 + 𝑅𝑟𝑡 ) be the target rate for both channels,

where 𝑅
𝑝
𝑡 and 𝑅𝑟𝑡 denote the target rates for the primary

description 𝑃𝑖 and the correlated information 𝐶𝑖. Assume
𝑅𝑝 denote the actual rate for the primary description 𝑃𝑖 and
𝑅𝑟 denote the actual rate for the correlated information 𝐶𝑖.

Let 𝐷𝑠 be the distortion between the decoded image and the
original image in one description and let𝐷𝑐 be the distortion
of central decoded image and the original image.

In the proposed scheme, the central decoded image
quality is directly dependent on 𝑅

𝑝 and 𝑅𝑟. Hence, the
problem for the central channel can be formulated as

min 𝐷𝑐 (𝑅
𝑝
, 𝑅
𝑟
)

subject to 𝑅
𝑝
+ 𝑅
𝑟
≤ 𝑅𝑡.

(13)

Using the well-known lagrange multiplier method, this
constrained optimization problem can be converted to an
unconstrained problem. The solution to (13) is identical to
that of the following unconstrained problem with 𝑅𝑝 = 𝑅

𝑝
𝑡

from the theory in [27],

min 𝐽𝑐 = 𝐷𝑐 + 𝜆 (𝑅
𝑝
+ 𝑅
𝑟
) . (14)

Consequently, we can achieve an optimal point on the convex
rate-distortion curve for different parameters.

Once 𝑅𝑝 is fixed, not only the central decoded image
quality but also the primary description is fixed. Hence, the
change of side channel decoded image quality is dependent
on the correlated information. We will explain how to
generate the correlated information in the next part.

3.2. Generating the Correlated Information 𝐶𝑖

3.2.1. Correlated Information in the Approximation Subband.
Because of the symmetry of both descriptions, we take
description 1 as an example to explain how to get the
correlated information.
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Figure 7: Process of proposed MD: (a) MD encoder, (b) MD decoder.

In Figure 2, assuming the basic block 𝑅 is included
in description 2. When only description 1 is received, the
mapping of block 𝑅 is lost. The mappings of basic block
𝑅𝑙, 𝑅𝑟, 𝑅𝑢, 𝑅𝑑 are used to estimate the lost block 𝑅. Therefore,
some correlated information is needed at the same time. The
correlated information for 𝑅 is quantized collage difference
between 𝑅 and the estimation parts from the extended block
of 𝑅𝑙, 𝑅𝑟, 𝑅𝑢, 𝑅𝑑. The difference 𝐸𝑅 can be expressed

𝐸𝑅 = (𝑅1 − (𝜔𝑢 (𝐷𝑢))1) ∪ (𝑅2 − (𝜔𝑙 (𝐷𝑙))2)

∪ (𝑅3 − (𝜔𝑑 (𝐷𝑑))3) ∪ (𝑅4 − (𝜔𝑟 (𝐷𝑟))4) ,
(15)

where 𝑅1, 𝑅2, 𝑅3, 𝑅4 are four parts of 𝑅 and 𝐷𝑢, 𝐷𝑙, 𝐷𝑟, 𝐷𝑑
are the domain blocks for 𝑅𝑢, 𝑅𝑙, 𝑅𝑟, 𝑅𝑑 and 𝜔𝑢, 𝜔𝑙, 𝜔𝑑, 𝜔𝑟
are corresponding mappings from domain blocks to range
blocks. 𝜔(𝐷)𝑖, 𝑖 = 1, 2, 3, 4 is the extended parts of 𝜔(𝐷)
which are marked with red number in Figure 2. Note that the
difference 𝐸𝑅 of block 𝑅 is quantized with the following:

𝑄 (𝐸𝑅) = round(
𝐸𝑅

𝑞step
) , (16)

where 𝑞step is the quantization step, and the function
round(𝑥) is used to round the 𝑥.
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(a) (b)

(c) (d)

Figure 8: Sample image reconstructions, for Lena image, at 𝑅𝑡 = 1.0 bpp. (a) Two channel decoder, high redundancy (PSNR: 38.22 dB),
(b) single channel decoder, high redundancy (PSNR: 35.00 dB), (c) two channel decoder, low redundancy (PSNR: 39.40 dB), and (d) single
channel decoder, low redundancy (PSNR: 29.70 dB).

For each basic range block in description 2, there exists
the quantized difference block. All the quantized difference
blocks are coded by entropy coder. The coded data is the
correlated information for description 1.

3.2.2. Correlated Information in theDetail Subbands. In detail
subbands, we still take description 1 as an example. In
Figure 6, assuming the block range block 𝑅 is included in
description 2. When only description 1 is received, we need
to estimate this block with themapping of lower subband. So,
there is difference between the original coefficients and the
estimated coefficients just like (17). The quantized difference
is the correlated information for block 𝑅 in description 2.
For all the blocks in description 2, we calculate this kind of
difference, and all the quantized differences make up of the
correlated information for description 1:

𝐸𝑅 = 𝑅 − 𝜔 (𝐷
󸀠
𝑖) , 𝑄 (𝐸𝑅) = round(

𝐸𝑅

𝑞step
) . (17)

3.3. Decoding. When both descriptions are received, the
primary coded information from each description is used for
the reconstruction. When only one description 1 is available,
the correlated information and the primary information from
the description are used by the IFS recovering scheme to
reconstruct the side decoded image.

4. Experimental Results

Two standard images (512 × 512) (Lena, Barbara) are used
as the testing images, and the 10–18 Daubechies wavelet is
employed for four-level subband decomposition for a 512 ×
512 partitioned part. For FC, the bit costs of 𝑠𝑗 and 𝑜𝑗 are
chosen from 5 to 8 bits for different bit rates tested, and the
size of range blocks is selected to be 8 × 8 or 16 × 16. The
position of domain blocks is dependent on the domain pools.
By adjusting 𝑞step from 8 to 65, the bit rate of correlated
information varies.
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Figure 9: PSNR (dB) of reconstruction images using the proposedmethod and the Salama’s linear interpolationmethod: (a) Zelda, (b) Elain,
(c) Barbara, and (d) Lena.

4.1. MDC Performance. In the first experiment, we show
performance results for our proposed MD method. The
sample image reconstructions are shown in Figure 8.The test
image is Lena (512 × 512 × 8). The shown images are the
reconstructed images with the target bit rate 𝑅𝑡 = 1.0 bpp in
central decoder and side decoder. From Figure 9, we can see
that the proposed method preserves the edge detail very well
even when the redundancy of description channel is low.

Then, we evaluate the reconstruction performance of the
proposed IFS recovery method. Figure 9 shows the peak
signal-to-noise ratios (PSNR) of the reconstructed images for
the test images “Lena,” “Barbara,” “Elain,” “Zelda” (512×512×
8) by the linear interpolation method and the proposed IFS
recovering scheme under different bit rates.

4.1.1. Linear Interpolation Scheme. In the linear interpolation
scheme, each description only contains the primary informa-
tion, corresponding to the same coding rate per description
as in the proposed scheme. In this way, the redundancy
between the two descriptions is minimized, which favors the
central decoding performance. When only one description is
received, an interpolation method used in [28] is exploited to
recover the missing part.

When only one description is available, the linear inter-
polation method to recover the lost description yields poor
performance. On the other hand, the IFS recovering scheme
gives much better results. Note that the redundancy is not
used in this experiment for the fair comparison. That is,
in this experiment, the IFS recovering scheme and the
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Figure 10: Performance comparison of Lena amongMDSQ,MDmethod in [4] and the proposedmethodwith target bit rates: (a)𝑅𝑡 = 0.5 bpp,
(b) 𝑅𝑡 = 1.0 bpp.
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Figure 11: Performance comparison of Barbara betweenMDSQ and
the proposed method with target bit rates 𝑅𝑡 = 1.0 bpp.

linear interpolation scheme construct the description by
only primary information. It can be seen that the proposed
method is more efficient to recover the lost description than
directly recovering the description using linear interpolation
method.

4.2. Comparison against Other MD Image Coders. Figure 10
compares the performance attained by the proposed scheme

MDSQ
The proposed method
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Figure 12: PSNRwith variant packet loss ratios betweenMDSQ and
the proposed method. 𝑅𝑡 = 0.5 bpp for the proposed method. We
choose MDSQ coder with the parameters that can achieve the same
central PSNR at the same 𝑅𝑡 = 0.5 bpp, the test image is Lena 512 ×
512 × 8.

against MD image coders in [3, 4]. Two target bitrates,
𝑅𝑡 = 0.5 and 1.0 bpp, are tested. The RD curves are plotted
with central reconstruction PSNR versus the average side
reconstruction PSNR. This experiment is to verify the ability
to achieve reasonable tradeoff points between central and side
decoders with variant redundancies. For a good MD coder,
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(a) (b)

Figure 13: Two channel reconstruction for Barbara (512×512×8) with packet loss ratio of 40% at𝑅𝑡 = 0.34 bpp: (a)MDSQ PSNR = 22.69 dB
and (b) the proposed method PSNR = 23.17 dB.

it is expected to achieve higher side PSNR when the central
PSNR is fixed and vice versa [6].

With the same central reconstruction distortion, the
performance gap of the side decoder between the proposed
scheme and MDSQ is significant, ranging from 0.4–1 dB,
which verifies the efficiency of the proposed scheme. Note
that the proposed MDmethod has outstanding performance
when the redundancy is low.

Figure 11 describes the MD coder performance for Bar-
bara under bit rate 𝑅𝑡 = 1.0 bpp. It can be seen that
the proposed method can achieve better performance than
MDSQ. Note that, in lower redundancy, our method can
achieve larger gap than MDSQ.

In fact, the probability that a description is completely lost
during the transmission is very low. Hence, it is reasonable to
assume that a certain percentage of packets are lost in trans-
mission. Each block mapping and its quanitzed difference
is assumed to construct a packet. A uniformly distributed
random index of the lost packet is generated for each channel.
The lost packet is recovered with Salama’s linear interpolation
method if its estimation block used for fractal extrapolation is
lost too. This experiment is tested with the packet loss ratios
of 3%, 5%, 10%, 15%, 20%, and 25%.

The target bit rate is fixed at 0.5 bpp. The bitrate of
correlated information is fixed at 0.05 bpp. The results are
presented in Figure 12. The proposed method achieves same
PSNR with MDSQ [3] if no packet is lost. However, PSNR of
MDSQ degrades rapidly with the packet loss ratio increasing,
whereas the proposed MDC proves to be more robust.

We also execute the subjective test at low bitrates. Because
FC exploits the different scale redundancy of image, with
40% packet loss, the reconstructed images of the proposed
MD scheme can achieve a better subjective performance of
the textures and edges than MDSQ method. The results are
shown in Figure 13.

5. Conclusion

In this paper, we have proposed an MD wavelet image
coding scheme using fractal. This scheme exploits the ability
of fractal well. Through IFS recovering scheme with the
similarity in wavelet coefficient bands, the proposed scheme
can reconstruct the lost information well when only one
description is received. The results strongly suggest that our
method can achieve better performance even when only one
description is received. Furthermore, the proposedmethod is
more robust for image transmission.
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