
Review
Thomas L. Paez

Experimental Structural Dynamics
Department

Sandia National Laboratories
Albuquerque, NM 87185

Neural Networks in
Mechanical System
Simulation, Identification,
and Assessment

Artificial neural networks (ANNs) have been used in the solution of a variety of
mechanical system design, analysis, and control problems. This paper describes the
ANNs that have been mostfrequently used in mechanical system applications. It also
summarizes some of the applications that have been developedfor ANNs, and briefly
reviews the literature where descriptions of the developments and applications can be
found. Some recommendations regarding ANN applications in mechanical system
simulation, identification, and assessment are provided. © 1993 John Wiley & Sons,
Inc.

INTRODUCTION

Artificial neural networks (ANNs) were first in­
troduced in the 1940s. Their original purpose was
to simulate aspects of brain behavior and func­
tion using simple, yet realistic, elements. Some
reviews of the early studies and their intent are
given in many texts and articles, for example,
Freeman and Skapura (1991) and Vanluchene
and Sun (1990).

Much of the terminology associated with
ANN s was developed in the original studies and
is still used. For example, terms such as neuron,
neural network, and activation, to be described
in the following, originated in early ANN appli­
cations and describe elements and functions of
the brain.

Though it was originally used to simulate brain
function and behavior, engineering and science
applications have simply taken advantage of the
ANNs' ability to simulate highly complex mathe­
matical mappings. The ANN provides a different

Shock and Vibration, Vol. 1, No.2, pp. 177-199 (1993)
© 1993 John Wiley & Sons, Inc.

method for approaching problems in engineering
analysis than those traditionally used. A clear
motivation is given by Jones, Lee, Qian et al.
(1990):

A young child can learn to operate a complex nonlin­
ear process, walking or riding a bicycle for instance,
with no knowledge of physics or differential equa­
tions. A juggler can balance an inverted broom stick
with only a coarse knowledge of the state of the sys­
tem. A human being seems to be able to act with rea­
sonable precision in a complex highly interactive
world with partial or partially incorrect information.
One wonders, then, if the traditional deductive ap­
proach of physicists and engineers to prediction and
control cannot be augmented by a more inductive
point of view. Does one, for example, need to know
the details of plasma instability in order to predict and
control it? Can the behavior of a chaotic process be
predicted with no initial knowledge of the dynamics or
dimensionality of the system? Taking life as an exis­
tence of proof, we are motivated to look at some in­
ductive and adaptive systems and their interaction
with complex nonlinear phenomena.

CCC 1070-9622193/020177-23

171

178 Paez

The techniques most frequently used today for
engineering problem analysis involve the de­
scription of the physical principles governing the
phenomenon of interest, the use of these princi­
ples to develop the differential equations govern­
ing the phenomenon, and analysis of the differen­
tial equations to establish the solution. Such
techniques are phenomenological. There are al­
ternatives to the traditional analytical ap­
proaches. Some alternatives that are nonpheno­
menological are canonical variate analysis
(Larimore, 1983) and ANNs. The objectives of
this article are to:

1. provide a general description of ANNs;
2. describe in more detail, the operation of

four ANNs;
3. give some examples of their use by review­

ing some of the literature that describes de­
velopments and applications of ANN s;

4. discuss the simulation, identification, and
assessment of mechanical systems with
ANNs; and

5. make some recommendations for applica­
tions of ANNs.

Even though ANNs have only been used in
mechanical system applications for about 5
years, there are some articles that include litera­
ture reviews that discuss applications to date.
Among these is one by Hajela and Berke (1992)
where several types of ANN s and applications
that are not covered in this article are discussed.
They discuss counter propagation networks,
Hopfield networks, adaptive resonance theory
networks, and mechanical system applications
that use them. Another article that includes a
literature review is the one by Vanluchene and
Sun (1990). They discuss several articles that
cover information of interest in mechanical appli­
cations.

ANNs

An ANN is an assembly of a (potentially large)
number of interconnected processing units called
neurons, processing elements, or nodes. The
structure, rules of operation, and environment
for the ANN are discussed in detail in Chapter 2
of Rumelhart, Hinton, and McClelland (1986).
ANN s are intended to perform functions that in­
volve the processing of input data to yield output
data, or, in other terms, functions that map input

data, {x}, to output data, {z} = g({x}), where g(.)
is a deterministic function. An ANN performs its
function in any of a number of specific frame­
works (some of which are described in the fol­
lowing) by developing an approximation for {z} =

g({x}) that can be expressed {y} = h({x}), where
{y} is the ANN approximation to {z}. In the me­
chanical system framework, the input data, {x},
and the output data, {z}, can consist of measures
of mechanical system excitations, measures of
responses, system parameters, or any combina­
tion of the three. The purpose of an ANN can be
the simulation of system behavior, the determi­
nation of some measure of system excitation, the
determination of system parameters, the charac­
terization of some aspect of system behavior, or
the classification of the input presented to the
ANN. The overall ANN is characterized by its
size, geometry, pattern of connectivity, the rules
of operation of its neurons, and the direction of
flow of input stimuli presented to the ANN and
the rules for propagation of the stimuli.

A neuron in an ANN is typically a simple ele­
ment that operates on externally supplied inputs
or inputs supplied from other neurons. The rules
of operation of a neuron establish how it pro­
cesses the inputs presented to it, how it calcu­
lates an activation for the neuron based on the
inputs, and how it calculates an output based on
the activation.

Use of the neural network requires that we be
able to train it to perform a function; therefore, it
is required that we establish a learning rule that
can be used to teach the neural network to per­
form the operation intended. Finally, an ANN is
usually intended to operate in a preestablished
environment. This means that there is a family of
inputs to an ANN that can be operated on to
produce (or mapped to) outputs that accurately
reflect the operations intended in the ANN.

An ANN usually consists of at least an input
layer of neurons, and an output layer of neurons,
and many ANNs include one or more hidden lay­
ers of neurons. Figure 1 is a schematic of a ge­
neric ANN including one hidden layer of neu­
rons. ANNs are used to perform various tasks,
and the framework in which they may perform
these tasks can be described as follows (Fig. 1).
This description outlines what is known as feed­
forward operation of an ANN.

A vector of inputs (or stimuli or signals),
{x(t)}, is presented to the ANN. [The index t(t =
1, 2, ...) is included for situations when it is
important to consider the temporal order of pre-

Hidden
Layer

FIGURE 1 Framework for a neural network with n
input nodes, N hidden level neurons, and m output
neurons.

sentation of the inputs.] Each element in the vec­
tor enters the ANN through an input node. The
layer of nodes that accepts the inputs is called
the input layer. The input nodes may operate on
the input vector elements, for example, by nor­
malizing the inputs, or they may simply distrib­
ute the inputs to the following layer. The follow­
ing layer is the first layer of hidden nodes if the
ANN has been defined to include such a layer.
Otherwise, it is the output layer. Typically, the
outputs of the input layer are distributed to all the
neurons in the following layer. (Exceptions oc­
cur in some implementations, and with some
types of ANNs. In these cases, the outputs from
the input layer may be distributed to only a frac­
tion of the neurons in the immediately succeed­
ing layer, or some outputs of the input layer may

Neural Networks in Mechanical Systems 179

be distributed to a layer beyond the immediately
succeeding layer.) The inputs to the layer that
succeeds the input layer are processed in the in­
dividual neurons of the layer, and each neuron
produces in own output. The output of a neuron
in a layer may be influenced only by activities of
parameters involving the neuron itself, or it may
be influenced by the activities or parameters of
all the neurons in the layer; the former is the
usual case. This process of inputting stimuli to a
layer and the generation of outputs from the
layer continues through the hidden layers (if
there are any) until the output layer of neurons is
reached. The stimuli presented to the output
layer are processed as described above for pre­
vious layers, and the output layer produces the
ANN output vector, {yet)}.

The processing that takes place within each
neuron in an ANN (and, perhaps, throughout a
layer of neurons, simultaneously) depends on the
type and function of the ANN. The inputs to a
neuron are related to its single output through
algebraic equations, differential equations, or
both. However, the operation of an ANN most
frequently involves application of the following
specific and generic algebraic steps. These steps
are shown schematically in Fig. 2. All the out­
puts from a preceding layer of neurons (a hidden
layer or the input layer) in an ANN are presented
to a neuron as input. Each presented input is
multiplied times a (potentially adjustable) weight
value, and the resulting products are summed.
This yields a quantity known as the net input to
the neuron. If we let Oi, i = 1,. . ., n, denote the
ith output from the previous layer of an ANN,
Wi, i = 1,. . ., n, denote the ith weighting value
in a particular neuron, and net denote the net
input to a neuron, then the net input is computed

FIGURE 2 Model for a neuron in an artificial neural network (ANN).

180 Paez

with the equation

n

net = L WiOi·
i~1

(1)

This is simply the dot product between the vec­
tors {w} and {o} of elements, Wi, 0i, i = 1, ... ,
n, respectively. Next, the neuron performs a
functional operation on the net input and the pre­
vious value of the neuron activation to establish
the present value of the neuron activation. This
operation can be expressed

aCt) = F[a(t - 1), net(t)] (2)

where the concept of time and sequence of oper­
ations has been explicitly accounted for through
the use ofthe index, t. The activation character­
izes the "level of activity" of the neuron. Some­
times, the function that establishes the current
activation of a neuron is a threshold function or a
function of another nontrivial form, but more fre­
quently, it is simply an identity that equates the
current value of activation to the net input. (Be­
cause of this fact, many descriptions of neuron
operation ignore the activation, and simply pass
the net input to the following step.) It will be
assumed in all the following discussions of
ANN s that the activation function is an identify
that simply equates the activation to the net
value. Finally, the neuron performs a functional
operation on the activation to produce the neu­
ron output, o. This operation can be expressed

o = f[a(t)] = f(net). (3)

The function f(.) is often called the activation
function. As mentioned in the previous para­
graph, this output is distributed to the neurons in
the succeeding layer in the ANN, or, if the neu­
ron under consideration is in the output layer of
the ANN, it is interpreted as an output of the
ANN.

Note that the operations described above can
be written in matrix and vector function form.
Consider an ANN with n inputs, M hidden layers
with N neurons in each layer, and m outputs (re­
fer to Fig. 3.) Assume that the input layer simply
distributes the inputs to the following layers. (If
some normalization is required, it can be done
before the inputs are presented to the ANN.) Let
the vector {x(t)} denote the inputs to the ANN at
time index t, the vector {yet)} denote the outputs

x

x

Hidden layer I
Inputs [xl!)}

(I)

Weights[W I
(1)

Net inp {net (t)}
(I)

Outputs {o (t)}

ANN with M hidden layers

Hidden layer i
(i-I)

Inputs {o (t)}
(i)

Weights{W I
(i)

Net inp {net (t)}
(i)

Outputs {o (!)}

Hidden layer M
(M-I)

Inputs {o (I)J
(M)

Weighls[W I
(M)

Nel inp {nel (t)J
(M)

Outputs {o (t)}

Output layer
(M)

Inputs {o (t)J
(out)

Weights[W I
(out)

Net inp {net (t)J
Outputs (y(l)}

FIGURE 3 Schematic for description of matrix oper­
ations in an ANN.

of the ANN, the matrix [W(i)], i = 1, ... , M,
denote the weights of the ith hidden layer, the
matrix [WOUI] denote the weights of the output
layer, the vector {net(!'(t)}, i = 1, ... , M, denote
the net inputs to the neurons in the ith hidden
layer, the vector {net(ouI)(t)} denote the net inputs
to the neurons in the output layer, and the vector
{o{!)(t)} denote the outputs of the neurons on the
ith hidden layer of the ANN. The jth row, kth
column element of a weight matrix for a particu­
lar layer is the weight on the kth output coming
from the previous layer to the jth element in the
current layer. We can establish the net inputs to
the first hidden layer with the formula

{net(1)(t)} = [W(1)]{x(t)}, t = 1, 2, . .. (4)

Based on the ANN size, the matrix [W(I)] must
have the dimensions N x n. The output of the
first hidden layer is

{o(1)(t)} = fl[{net(1)(t)}], t = 1,2, . .. (5)

where fl(.) is the vector activation function for
the first hidden layer of neurons. The net inputs
to the ith hidden layer are

{net(i)(t)} = [W(i)]{o(i-1)(t)}, t = 1,2, . .. (6)

Based on the ANN size, the matrix [W(i)] must
have the dimensions N x N. The output of the
ith hidden layer is

{o{!)(t)} = fi[{net(lJ(t)}], t = 1,2, . .. (7)

where fi(.) is the vector activation function for
the ith hidden layer of neurons. Finally, the net

inputs to the output layer are computed from

{net(out)(t)} = [W(out)]{o(M)(t)}, t = 1, 2, .
(8)

Based on the ANN size, the matrix [W(out)] must
have the dimensions m x N. The output of the
ANN is computed from

{y(t)} = fout[{net(out)(t)}], t = 1, 2, . .. (9)

where fout(') is the vector activation function for
the output layer of neurons. The subscript on
each activation function, jj(.), implies that the
functional form and parameters can differ from
layer to layer. In spite of this, the functional form
and parameters are frequently taken to be the
same throughout the ANN.

As mentioned previously, the above opera­
tions describe feedforward operation of an ANN.
Clearly, the feedforward operation of an ANN
maps inputs {x(t)} to outputs {y(t)}. Many of the
functions that an ANN might perform with feed­
forward operations (particularly those of interest
in mechanical system applications) are discussed
in later sections. In order to accurately perform
an operation, an ANN must be trained using {x}
and {z} data pairs. A collection of data used to
train an ANN can be denoted {Xj}, {Zj}, j =

1, ... R. Each matched pair {xJ, {zJ is known
as an exemplar because it is an example of cor­
rect behavior. The learning rule used to train an
ANN differs according to the type of ANN under
consideration. Four types of ANNs and their
learning rules are described in the following sec­
tions. In most applications, training of an ANN
involves modification of the weights in the
weight matrices that cause the ANN to accu­
rately perform its intended function. Typically,
the data used to train an ANN come from labora­
tory tests, field tests, or other (more compli­
cated, more time consuming) analyses.

There are two general modes in which ANN s
learn their functions. These are supervised and
unsupervised learning. In supervised learning, an
ANN is presented with input-output pairs and
trained to emulate their behavior; this is the type
of learning that will be emphasized in this article.
In unsupervised learning, the ANN is first
trained to represent the input training vectors,
then the representation of a class of outputs may
be deVeloped. Some ANNs that accommodate
unsupervised learning are counterpropagation
networks and self-organizing maps. In general,

Neural Networks in Mechanical Systems 181

the activities involved in training an ANN to rep­
resent the characteristics of a class of inputs are
referred to as self-organization. Several chapters
are devoted to these subjects in Freeman and
Skapura (1991).

The data, {Xj}, {Zj}, j = 1, ... , R, used to
train an ANN come from an environment with
some specification. In particular, when the ele­
ments of the vectors {Xj} and {Zj} are continuous
valued, the vectors {xJ, j = 1, ... , R, span a
space with some dimension, have some density
over the space, etc., and the same is true of the
vectors {Zj}, j = 1, ... , R. When training is
performed on an ANN, it learns to map input
vectors {x} into output vectors {z}, and it is usu­
ally hoped that the ANN learns to correctly in­
terpolate among the vectors {zJ, j = 1, ... R,
when presented with a vector from among the
{Xj}, j = 1, ... , R. Hornik, Stinchcombe, and
White (1989), show that if an ANN with at least
one hidden layer contains sufficient neurons, is
sufficiently trained, and the underlying mapping
is deterministic, then it will perform interpola­
tions correctly, and it can be made arbitrarily
accurate. It is said that the {xJ and {Zj}, j =

1, . . . , R, data define the environment of the
ANN, and the ANN will perform satisfactorily
for {x}, {z} pairs within the environment. It is
usually assumed that the extrapolation capability
of an ANN is questionable, as indeed it should
be. There is usually no reason to believe that an
ANN should perform well in an environment
where it has not been trained.

There are many practical issues involving the
use of ANNs, and an important one among these
is size of the ANN. For most frequently used
ANNs, relations are not available to quantify the
increase in accuracy attained by increasing the
number of neurons in an ANN for a problem
whose input environment spans a space with
fixed dimension. In practical situations, investi­
gators often start with an ANN and increase its
size until the increase in accuracy of the input­
output mapping diminishes to an acceptable
level.

Though the preceding paragraphs describe the
general operation of an ANN, a neuron within
the ANN, and the environment in which an ANN
operates, it must be emphasized that there are
many types of ANNs, and the specific structure,
rules for operation of the overall network, rules
for operation of the neurons in the network, and
environment in which the network will operate,
may all differ in their details. For more detailed

182 Paez

descriptions of the ANN s described here and
other ANN s, refer to Rumelhart, Hinton, and
McClelland (1986) and Freeman and Skapura
(1991).

The following paragraphs describe the opera­
tion and use of four specific types of ANN s.
These are the backpropagation network, the
probabilistic neural network, the associative
memory, and the radial basis function network.
There are many other types of networks, includ­
ing madeline networks, counterpropagation net­
works, self-organizing maps, and networks based
on adaptive resonance theory. However, these
will not be described in this article.

Backpropagation Network

The ANN that appears to be used most fre­
quently in all applications is the backpropagation
network (BPN), sometimes called the feed­
forward/backpropagation network. The BPN is
an example of a network like the one shown in
Fig. 3, with neurons like the ones shown in Fig.
2, and described in the previous section. The
BPN has an input layer, an output layer, and
typically one or more hidden layers. It derives its
name from the fact that when training is per­
formed on the weights in the network, it pro­
ceeds from the output layer to the final hidden
layer, to the previous one, etc., until it reaches
the first hidden layer.

The number of neurons in the input layer is the
number required to accept the information ap­
propriate to the problem. (The problem frame­
work usually dictates the appropriate inputs, but
sometimes, particularly in experimental situa­
tions, it is difficult to establish precisely what are
the appropriate physical inputs. In some applica­
tions, some fraction of the known physical pa­
rameters or parametric measures of the physical
inputs are used as the ANN inputs.) The number
of neurons in the output layer of the BPN is the
number required to provide the information
sought from the BPN.

The number of hidden layers and the number
of neurons in each hidden layer of a BPN is arbi­
trary. However, it is intuitively clear that as the
complexity of a mapping from BPN inputs to out­
puts increases, the number of nodes in the hidden
layers must increase in order for the mapping to
be modeled accurately. The number of weights in
the hidden layers is a measure of the size of a
BPN. There is no universal rule for choosing the
number of hidden layers and neurons in each

Sigmoidal Activation Function

o.:~
0.8'

0.7r

i
0.6!

~0.5

0.4

0.3

0.2
1

0.1

?6 ·4 ·2 0 2 4 6
x

FIGURE 4 Sigmoidal activation function used to
process the net input to a neuron in a BPN.

layer in a BPN for a specific problem representa­
tion. However, some investigators have found
that one means for sizing a BPN is to start at one
size and increase it until the error in the repre­
sentation diminishes to a satisfactory level after
training. Many complicated mappings can be ac­
curately simulated with a BPN that has only one
hidden layer.

The activation functions relating net input to
neuron output in an ANN have been defined in
different ways in various networks. The most
commonly used activation functions are step
functions, linear functions, and sigmoidal func­
tions. The most frequently used activation func­
tion is the sigmoidal curve whose specific form is

1
f(x) - -00 < x < 00. (10) - 1 + e-X '

This function is graphed in Fig. 4. Note that the
curve has an ordinate value between zero and
one, and that the ordinate value is only sensitive
to abscissa values in a limited range, say (-3, 3).
The linear activation curve appears limited in its
ability to represent complex, and perhaps nonlin­
ear, input to output mappings, and is probably
not as good as the sigmoidal curve in mechanical
system applications. Use of the step function ac­
tivation curve clearly makes it impossible to gen­
erate a continuous valued output mapping.

It appears that a critical element in defining a
BPN with the capability to accurately model a
realistic mapping is normalization of the magni­
tudes of inputs and outputs. During training (to
be described in the following paragraphs), the

stimuli to individual input neurons, and the re­
sponses to be used in training BPN outputs, can
be normalized to preestablished ranges. For ex­
ample, stimuli to input nodes might be scaled into
the range (-3, 3), and training responses from
the output neurons might be scaled to the range
(0.1, 0.9). This clearly requires some fore­
knowledge of the environment defined by the
{Xj}, {Zj},j = 1, ... ,R. When a BPN is trained
with normalized inputs and outputs, later appli­
cations with actual data in the feedforward mode
require that the inputs be normalized and the
BPN outputs be denormalized upon output from
the BPN. Normalization of the inputs and use of
the activation function in Eq. 10 is equivalent to
use of the actual inputs with a more general sig­
moidal curve.

The objective of training the BPN is to make
its operation mimic the mapping behavior {z} =
g({x}) using the training set, {Xj}, {zJ,j = 1,. . .,
R. This is usually accomplished with an ap­
proach known as the generalized delta rule. (See,
for example, Chapter 8 of Rumelhart, Hinton,
and McClelland, 1986.) The generalized delta
rule (or any rule used to train a BPN) seeks to
select the weights in the BPN that minimize
some measure of the difference between g({x}),
the mapping that is to be modeled, and h({x}), the
mapping provided by the BPN. The steps in the
generalized delta rule are as follows.

1. Select dimensions, m, n, M, N, for the
BPN, randomize the elements, w)f, of all
the weight matrices, and select a learning
rate, 71. [This is a number, usually chosen
in the range (0.05, 0.20), that establishes
the fraction of the correction to be applied
to a weight during a training cycle.]

2. Present a training vector {Xj},j = 1, ... ,
R, to the BPN.

3. Propagate it through the BPN using Eqs.
(4)-(9) to compute the BPN output, {Yj}.

4. Compare the computed BPN output, {Yj},
to the training output, {Zj}, by computing
the error and the squared error. The error,
{ej}, is the vector of the differences be­
tween the elements of {Zj} and {yJ. The
scalar squared error, eJ, is one-half the sum
of the squares of the differences between
the elements of {Zj} and {Yj}.

5. Establish the rate of change of the squared
error with respect to each of the weights in
the BPN, iJeJliJw)f, using Eqs. (4)-(9).
(This is minus one times the dot product

Neural Networks in Mechanical Systems 183

between the error vector, {ej}, and the par­
tial derivative of the BPN output with re­
spect to w)f, iJ{YJliJw)f.)

6. MUltiply the rate of change of the squared
error with respect to each of the weights in
the BPN by the learning rate, 71, to create
the weight corrections 8w)f.

7. Subtract the weight corrections from the
weights, w)f, to update the weights in the
BPN.

8. Repeat steps 2 through 7, until the squared
error reaches a satisfactory value.

The training steps described here involve the
least mean square (LMS) method of error mini­
mization. This method is discussed in detail in
Widrow and Stearns (1985). The identification of
the optimal BPN weights can be accomplished by
other error minimization techniques including,
for example, gradient search techniques, simu­
lated annealing (Press, Flannery, Teukolsky, and
Vetterling, 1988), and the genetic algorithm (Hol­
land, 1992). The latter two are global techniques,
and can be very useful when the error surface
associated with the BPN weights is not uni­
modal, that is, has multiple extrema.

The operations involved in the identification
of the weights in a BPN (or other ANN) may
seem quite similar to the operations of a nonlin­
ear regression, and, in fact, they often are. How­
ever, the use oflarge BPN s and the use of BPN s
in real time applications introduce special prob­
lems that may not be encountered in nonlinear
regression. Werbos (1989) discusses this issue
and other issues related to identification and con­
trol with ANN s.

As stated previously, the great majority of ap­
plications of ANN s to mechanical system prob­
lem solutions use BPNs. The applications of
BPN s to mechanical systems range from static
and dynamic system simulation, to structural
health monitoring, to classification of the charac­
teristics of system response. A sequence of pa­
pers by Hajela and Berke (1991, 1992) and Berke
and Hajela (1992) considers the simulation of
static mechanical system response to applied
loading using BPN s and other types of ANN s
(counterpropagation networks, Hopfield net­
works, and adaptive resonance theory net­
works). Their purpose in establishing the simula­
tion is to use the outputs of the BPN s in
mechanical system optimization. When an ANN
can be used to accurately model the behavior of a
mechanical system, the determination of an opti-

184 Paez

mum design will be much more efficient because
the ANN yields its output much faster than an­
other analysis, for example, a finite element anal­
ysis. Their examples concentrate on truss sys­
tems. They point out that once neural networks
are developed to establish optimum designs in
structural systems, the optimal designs can be
used to train other ANN s to provide specific in­
formation about structure geometries. For exam­
ple, when a system with preestablished general
geometry is to be designed and some of the di­
mensions are known, then an ANN can be used
to specify the remaining dimensions of an opti­
mum structure.

An area where the BPN can clearly be used
efficiently is the simulation of the behavior of
mechanical systems. Before an ANN can be used
to simulate system behavior, it must be trained
using the techniques discussed. Among the appli­
cations where identification and simulation of
system behavior are required are structural con­
trol and identification of system parameters.
Some articles that deal with the identification of
system models for use in the control framework
are the ones by Goh and Noakes (1993) and
Wang and Miu (1991). The former article uses a
BPN in a recurrent framework (see recurrent
ANN s discussion) to simulate the response be­
havior of the system to be controlled, in a nonlin­
ear output feedback controller. It is assumed that
the general structure of the system to be con­
trolled is unknown, and its internal states are not
observed directly. Examples are shown where
very good accuracy in the system simulation is
achieved. The latter article uses a BPN to control
the motion of a system whose motion is simu­
lated with a BPN. They show that the motion of
the inverted pendulum can be controlled using
the scheme they developed.

The identified parameters of a BPN can also
be used to infer the parameters of a structure.
Riva and Giorcelli (1992) point out that a one-to­
one comparison can be made between the
expanded form of an autoregressive-moving av­
erage (ARMA) or nonlinear ARMA with exoge­
nous terms (NARMAX) model, and the model of
a BPN. Once the weights in the BPN are identi­
fied they can be used to compute the linear or
nonlinear parameters of a mechanical system.
For example, the modal parameters of a system
can be inferred.

The BPN is useful for the prediction of system
response character at a time IJ..t in the future
(where Ilt is small). The BPN input is the forcing

function at time t and the state of system motion
at time t, and the output of the BPN is the state of
system motion at time t + Ilt. (See recurrent
ANNs section.) Yamamoto (1992) obtained a
very accurate model for predicting the response
of a single degree-of-freedom system using this
approach.

Wu, Ghaboussi, and Garrett (1992) attempted
to use a BPN to identify damage in a three de­
gree-of-freedom system. The inputs to the BPN
were the Fourier transforms of the responses at
various degrees of freedom of the structure ex­
cited by some earthquake accelerations. The out­
puts of the BPN were the postevent stiffnesses in
the structural members. They achieved partial
success in their attempts to identify damage, in
the sense that they could frequently, accurately
predict damage in the location where it occurred.
However, they also found that sometimes when
damage occurred, it was difficult to determine its
location.

The objective of the article by Xirouchakis
and Norris (1991) was the classification of
column buckling modes. They point out that the
postprocessing of finite element analysis results
often require the interpretation of complicated
numerical data. They suggest that an ANN can
be useful in the interpretation process. They
trained several BPN s to perform a sequence of
operations related to classification. When com­
bined in a specific manner, these can be used to
classify column buckling modes. Further, they
were able to estimate the effective column length
ratio of a buckled column.

In addition to presenting a brief discussion of
several types of ANNs, the article by Van­
luchene and Sun (1990) presents three examples
of the use of BPNs in mechanical system analy­
sis. The first problem they solved involves the
identification of the location of application of a
static load to a beam. Second, they show that a
BPN can be used to specify the design dimen­
sions of a reinforced concrete beam when load
and geometry information are provided. Third,
they tr(;l.ined a BPN to identify the maximum mo­
ments and their locations in a simply supported
plate subjected to concentrated load. The loca­
tion of the load is the input to the BPN.

It is clear that there are numerous applications
for the BPN in mechanical system analysis. A
matrix of the general classes of applications is
presented and discussed in a later section. An
important strength of the BPN is that it is a uni­
versal approximator, as discussed in Hornik,

Stinchcombe , and White (1989) . This indicates
that if the mechanical system under consider­
ation is modeled with a BPN that has adequate
size, adequate training , and is deterministic , then
a BPN should be able to accurately simulate its
behavior. The primary weakness of a BPN is that
it may require a substantial amount of training ,
and the training cycles execute relatively slowly.
(This is clearly a function of the size of a BPN.)
This may limit the usefulness of the BPN in real­
time applications where the system under con­
sideration varies rapidly , or it may introduce the
need for special training procedures.

Probabilistic Neural Network

The probabilistic neural network (PNN) is an
ANN that is capable of performing pattern classi­
fication on data sequences presented to it. The
PNN was first proposed in an article by Specht
(1990). The PNN makes decisions in the follow­
ing way . Given a vector of input information , the
PNN decides whether the data in the vector be­
long to class A or class B. This can be stated
more formally . Let () denote the state of nature.
We seek to make a decision , d({x}) , regarding the
state of nature , either () = ()A or () = ()B , based on
a measured vector, {x}.

A framework for making such a decision is the
Bayes decision rule. It states that

fA({X}) andfB({x}) are the joint probability density
functions (pdf) of the random vector {X} (a vec­
tor of random variables Xi, i = 1, ... , n) given
that the state of nature is () = ()A or () = ()B,

respectively. LA and LB are the loss functions
associated with the decisions d({x}) = ()B, when
in fact () = ()A, and d({x}) = ()A, when in fact () =
()B, respectively. hA and hB = 1 - hA are the a
priori probabilities of occurrence of patterns
from categories A and B , respectively . The
boundary between the regions in which d({x}) =

()A and d({x}) = ()B is given by the {x} that satisfy
the equation

(12)

When the elements in this equation can be speci­
fied , then the decision defined in Eq. (11) can be

Neural Ne tworks in Mechanical Systems 185

made . The greatest difficulty is in establishing
estimates for the joint pdfs.

A means for developing estimates for the joint
pdfs is given in Specht (1 990), based on articles
by Parzen (1962) and Cacoullos (1966) . The esti­
mate is given as follows. Let {XAi}, i = 1, ... ,
RA , be a sequence of vector realizations of the
random vector {X}, when () = ()A. Then a joint
pdf estimate for the random vector {X} is given
by

lIRA
fA ({x}) = (21T)"/20-" RA ~ exp

[- 2~ 2 II{x} - {xA;}W] (13)

where n is the dimension of the random vector
{X} , and 0- is a smoothing parameter. This is sim­
ply a normalized sum of multivariate normal
pdfs , each with variance parameter, 0- 2, drawn
about one of the realizations , {XA;}. When 0- is
small and RA is small , and the vectors {XA;}, i =
1, . . . , RA , are not densely packed in space,
thenfA({x}) appears like a collection of spikes in
space . As 0- and RA increase , and as the spatial
density of the {XAi}, i = 1, . .. , RA, increases ,
the joint pdf estimate appears smoother. Exam­
ples of joint pdf estimates of bivariate vectors are
shown in Figs. 5(a) and 5(b). In both cases, there
are five vector realizations represented in the pdf
estimate. Figure 5(a) shows a representation
where 0- = 0.4 is small relative to the sample
density ; Fig. 5(b) shows a representation where
0- = 0.8 is large relative to the sample density.

In order to make decisions like the one de­
scribed above in an ANN framework , we con­
struct a PNN as shown in Fig. 6. The PNN is
used as follows. First , before presenting any in-

0.25

0.2

0 .15

0.1

0.05

o
4

·4 -4

FIGURE 5(a) Estimate of the pdf based on five bi­
variate vector realizations (a- = 0.4).

186 Paez

0.08

0.06

0.04

0.02

o
4

4

·4 ·4

FIGURE 5(b) Estimate of the pdf based on five bi­
variate vector realizations (0- = 0.8) .

put vector , {x} , to the PNN , we normalize its
length to one , that is , normalize {x} so that Ilxll =

1. Let {XAi} , i = I, ... , R A, be a sequence of
vectors from the training set in which 8 = 8A , and
let {X8i} , i = 1, ... , R 8 , be a sequence of vec­
tors from the training set in which 8 = 88 . Define
the first hidden layer of the PN as one that
contains N = RA + R8 neurons. (This layer is
called the pattern layer in PNN terminology .)
Define the weights in the first RA hidden layer
neurons such that the elements in the row vector
of weights in neuron j equal the normalized val­
ues of the training vector {XAJ, that is,

- XAkj . - 1
Wjk - IlxAjll' J - , . . . , RA,

k = 1, . .. , n

Input
Layer

(14)

Pattern
Units
(First
Hidden
Layer)

where XAkj is the kth element in the training vec­
tor {XAj }' Similarly , define the weights in the hid­
den layer neurons indexed R A + 1 through R A +
R8 such that the elements in the row vector of
weights in neuron j equal the normalized values
of the training vector {X8J . These operations
constitute the training of the PNN. This sort of
training is obviously much faster than any itera­
tive approach to ANN training.

Define the net inputs to the neurons in the first
hidden layer in the usual way , according to Eq.
(4). Because the input vector is normalized , and
the weights are normalized , the net input to each
neuron is a quantity in the interval [0 , IJ. (If the
input vector is orthogonal to the weight vector ,
then net = 0; if the input vector equals the weight
vector , then net = I .) The output of each neuron
in the first hidden layer is the result of an opera­
tion on the net input to the neuron defined by

0(1) = exp [~ 2 (net - I)] . (15)

Note that this is identical to the multivariate nor­
mal pdf (without the normalizing coefficient)

0(1) = exp [- -1- II{w} - {x}112] (16)
2(T 2

where {w} is the neuron weight vector, because
the neuron weight and input vectors are normal­
ized to a length of one . Therefore , passing a vec-

Summation
Units
(Second
Hidden
Layer)

Output
Unit

FIGURE 6 Framework for a probabilistic neural network with n input nodes , and R I + R2
pattern units.

tor of inputs, {x}, through the first hidden layer of
neurons has the effect of constructing the com­
ponents ofEq. (13) at the outputs of the neurons.

The purpose of the second hidden layer of
neurons is to sum the elements output from the
first hidden layer (the pattern units) correspond­
ing to (J = (J A and (J = (JB. (To see how this is
done, refer again to Fig. 6. These units are called
summation units in PNN terminology.) We do
this by connecting the outputs of the first RA hid­
den layer units to the first neuron in the second
hidden layer, and setting all the corresponding
weights in that hidden layer to one. We connect
the outputs of the first hidden layer units indexed
RA + 1 through RA + RB to the second neuron in
the second hidden layer, and set all the corre­
sponding weights to one. The effect of making
the connections as described above is to set the
complete set of PNN weights as follows.

W (2) -
lk -

{
I,

0,

{
O,

W(2) =
2k 1,

k = 1, ... ,RA

k = RA + 1, . . . , RA + RB
(17)

k = 1, ... ,RA

We simply wish to pass the net inputs through to
the next layer of the PNN, so the activation func­
tion used on the two neurons in the second hid­
den layer is simply the identity.

Finally, a single output unit multiplies the out­
put of the second neuron in the second hidden
layer by a constant, then sums this with the out­
put of the first neuron in the second hidden layer
to form its net input. This is accomplished by
setting the weight vector in the output neuron to
{W(out)} = (1, C)T, where

(18)

and computing the net input using Eq. (8). The
activation function in the output unit is the binary
function defined

{
-I net < °

!(net) = '
1, net> ° (19)

This accomplishes the comparison between the
two sides of Eq. (12), and completes the opera­
tion of the PNN. When the output equals - 1 ,
then the input vector is judged to be a member of

Neural Networks in Mechanical Systems 187

class B, and when the output equals 1, the input
is judged to be a member of class A.

Though there appear to be many potential ap­
plications for PNN s in mechanical system as­
sessment, few applications appear in the lit­
erature. One application is presented by Re­
gelbrugge and Calalo (1992). They show how a
PNN can be trained to identify the dynamic re­
sponse of a structure. The input data used to
train the PNN are the Fourier transforms of
strains on the structure. The outputs sought from
the PNN are decisions regarding whether or not
a structural mode occurs within a band of fre­
quencies. They use experimentally obtained data
to show that when motion in a given mode ap­
pears in the training data, then the mode can be
reliably identified by the PNN.

The main strength of the PNN is that it is easy
to train: we simply normalize the training vectors
and use them for the weights in the neurons of
the first hidden layer. This is clearly a fast opera­
tion. The primary weakness of the PNN is that it
yields results that are binary, and this framework
may be difficult to employ in the solution of many
mechanical system problems. This disadvantage
may be overcome by the specification and simul­
taneous use of several PNNs in the solution of a
problem. It does appear that many of the prob­
lems that have been analyzed using BPNs could
more easily and efficiently be analyzed with
PNNs, particularly those that require classifica­
tion of system response.

Associative Memory

The associative memory (AM) is one of the most
simply configured ANNs, yet it has substantial
capability in specific applications. The AM is a
very simple example of a network like the one
shown in Fig. 1, and described in the section on
general operation of ANN s. The AM has an in­
put layer and an output layer only. It derives its
name from its purpose, that is, it is an ANN with
a memory defined by its weights, that associates
vectors {x} and {z}. In its various implementa­
tions, the AM is sometimes used with discrete
data and sometimes with continuous data; it is
sometimes used in a unidirectional and some­
times in a bidirectional mode. A unidirectional,
linear AM will be described in the following.

A unidirectional, linear AM has an input layer
whose nodes simply distribute the elements of
the vector {x} presented to them, to the output
neurons. Net inputs to the output neurons are

188 Paez

computed as usual, that is, using Eq. (8). The
output of the neuron equals the net input, in a
linear AM. Therefore, the output vector is sim­
ply the result of a linear matrix operation on the
input vector.

Let {xJ, {Zj},j = 1, ... ,R, denote the train­
ing set for an AM. An AM is said to be interpola­
tive when it yields an output vector {y } that is an
interpolation of the vectors {Zj}, j = 1, . . . , R,
when presented with an input vector {x} that
comes from the space of vectors {xJ,j = 1, ... ,
R. Interpolative AMs with continuous valued in­
put and output vectors appear to be the ones with
the greatest potential for effective use in the solu­
tion of problems in the analysis and design of
mechanical systems.

Training of an AM depends on its function and
rules of operation. One linear AM that can be
very easily constructed relies on the assumption
that the {Xj},j = 1, ... , R, form an orthonormal
basis, that is, {Xj} . {Xk} = 8j-k. where 8m is the
Kronecker delta, equal to one when its subscript
is zero, and zero otherwise. This AM has the
following form.

{y} = [~ {yJ {xJ T] {x}. (20)

Because the {xJ, j = 1, ... , R, are orthonor­
mal, any vector {x} with the appropriate dimen­
sion can be represented

R

{x} = L '}Ij{xJ. (21)
j=1

Again, because of the orthonormality of the {xJ,
j = 1, ... , R, the AM yields the output

R

{y} = L '}Ij{yJ. (22)
j=1

A situation more frequently encountered in­
volves a training set {Xj}, {zJ, j = 1, ... , R,
where the {Xj}, j = 1, ... , R, do not form an
orthonormal basis. In this case, we can still ex­
press the function of the AM with the relation

{y} = [W]{x}. (23)

However, we must establish the matrix [W] via a
training procedure. Potential approaches involve
optimization via least squares, for example. The

approach presented by Kalaba and U dwadia
(1990, 1993) requires that the cost function de­
fined

E = qll{W} {x} - {y}112 + (1 - q)II[W}112 (24)

be minimized with respect to [W]. Minimization
of the first term on the right side improves the
accuracy of the prediction of the output {y} via
Eq. (23). Minimization of the second term dimin­
ishes the potential for ill-conditioning in the ma­
trix [W]. The quantity q determines the relative
importance attached to accuracy of the predic­
tion and conditioning of [W]. Because the matrix
[W] occurs as a quadratic in the expression of
Eq. (24), the expression has a unique minimum
that is governed by a linear equation. This can be
solved to optimize the mapping in Eq. (23).

Other versions of the AM are also available.
For example, some versions apply the sigmoidal
activation function of Eq. (10) to the net inputs of
the output layer neurons to produce the AM out­
puts. Introduction of this nonlinearity into AM
increases its potential to model nonlinear system
mappings. A version of the AM called the func­
tional link is discussed by Hajela and Berke
(1991). This ANN not only uses the actual inputs
in the input vector to the AM, but it augments
this with nonlinear functions of the actual inputs.
This modification increases the ANN's potential
to accurately represent nonlinear system map­
pings even more.

Kalaba and Udwadia (1990, 1993) use the ap­
proach to Eq. (23) and (24) to perform parameter
identification in a dynamically excited, nonlinear
mechanical system. The objective of their analy­
sis is to estimate the parameters of a system,
corresponding to a specific measured response.
To commence an analysis, they generate me­
chanical system responses, {Zj},j = 1, ... , R,
using mechanical system parameters, {Xj}, j =

1, . . . , R, chosen from the region where the
parameters of the measured system are thought
to reside. The training data can be obtained from
numerical analysis, and need not be in the near
vicinity of the true parameters. The training data
are used to identify an AM following the proce­
dure described above. The parameter vector cor­
responding to the measured response is esti­
mated using the AM. Next, more training data
from the vicinity of the newly created parameter
estimate are generated, and these data are used
to update and improve the AM weights. The AM
weight matrix is recursively improved with each

new data set, and the newly created weight ma­
trices are used to make new estimates of system
parameters. This computation cycle is repeated
until convergence occurs in the parameter esti­
mates. The authors used this technique to iden­
tify the parameters of some nonlinear systems,
including one governed by the Van der Pol equa­
tion, a Lorenz attractor, and a Duffing oscillator.
They obtained accurate results even when the
system under consideration was highly nonlin­
ear, and another technique diverged in its at­
tempt at parameter identification.

A major strength of the linear AM is its sim­
plicity of implementation and use. In fact, this
general approach has been applied in many engi­
neering analysis frameworks not referred to as
ANNs. It is clearly applicable when the input­
output relations governing a system are linear,
but the study by Kalaba and Udwadia (1991,
1993) shows that it can be used in the nonlinear
identification framework. Further, the introduc­
tion of nonlinear activation functions in the out­
put neurons, and use of the ideas of the func­
tionallink discussed by Hajela and Berke (1991)
greatly improve the potential applications of the
AM. The primary weakness of the AM is that
because of its simplicity it may have difficulty in
simulating very nonlinear mappings, in some sit­
uations, unless a special sequence of operations
is introduced to the analysis.

Radial Basis Function Network

The radial basis function network (RBFN) is an
ANN that appears to combine some of the ad­
vantages of the BPN and the PNN to yield a tool
that is capable of accurately mapping inputs to
outputs, is relatively fast to train, and does not
require (in its modified form) a large amount of
training data. The concept of the RBFN is based
upon ideas of local functional approximation,
and it is different in form and operation from the
ANNs described above. An early article on the
subject was written by Moody and Darken
(1989).

RBFNs can be trained faster than BPNs to
perform similar tasks for several reasons. First,
they involve local approximation of the influence
of an input on the output, therefore, only the
parameters in a part of the network need to be
trained upon presentation of an exemplar. Sec­
ond, an RBFN has only one hidden layer. Third,
training of the RBFNs can be divided into linear
and nonlinear parts. The nonlinear part is a self-

Neural Networks in Mechanical Systems 189

organizing activity in which some parameters in
the model are trained to represent the training
input data set. The linear part trains the ampli­
tudes in the local representations, and converges
rapidly. Yet the RBFN, as first introduced, re­
quires much more training data than a BPN to
perform a particular task, and is subject to the
same interpolation limitations.

A modified version of the RBFN was intro­
duced by Jones et al. (1990) with the develop­
ment of the connectionist normalized linear
spline (CNLS) network. Introduction of normal­
ization and an extra term in the local approxima­
tion appear to give it improved interpolation
capabilities, and less stringent training require­
ments compared to the RBFN. We will describe,
in the following, the CNLS.

First, note that although the CNLS can be
characterized in the same graphical framework
as the ANN s described above (Figs. 1, 2), it is
more convenient to use another. This framework
still uses the general geometry shown in Fig. 1;
however, a measure of the inputs is computed
and passed to all neurons in the hidden layer, and
the functional operation of the neurons in the
hidden layer is different from the sequence of
operations shown in Fig. 2.

The operations performed in the neurons of
the hidden layer in the CNLS can be motivated
as follows. Recall that the purpose of an ANN is
to develop an accurate approximation, y =

h({x}), to a mapping, z = g({x}). (The scalar out­
put case will be developed in the following, al­
though multiple CNLSs can be used to approxi­
mate a vector output.) Consider a family of basis
functions, u({x}, {cJ), j = 1, ... , N, each of
which is localized in the region of a center, {cJ,
but none of which equals zero when evaluated at
any finite valued vector, {x}. The basis functions
are not necessarily orthogonal, nor uniformly
spread, and do not all have the same widths. For
example, a functional form that is widely used is,

the nonnormalized, multivariate normal pdf. The
parameter {3j establishes the specific degree of
localization of the jth basis function. Large val­
ues of {3j correspond to narrow widths in the ba­
sis functions, and small values of (3j correspond
to large widths in the basis functions. The follow­
ing identity involving the desired input-output
relation, z = g({x}), can be written in terms of the
basis functions.

190 Paez

N

2: g ({x})u ({x} , {Cj})
g({x}) = j=l (26)

N

2: u({x}, {Cj})
j=l

The identity suggests that an approximation for
the desired input-output relation can be estab­
lished by replacing the expression for g({x}) on
the right side by the first two terms of its Taylor
series expansion, gj + {dj}T({x} - {cJ), where gj
is the function g(.) evaluated at {Cj}, and {dj } is
the vector of partial derivatives of g(.) with re­
spect to the elements in {x}, evaluated at {Cj}. The
approximation is

N

2: [gj + {dJT({X} - {cJ)]u({x}, {Cj})
h({x}) = ,--j=_l _________ _

N

2: u({x}, {Cj})
j=l (27)

The CNLS implements such an approximation.
The functional relations described above are

implemented in feedforward operation of the
CNLS as follows. Before presentation of the in­
put vector, {x}, to the hidden layer neurons, the
denominator in Eq. (26) must be calculated. It is

N

2: u({x}, {Cj}). (28)
j=l

(For consistency, this quantity can be presented
to each of the neurons in the hidden layer of the
CNLS as an element in the input, but the nota­
tion and description do not do so in the follow­
ing.) The vector of inputs {x} is presented to the
jth neuron in the CNLS. This is first used to
compute gj + {dj}T({x} - {Cj}), then it is used to
compute u({x}, {cJ), based, for example, on Eq.
(25). The output of the neuron is the product of
these two quantities divided by Eq. (28). The out­
puts of all the neurons are transmitted to the out­
put neuron, and it computes the net input in the
usual way. The output of the output neuron
equals its net input, as reflected in Eq. (27).

The objective of training in the CNLS is the
specification of the parameters, gj, {dJ, {cJ, and
{3j, j = 1,. . ., N, to minimize the error in repre­
senting z = g({x}), the desired mapping, with y =

h ({x}) , the output of the CNLS. Note that the
output ofthe CNLS is linear in gj and {dj }; there­
fore, if the other parameters are known, then

these parameters can be optimized in closed
form, or by using an iterative approach. Because
of the linearity, training proceeds rapidly when
done iteratively. The training approach pre­
sented in Jones et al. (1990) recommends that the
parameters gj, {dj } , and {3j' j = 1, ... , N, be
trained iteratively, and that the parameters {Cj},
j = 1,. . ., N, be trained at discontinuous inter­
vals using, for example, a genetic algorithm. The
reason for use of the genetic algorithm in the
training of the {cJ, j = 1, ... , N, is that the
error is a nonlinear function of these vectors.

The CNLS should provide an accurate ap­
proximation to z = g({x}) when the number of
basis functions is sufficient to represent the in­
puts to a system; the centers of the functions,
{Cj}, j = 1, ... , N, are chosen to accurately
represent the input data; the {3j. j = 1, . . . , N,
are chosen optimally; and the function g({x})
does not vary rapidly compared to the widths of
the basis functions.

A graphical sense for how this mapping ap­
proximation works can be obtained by reference
to Figs. 5(a) and 5(b), because those mappings
also involve the use of normal pdf curves. When
the input to the CNLS is a bivariate vector, the
CNLS provides a mapping from any input to a
scalar output value, the ordinate in the plotted
surfaces. Training of the CNLS involves the se­
lection of the mapping parameters to optimally
represent a desired relation, z = g({x}). Training
occurs over a region of the space defined by {xJ,
j = 1, ... , n.

Only one application of an RBFN was found
in the literature. Cios, Vary, Berke, and Kautz
(1992) use both a BPN and an RBFN to map
spectral information obtained from acousto-ul­
trasonics tests to the elastic modulus of compos­
ite specimens. To perform their tests, the authors
excite a composite specimen under tension using
a wide band pulser. At another point on the spec­
imen, they use an acoustic receiver to measure
response time histories. These responses are
used to estimate response spectral density. The
response spectral densities at some frequencies
(where the magnitude is greatest) are used as the
training inputs. The elastic moduli obtained from
tensile testing are used as the training output.
Both a BPN and an RBFN were used to approxi­
mate the mapping. It was found that the RBFN
was superior to the BPN in both training time and
accuracy. In addition to a description of the spe­
cific study, the paper by Cios et al. (1992) also
provides a brief yet clear description of some lit-

erature related to and useful suggestions for the
use of RBFN s.

Though only one application of the RBFN or
CNLS was found in the literature related to me­
chanical systems, the RBFN and CNLS are still
considered worthy of discussion because they
appear to provide very good alternatives to the
BPN, and the BPN is widely used. Most impor­
tantly, the CNLS and RBFN can be trained rap­
idly. Moreover, they present alternatives to the
BPN that appear to be unconditionally stable
when used in the recurrent framework.

Recurrent Neural Networks

The recurrent neural network is not a totally sep­
arate form of ANN, but simply a framework for
using an ANN like the BPN, or CNLS, in a man­
ner that is meant to adapt its operation to the
direct simulation of the step-by-step response of
a system in time. Figure 7 shows an ANN struc­
tured in one form of a recurrent configuration.
An ANN is said to be recurrent when the outputs
of some or all its neurons are taken as inputs to
some or all the neurons in the ANN, including
the neuron that produced the output. The recur­
rent ANN shown in Fig. 7 clearly implements
only a portion of the potential recurrent intercon­
nections.

The effects that are simulated by making
ANN s recurrent can be characterized in many
ways, but a characterization of particular impor­
tance in mechanical system dynamics is that of
autoregression (AR). When an ANN is trained to

Neural Networks in Mechanical Systems 191

accept vector inputs, {x(t)}, that are a function of
time, and a portion of the elements in {x(t)} repre­
sent measures of excitation to a system, the re­
mainder of the elements in {x(t)} represent mea­
sures of system response at previous times, and
the ANN output, {y(t)}, represents measures of
system response as a function of time, then the
mapping approximated in the ANN is the solu­
tion of the differential equations governing the
response in the system of interest, over a time
increment. This sort of simulation is actually
ARMA in nature. When the time increment over
which the simulation is executed is small enough,
the AR portion of the input pattern will be similar
to the output pattern, when the mechanical sys­
tem under consideration displays continuous re­
sponse. This simply means that measures of re­
sponse do not vary rapidly during very short time
intervals. The implication of all this is that the
mapping performed in the ANN may be rela­
tively simple and efficient to develop.

The step-by-step, temporal response of non­
linear mechanical systems can be simulated using
the recurrent ANN. There is substantial advan­
tage to the recurrent approach when

1. the relation between the overall excitation
and system parameters and the response
measures of interest is highly complex and
nonlinear;

2. the expense of computing (using nonneural
techniques) or experimentally simulating
the system response is great; and

3. numerous system response simulations are
required.

FIGURE 7 Framework for a recurrent neural network with n input nodes, N hidden level
neurons, and m output neurons.

192 Paez

If a recurrent model of system behavior can be
efficiently developed and economically run, then
the recurrent ANN can be used to perform the
required simulations. The results of these simula­
tions might be used, in turn, to identify another
ANN relating excitation and system parameters
to important measures of system response.

Training of a recurrent network is similar to
training of a nonrecurrent network. The exem­
plars, {Xj}, {Zj}, j = 1, ... , R, used to train a
recurrent network are the inputs to and the states
of the system to be modeled at time intervals
during the response of the system. For example,
in a particular training cycle, the input vector {x}
might be a combination of system excitation val­
ues and system responses at time t - 1, and the
output vector {y} might be system responses at
time t. Training of recurrent ANNs is discussed,
for example, in Williams and Zipser (1989).

Although there are advantages to the use of
recurrent networks, there are also potential prob­
lems of which the user should be aware, the most
important of which is that recurrent networks are
not guaranteed to be stable in all implementa­
tions. For example, recurrent BPNs can become
unstable. The hope is that if the system to be
simulated is stable, and the ANN training is ade­
quate, then the simulation will be stable and ac-

curate. Of course, the stability of recurrent
ANNs can be analyzed with the usual techniques
for dynamic system stability analysis (see, for
example, Parker and Chua, 1989).

Other Neural Network Applications

The articles briefly summarized in the previous
sections show that there is a wide variety of ap­
plications for ANN s in mechanical system simu­
lation, identification, and assessment. Applica­
tions that relate to structural dynamics and the
corresponding ANN requirements can be sum­
marized in matrix form as shown in Table 1. The
ANN inputs that are required and the outputs
that can be generated are listed for generic prob­
lems in structural dynamics. Based on the litera­
ture, it appears that only a small fraction of the
potential applications of the various types of
ANNs have been investigated; there are many
models and applications yet to be studied.

A fundamental use of ANN s associated with
mechanical system studies is the simulation of
system response for arbitrary excitations. Many
types of ANN s can be trained to simulate linear
and nonlinear system response. The ANNs can
be trained in applications where the system pa­
rameters either are or are not specified. A basic

Table 1. Matrix Defining Application Environments for ANNs

Problem

Mechanical system response simu­
lation

Mechanical system parameter
identification

Mechanical system, excitation
identification

Mechanical system excitation and
response assessment

Notes:

Inputs Outputs

Mechanical system excitation and Measures of mechanical system
parameters response at one point or multiple

discrete points
Mechanical system excitations and Parameters of mechanical system

responses
Mechanical system parameters and Mechanical system excitation

response
All relevant measures of system Assessment of system condition

condition to be assessed, includ-
ing any or all of mechanical
system excitation, response, and
parameters

1. Excitation can be defined in terms of time history, Fourier transform of time history, or parameters in a parametric model.
Excitation can be specified at one or more discrete points, or the parameters of a distributed excitation model can be output. On
input, excitation need not be specified if it does not change.
2. Response can be specified as time history, Fourier transform of time history, or parameters in a parametric model of time
history. On input, response need not be specified if it does not change. Output can be one or more measures of motion at time t +
llt, when input involves system motion at time t; it can also be a measure of motion-like peak motion over all time.
3. System parameters can be defined as multiple local parameters or parameters in a spatial parametric model. Parameters can
refer to material or geometry, and can be either local system parameters or parameters in a global model. On input, system
parameters need not be specified if they do not change.
4. Assessment of system condition can judge whether or not system fails, whether or not excitation and response satisfy some
conditions, source of excitation or response, etc.

motivation for simulating system response is the
desire to characterize features of the response
excited by various excitations, in systems with
various sets of structural parameters. ANN s pro­
vide a fast, accurate, and efficient means for sim­
ulating structural response, and this is especially
important in Monte Carlo applications. Many
Monte Carlo analyses have traditionally used fi­
nite element analysis to obtain the response of a
(perhaps random) system to random excitation.
In a Monte Carlo analysis performed on a fixed
budget, introduction of ANNs into the analysis
framework may permit an increase in accuracy
resulting from an increase in the number of simu­
lations run during prediction of a particular
event. Direct (non-Monte Carlo) methods for the
prediction of the probabilistic character of the
response of a mechanical system also require a
large number of response predictions, so the use
of ANN s in this application can improve the effi­
ciency of analysis.

An important advantage to the use of ANNs
for system simulation is that both analytically
and experimentally obtained data can be used in
the training of ANNs. In fact, iterative tech­
niques can be developed to identify the parame­
ters of an analytical model based on experimental
results (following, for example, the approach of
Kalaba and Udwadia, 1990, 1993), then use the
analytical model to generate data to augment the
data base for training the ANN.

Parameter identification of mechanical sys­
tems in classical model frameworks can also be
considered an area for independent analysis.
When the analyst possesses both measured data
from an experiment and an analytical model from
which analytical predictions of system behavior
can be obtained, then a parameter identification
in the framework of the analytical model can be
performed. A possible framework for performing
this type of analysis is the one presented by Ka­
laba and Udwadia (1991, 1993); however, ANNs
other than the AM might be used. An advantage
of performing the system identification using
ANNs is that nonlinear systems can be accom­
modated directly.

A broad area of applicability for ANNs in­
volves the structural design and design optimiza­
tion of mechanical systems subjected to static
and dynamic environments. Some of the refer­
ences have already introduced this topic for
static structural optimization. Because numerous
analyses of structural response are required in
the design optimization of a mechanical system,

Neural Networks in Mechanical Systems 193

the introduction of ANN s can substantially im­
prove the efficiency of the design process. The
increase in efficiency of the design process will
be especially important in the design of mechani­
cal systems that display nonlinear response.

The identification of mechanical system exci­
tations is based on identification of some system
parameters along with measurement of re­
sponses of the forced system. Such identifica­
tions are now usually performed using linear
models and techniques, and, in fact, one method
for force identification uses a linear combiner in
the force prediction (Bateman, Mayes, and
Carne, 1992). The linear combiner is simply a
portion of the neuron model shown in Fig. 2, and
is discussed in detail in Widrow and Steams
(1985). ANNs that generate continuous valued
outputs appear to have good potential for recon­
struction of input forces, particularly where the
inputs excite nonlinear response in the structure
upon which the measurements are made.

Health monitoring, damage assessment, and
damage prediction applications can use ANN s
for data analysis. Specifically, approaches that
seek to assess the characteristics of structural
members following major events can be imple­
mented. Both direct and indirect measures of
system component and overall system capability
to sustain future loads can be developed. For ex­
ample, estimates of member stiffnesses following
application of a major excitation (as in Wu, Gha­
boussi, and Garrett, 1992) can be developed, and
they provide a direct measure of a mechanical
system's load-carrying capability. Alternately,
indirect measures of systems' load-carrying ca­
pability such as the accumulated damage in Min­
er's rule for fatigue in metals, can be estimated
and used, in tum, to estimate component health.
When the probability model governing future en­
vironments for a mechanical system is known,
then ANN s like the ones described above can be
used to predict the probability of survival of a
structure.

PNNs can be used in the general health moni­
toring framework to make judgements about the
response of a structure. In particular, in health
monitoring and damage assessment applications
we can build a framework for answering ques­
tions about the survival or failure of a mechanical
system. The answers to such questions involve
judgements based on measured response signals.
In some sense, these investigations seek to de­
velop inferences about the joint behavior of me­
chanical system parameters and the excitations

194 Paez

that drive the systems whose response is mea­
sured.

CONCLUSION

Beyond the topic areas mentioned here, de­
scribed generically in Table 1, and discussed in
the literature, there are certainly other mechani­
cal system applications that can be studied using
ANNs. ANNs have been shown to be capable of
accurate simulation, identification, and assess­
ment of mechanical system behavior. Their effi­
ciency of operation will certainly lead to applica­
tions and improvements in numerous areas of
mechanical system design, analysis, and control.

This work was supported by the Department of En­
ergy under Contract DE-AC04-76DPOO789.

APPENDIX: SELECTED ABSTRACTS FROM
ARTICLES ON NEURAL NETWORKS

Berke, Laszlo, and Hajela, Prahbat, 1992, "Applica­
tions of Artificial Neural Nets in Structural Mechan­
ics," Structural Optimization, Vol. 4, pp. 90-98.

The fundamentals of neurologically motivated com­
puting are briefly discussed. This is followed by pre­
senting two examples of the many possible applica­
tions in structural mechanics. Both of these are
oriented towards structural optimization. In the first
example, a neural net model of the structural re­
sponse is created and then attached to any conven­
tional optimization algorithm. In the second, a neu­
ral net model of an experienced designer is created
which is knowledgeable within a narrow class of
structural concepts.

Cios, K. J., Vary, A., Berke L., and Kautz, H. E.,
1992, "Application of Neural Networks to Prediction
of Advanced Composite Structures Mechanical Re­
sponse and Behavior," Computing Systems in Engi­
neering, Vol. 3, pp. 539-544.

Two types of neural networks were used to evaluate
acousto-ultrasonic data for material characteriza­
tion and mechanical response prediction. The neural
networks included a simple feedforward network
(back propagation) and a radial basis functions net­
work. Comparisons of results in terms of accuracy
and training time are given. Acousto-ultrasonic
(AU) measurements were performed on a series of
tensile specimens composed of eight laminated lay­
ers of continuous, SiC fiber reinforced Ti-15-3 ma­
trix. The frequency spectrum was dominated by fre-

quencies of longitudinal wave resonance through
the thickness of the specimen at the sending trans­
ducer. The magnitude of the frequency spectrum of
the AU signal was used for calculating a stress­
wave factor based on integrating the spectral distri­
bution function and used for comparison with neural
networks results.

Goh, C. J., and Noakes, Lyle, 1993, "Neural net­
works and identification of systems with unobserved
states," Journal of Dynamic Systems, Measurement
and Control (ASME), Vol. 115, pp. 196-203.

This article considers a nonlinear control system,
whose structure is not known (apart from the order
of the system) and whose states are not observed.
The output of the system is observed for a period of
time using persistently exciting input, and the obser­
vation is used to train a neural network emulator
whose output approximates that of the original sys­
tem. Such an explicit dynamical relationship be­
tween the input and the output is useful for the pur­
pose of construction of an output feedback
controller for nonlinear control systems. Specializa­
tion of the method to linear systems allows swift
convergence and parameter identification in some
cases.

Hajela, P., and Berke, Lazlo, 1992, "Neural Net­
works in Structural Analysis and Design: An Over­
view," Computing Systems in Engineering, Vol. 3,
pp. 525-538.

Considerable recent interest has been shown in the
application of neural networks to problems of struc­
tural analysis and design. This paper provides an
overview of the state of the art in this emerging field,
and a survey of the published applications in struc­
tural engineering. Such applications have included
the use of neural networks in modeling nonlinear
behavior of structures, as a rapid reanalysis capabil­
ity in optimal design, and in developing problem­
parameter sensitivity of optimal solutions for use in
multilevel decomposition-based design. While most
of the applications reported in the literature have
been restricted to the use of the multilayer percep­
tion architecture and minor variations thereof, other
network architectures have been successfully ex­
plored, including the adaptive resonance theory net­
work, the counterpropagation network, and the
Hopfield Tank model. Applications of these archi­
tectures have included solving inverse analysis
problems, pattern matching in structural analysis
and design, and as an optimization tool for generi­
cally difficult optimization problems, in particular,
those characterized by being NP-complete.

Hajela, P., and Berke, Lazlo, 1991, "Neurobiological
Computational Models in Structural Analysis and De­
sign," Computers and Structures, Vol. 41, pp. 657-
667.

This paper examines the role of neural computing
strategies in structural analysis and design. A princi­
pal focus of the work resides in the use of neural
networks to represent the force-displacement rela­
tionship in static structural analysis. Such models
provide computationally efficient capabilities for re­
analysis, and appear well suited for application in
numerical optimum design. This paper presents an
overview of the neural computing approach, with
special emphasis on supervised learning techniques
adopted in the present work. Special features of
such learning strategies which have a direct bearing
on numerical accuracy and efficiency, are examined
in the context of representative structural optimiza­
tion problems.

Holland, John, 1992. "Genetic Algorithms," Scientific
American, July.

This paper describes computer programs that
"evolve" in ways that resemble the natural selec­
tion of living organisms. Natural selection elimi­
nates two of the greatest hurdles in software design:
advance specification of the features of a problem
and the actions a program should take to deal with
them. By employing the genetic mechanism of natu­
ral selection, researchers may be able to "breed"
programs that solve problems even when no one can
fully understand their structures.

Hornik, Kurt, Stincombe, Maxwell, and White, Hal­
bert, 1989, "Multilayer Feedforward Networks are
Universal Approximators," Neural Networks, Vol. 2,
pp. 359-366.

This paper rigorously establishes that standard mul­
tilayer feedforward networks, with as few as one
hidden layer using arbitrary squashing functions,
are capable of approximating any Borel measure­
able function from one finite dimensional space to
another, to any desired degree of accuracy, pro­
vided many hidden units are available. In this case,
multilayer feedforward networks are a class of uni­
versal approximators.

Jones, R. D., Lee, Y. C., Qian, S., et al. 1990, "Non­
linear Adaptive Networks: A Little Theory, A Few
Applications," Cognitive Modeling in System Con­
trol, June.

This paper presents the theory of nonlinear adaptive
networks and discusses a few applications-in par-

Neural Networks in Mechanical Systems 195

ticular, the theory of feedforward backpropagation
networks. The following theories are also discussed:
Connectionist Normalized Linear Spline network in
both its feedforward and iterated modes; stochastic
cellular automata; applications to chaotic time se­
ries, tidal prediction in Venice Lagoon, sonar tran­
sient detection, control of nonlinear processes, bal­
ancing a double inverted pendulum, and design
advice for free electron lasers.

Kalaba, Robert, and Udwadia, Firdaus, 1991, "An
Adaptive Learning Approach to the Identification of
Structural and Mechanical Systems," Computer
Mathematics Applications, Vol. 22, pp. 67-75.

The identification of parameters in models of struc­
tural and mechanical systems is an important prob­
lem. The usual approaches are successive approxi­
mation schemes which require good initial guesses
for rapid convergence. This paper shows how such
initial approximations may be obtained. Notions
from the field of artificial neural networks are used.
In fact, new adaptive schemes for learning are pre­
sented and used in parameter estimation for both
linear and nonlinear systems.

Kalaba, Robert, and Udwadia, Firdaus, 1993. "Asso­
ciative Memory Approach to the Identification of
Structural and Mechanical Systems," Journal o/Opti­
mization Theory and Applications, Vol. 76, pp. 207-
223.

This paper presents a new method for identification
of parameters in nonlinear structural and mechani­
cal systems in which the initial guesses of the un­
known parameter vectors may be far from their true
values. The method uses notions from the field of
artificial neural nets and, using an initial set of train­
ing parameter vectors, generates in an adaptive
fashion other relevant training vectors to identify
the parameter vector in a recursive fashion. The
simplicity and power of the technique are illustrated
by considering three highly nonlinear systems. The
technique presented here yields excellent estimates
with only a limited amount of response data, even
when each element of the set comprising the initial
training parameter vectors is far from its true
value-in fact, sufficiently far that the usual recur­
sive identification schemes fail to converge.

Larimore, Wallace, 1983, "System Identification, Re­
duced-Order Filtering and Modeling via Canonical
Variate Analysis," Proceedings o/the 1983 American
Control Conference, H. Rao and P. Dorato, Eds., pp.
445-451, IEEE Service Center, Piscataway, NJ.

Very general reduced-order filtering and modeling
problems are phased in terms of choosing a state

196 Paez

based on past information to optimally predict the
future as measured by a quadratic prediction error
criterion. The canonical variate method is extended
to approximately solve this problem and give a near
optimal, reduced-order state model. The approach
is related to the Hankel norm approximation
method. The central step in the computation in­
volves a singular value decomposition which is nu­
merically very accurate and stable. An application
to reduced-order modeling of transfer functions for
stream flow dynamics is given.

McAulay, A. D., 1988, "Optical Neural Network for
Engineering Design," Proceedings of the IEEE 1988
National Aerospace and Electronics Conference, Vol.
4, pp. 1302-1306.

An optical neural-network architecture is proposed
that captures engineering design expertise and
makes it available to designers. The network and its
use as an associative memory are described. A
novel, fast learning algorithm is shown to be orders­
of-magnitude faster than backpropagation. Reasons
are presented for the feasibility of an optical imple­
mentation that uses novel optical devices. A struc­
tural example illustrates how engineering design ex­
pertise is captured and recovered from the network.

Moody, J., and Darken, C. J., 1989, "Fast Learning in
Networks of Locally-Tuned Processing Units," Neu­
ral Computation, Vol. 1, pp. 281-294.

The authors propose a network architecture which
uses a single internal layer of locally tuned process­
ing units to learn both classification tasks and real­
valued function approximations. They consider
training such networks in a completely supervised
manner, but abandon this approach in favor of a
more computationally efficient hybrid learning
method which combines self-organized and super­
vised learning. Their networks learn faster than
backpropagation for two reasons: the local repre­
sentations ensure that only a few units respond to
any given input, thus reducing computational over­
head, and the hybrid learning rules are linear rather
than nonlinear, thus leading to faster convergence.
Unlike many existing methods for data analysis, the
network architecture and learning rules are truly
adaptive and are thus appropriate for real-time use.

Parzen, Emmanuel, 1962, "On Estimation of a Proba­
bility Density Function and Mode," Annals of Mathe­
matical Statistics, Vol. 33, pp. 1065-1076.

This paper discusses the method for construction of
a family of estimates of the probability density func­
tionf(x) and of the mode, which are consistent and
asymptotically normal. The problem of estimation

of the function and determination of the mode are
discussed.

Regelbrugge, Marc, and Calalo, Ruel, 1992, "Proba­
balistic Neural Network Approaches for Autonomous
Identification of Structural Dynamics," Journal of In­
telligent Material Systems and Structures, Vol. 3, pp.
572-584.

This paper presents an application of Probabalistic
Neural Networks (PNN) to identify dynamic re­
sponses of structures. The PNN architecture is de­
scribed, and its operation relative to other neural
network types is discussed. The instant learning
property of the PNN is shown to be a critical advan­
tage for applications where both adaptivity and au­
tonomous operation are required. An example,
PNN-based identification of structural responses
from structural-member strain measurements is pre­
sented to illustrate operation of the network. The
network is shown to be capable of classifying dy­
namics in a spatial-frequency domain very quickly
using a small number of active elements.

Riva, Alberto, and Giorcelli, Ermanno, 1992, "Dy­
namic System Identification by Means of Neural Net­
works," Proceedings of the 10th International Modal
Analysis Conference, pp. 928-933.

Neural nets have already demonstrated their capa­
bilities for pattern recognition, control system and
other identification processes. Their application de­
veloped in this work concerns the neural nets be­
havior when dealing with time domain data from
dynamic systems. A FORTRAN routine simulating
a backprop algorithm has been written in a general
form to allow any configuration set, within a reason­
able size, to treat input-output digital signals of lin­
ear and nonlinear systems. An overview of this algo­
rithm is presented in the paper with some useful
remarks concerning its relationships with signal pro­
cessing. Two examples of parameter identification
are presented and relationships with ARMA models
highlighted; also mentioned is how more-refined
training procedures can avoid local minima and im­
prove parameter estimation. The examples are
straightforward computer parameters of mechanical
systems under test with a satisfying precision; non­
linear parameters are also derived.

Specht, Donald F., 1990, "Probabilistic Neural Net­
works," Neural Networks, Vol. 3, pp. 109, 118.

By replacing the sigmoid activation function often
used in neural networks with an exponential func­
tion, a probabilistic neural network (PNN) that can
compute nonlinear decision boundaries which ap-

proach the Bayes optimal is formed. Alternate acti­
vation functions having similar properties are also
discussed. A four-layer neural network of the type
proposed can map any input pattern to any number
of classifications. The decision boundaries can be
modified in real-time using artificial hardware 'neu­
rons' that operate entirely in parallel. Provision is
also made for estimating the probability and reliabil­
ity of a classification as well as making the decision.
The technique offers a tremendous speed advantage
for problems in which the incremental adaptation
time of back propagation is a significant fraction of
the total computation time. For one application, the
PNN paradigm was 200,000 times faster than back­
propagation.

Tsutsumi, K., Katayama, K., and Matsumoto, R.,
1988, "Neural Computation for Controlling the Con­
figuration of 2-Dimensional Truss Structure," 1988
IEEE Conference on Neural Networks, Vol. 2, pp.
575-586.

A method for manipulator position control was pre­
viously proposed by Tsutsumi et al. (1987) on the
basis of the Ropfield scheme for neural computa­
tion. According to the proposed method, the manip­
ulator is modeled not by using polar coordinates but
by using the distances between the joint locations
alone. The analog neural network actualizes parallel
control by minimizing the total of the energy func­
tions based on the distances, and it can easily treat
not only the ordinary manipulator with rigid links
but also the elastic arm. The proposed control
method with parallelism and flexibility is further ap­
plied to a two-dimensional truss structure composed
of elastic members. Simulation demonstrates that
the configuration of the structure can be controlled
by adjusting the initial configuration and by tuning
the energy balance.

Vanluchene, R. D., and Sun, Roufei, "Neural Net­
works in Structural Engineering," Microcomputers in
Civil Engineering, Vol. 5, pp. 207-215.

In the past few years literature on computational
civil engineering has concentrated primarily on arti­
ficial intelligence (AI) applications involving expert
system technology. This article discusses a different
AI approach involving neural networks. Unlike
their expert system counterparts, neural networks
can be trained based on observed information.
These systems exhibit a learning and memory capa­
bility similar to that of the human brain, a fact due to
their simplified modeling of the brain's biological
function. This article presents an introduction to
neural network technology as it applies to structural
engineering applications. Differing network types
are discussed and a back-propagation learning algo-

Neural Networks in Mechanical Systems 197

rithm is presented. The article concludes with a
demonstration of the potential of the neural network
approach. The demonstrations involves three struc­
tural engineering problems. The first involves pat­
tern recognition; the second, a simple concrete
beam design; and the third, a rectangular plate anal­
ysis. The pattern recognition problem demonstrates
a solution which would otherwise be difficult to
code in a conventional problem. The concrete beam
problem indicates that typical design decisions can
be made by neural networks. The last problem dem­
onstrates that numerically complex solutions can be
estimated almost instantaneously with a neural net­
work.

Wang, Gou-Jen, Miu, Denny K., 1991, "Unsuper­
vised Adaptive Neural-Network Control of Complex
Mechanical Systems," Proceedings of the 1991 Amer­
ican Control Conference, pp. 28-29.

Unsupervised adaptive control strategies based on
neural networks are presented. The tasks are per­
formed by two independent networks which act as
the plant identifier and the system controller. A
learning algorithm using information embedded in
the identifier to modify the action of the controller
has been developed. Simulation results are pre­
sented showing that this system can learn to stabi­
lize a difficult benchmark control problem, the in­
verted pendulum, without requiring any external
supervision.

Werbos, Paul, 1989, "Neural Networks for Control
and System Identification," Proceedings of the IEEE
Conference on Decision and Control, pp. 260-265.

This paper first reviews the field of neuroengi­
neering as a whole, highlighting the importance of
neurocontrol (in robotics, in particular) and a few
areas for future research. It will conclude with a few
comments on neuroidentification. Neurocontrol is
not an alternative to the broad disciplines of control
theory and decision analysis. In fact, it may be un­
derstood as an extension or development of those
fields to deal with a family of large, sticky problems
which tend to require approximations and experi­
ments rather than exact solutions and iron-clad
guarantees of success. Control theorists have much
to contribute to this emerging field.

Williams, R. J., and Zipser, D., 1989, "A Learning
Algorithm for Continually Running Fully Recurrent
Neural Networks," Neural Computation, Vol. 1, pp.
270-280.

The exact form of a gradient-following learning algo­
rithm for completely recurrent networks running in
continually sampled time is derived and used as the

198 Paez

basis for practical algorithms for temporal super­
vised learning tasks. These algorithms have (1) the
advantage that they do not require a precisely de­
fined training interval, operating while the network
runs; and (2) the disadvantage that they require non­
local communication in the network being trained
and are computationally expensive. These algo­
rithms allow networks having recurrent connections
to learn complex tasks that require retention of in­
formation over time periods having either fixed or
indefinite length.

Wu, X., Ghaboussi, J., and Garrett, J. H., Jr., 1992,
"Use of Neural Networks in Detection of Structural
Damage," Computers and Structures, Vol. 42, pp.
649-659.

Damage to structures may be caused as a result of
normal operations, accidents, deterioration or se­
vere natural events such as earthquakes and storms.
Most often the extent and the location ofthe damage
can be determined through visual inspection. How­
ever, in some cases visual inspection may not be
feasible. The study reported in this paper is the first
stage of a research project aimed at developing auto­
matic monitoring methods for detection of structural
damage. In this feasibility study we have explored
the use of the self-organization and learning capabil­
ities of neural networks in structural damage assess­
ment. The basic strategy is to train a neural network
to recognize the behavior of the undamaged struc­
ture as well as the behavior of the structure with
various possible damage states. When the trained
network is given the measurements of the structural
response, it should be able to detect any existing
damage. We have tried this basic idea on a simple
structure and the results are promising.

Xirouchakis, Paul C., And Norris, Eugene M., 1991,
"Column Buckling Mode Classification Using a Back
Propagation Neural Network," Proceedings of the
10th Conference on Electronic Computations, ASCE,
pp. 295-302.

A back propagation neural network is used to ana­
lyze and classify the buckling mode shapes of struc­
tural columns. The input patterns consist of vectors
of digitized nondimensional deflection points of the
buckling mode shapes of columns. The output con­
sists of the mode number and the associated effec­
tive column length ratio as predicted by the net­
work. The results of this study are of interest in the
area of numerical finite element post-processing and
results interpretation of structural mechanics appli­
cations. In particular, the objective of this paper is
to investigate the column buckling mode and associ­
ated compressive buckling load classification poten­
tial of a back propagation neural network.

Yamamoto, K., 1992, "Modeling of Hysteretic Behav­
ior with Neural Network and Its Application to Non­
linear Dynamic Response Analysis," Applications of
Artificial Intelligence in Engineering, Proceedings of
the 7th International Conference, pp. 475-486.

The neural networks developed by researchers in
connectionism (a part of the field of artificial intelli­
gence), are becoming very popular for solving pat­
tern recognization problems. Neural networks al­
ready have been applied not only to qualitative
pattern recognition, but also to quantitative approxi­
mation. There are a few attempts to apply this ap­
proach to structural analysis. In this paper, a back­
propagation neural network was developed to
represent hysteretic behavior, and the network was
applied to nonlinear dynamic response analysis of a
single-degree-of-freedom (SDOF) system.

REFERENCES

Bateman, V.I., Mayes, R. L., and Carne, T. G., 1992,
"A Comparison of Force Reconstruction Methods
for a Lumped Mass Beam," Proceedings of the 63rd
Shock and Vibration Symposium, pp. 757-767.

Berke, L., and Hajela, P., 1992, "Applications of Arti­
ficial Neural Nets in Structural Mechanics," Struc­
turalOptimization, Vol. 4, pp. 90-98.

Cacoullos, T., 1966, "Estimation of Multivariate Den­
sity," Annals of the Institute of Statistical Mathe­
matics, Vol. 18, pp. 179-189.

Cios, K. J., Vary, A., Berke, L., and Kautz, H. E.,
1992, "Application of Neural Networks to Predic­
tion of Advanced Composite Structures Mechanical
Response and Behavior," Computing Systems in
Engineering, Vol. 3, pp. 539-544.

Freeman, J. A., and Skapura, D. M., 1991, Neural
Networks, Algorithms, Applications, and Program­
ming Techniques, Addison-Wesley Publishing
Company, Reading, MA.

Goh, C. J., and Noakes, L., 1993, "Neural Networks
and Identification of Systems with Unobserved
States," Journal of Dynamic Systems, Measure­
ment, and Control (ASME), Vol. 115, pp. 196-203.

Hajela, P., and Berke, L., 1991, "Neurobiological
Computational Models in Structural Analysis and
Design," Computers and Structures, Vol. 41, pp.
657-667.

Hajela, P., and Berke, L., 1992, "Neural Networks in
Structural Analysis and Design: An Overview,"
Computing Systems in Engineering, Vol. 3, pp.
525-538.

Holland, J. H., 1992, "Genetic Algorithms," Scien­
tific American, Vol. 267, No.1, pp. 66-72.

Hornik, K., Stinchcombe, M., and White, H., 1989,
"Multilayer Feedforward Networks Are Universal
Approximators," Neural Networks, Vol. 2, pp.
359-366.

Jones, R. D., Lee, Y. C., Qian, S., et al., 1990, "Non­
linear Adaptive Networks: A Little Theory, A Few
Applications," Cognitive Modeling in System Con­
trol, The Santa Fe Institute, Santa Fe, NM.

Kalaba, R. E., and Udwadia, F. E., 1991, "An Adap­
tive Learning Approach to the Identification of
Structural and Mechanical Systems," Computer
Mathematical Applications, Vol. 22, pp. 67-75.

Kalaba, R. E., and Udwadia, F. E., 1993, "Associa­
tive Memory Approach to the Identification of
Structural and Mechanical Systems," Journal of
Optimization Theory and Applications, Vol. 76, pp.
207-223.

Larimore, W. E., 1983, "System Identification, Re­
duced-Order Filtering and Modeling Via Canonical
Variate Analysis," Proceedings of the 1983 Ameri­
can Control Conference, H. Rao and P. Dorato,
Eds., pp. 445-451, IEEE Service Center, Piscata­
way, NJ.

Moody, J., and Darken, C. J., 1989, "Fast Learning in
Networks of Locally Tuned Processing Units,"
Neural Computation, Vol. 1, pp. 281-294.

Parker, T. S., and Chua, L. 0., 1989, Practical Nu­
merical Algorithms for Chaotic Systems, Springer­
Verlag, New York.

Parzen, E., 1962, "On Estimation of a Probability
Density Function and Mode," Annals of Mathe mat­
ical Statistics, Vol. 33, pp. 1065-1076.

Press, W. H., Flannery, B. P., Teukolsky, S. A., Vet­
terling, W. T., 1988, Numerical Recipes in C. The
Art of Scientific Computing. Cambridge University
Press, Cambridge.

Regelbrugge, M. E., and Calalo, R., 1992, "Probabi­
listic Neural Network Approaches for Autonomous
Identification of Structural Dynamics," Journal of
Intelligent Material Systems and Structures, Vol. 3,
pp. 572-584.

Riva, A., and Giorcelli, E., 1992, "Dynamic System
Identification by Means of Neural Networks," Pro­
ceedings of the 10th International Modal Analysis
Conference, pp. 928-933.

Rumelhart, D. E., Hinton, G. E., and McClelland,
J. L., 1986, "A General Framework for Parallel Dis­
tributed Processing," Chapter 2 in Parallel Distrib-

Neural Networks in Mechanical Systems 199

uted Processing, Explorations in the Microstructure
of Cognition, Volume 1: Foundations, MIT Press,
Cambridge, MA.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.,
1986, "Learning Internal Representations by Error
Propagation," Chapter 8 in Parallel Distributed
Processing, Explorations in the Microstructure of
Cognition, Volume 1: Foundations, MIT Press,
Cambridge, MA.

Specht, D. F., 1990, "Probabilistic Neural Net­
works," Neural Networks, Vol. 3, pp. 109, 118.

Vanluchene, R. D., and Sun, R., 1990, "Neural Net­
works in Structural Engineering," Microcomputers
in Civil Engineering, Vol. 5, pp. 207-215.

Wang, G.-J., and Miu, D. K., 1991, "Unsupervised
Adaptive Neural Network Control of Complex Me­
chanical Systems," Proceedings of the 1991 Ameri­
can Control Conference, pp. 28-29.

Werbos, P. J., 1989, "Neural Networks for Control
and System Identification," Proceedings of the
IEEE Conference on Decision and Control, pp. 260-
265.

Widrow, B., and Stearns, S. D., 1985,Adaptive Signal
Processing, Prentice-Hall, New York.

Williams, R. J., and Zipser, D., 1989, "A Learning
Algorithm for Continually Running Fully Recurrent
Neural Networks," Neural Computation, Vol. 1,
pp. 270-280.

Wu, X., Ghaboussi, J., and Garrett, J. H., 1992, "Use
of Neural Networks in Detection of Structural Dam­
age," Computers and Structures, Vol. 42, pp. 649-
659.

Xirouchakis, P. c., and Norris, E. M., 1991, "Column
Buckling Mode Classification Using a Back Propa­
gation Neural Network," Proceedings of the 10th
Conference on Electronic Computations, ASCE,
pp. 295-302.

Yamamoto, K., 1992, "Modeling of Hysteretic Behav­
ior with Neural Networks and Its Application to
Nonlinear Dynamic Response Analysis," Applica­
tions of Artificial Intelligence in Engineering. Pro­
ceedings of the 7th International Conference, pp.
475-486.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

