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Abstract. We show an extension theorem for strictly contracting bilinear mappings into a
spherically complete valued vector space and we apply this result to prove that every maximal
valued division algebra having the same characteristic as its residue division algebra is spheri-
cally complete.
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In his classical paper [5], Kaplansky proved that a valued field (K, v, Iy) is maximal if
and only if any pseudoconvergent sequence has a pseudolimit in K; moreover, under
the “Hypothesis A”, (K, v, I}) is isomorphic to a Hahn field of formal power series
with a factor system. The equivalence of maximality and pseudocompleteness can
also be shown for valued abelian groups (see [3], [9] and [11]) and certain classes of
valued modules (see [6]). It is still an open question for valued skewfields; in this
context, Brungs and Torner gave an example of a maximal right chain ring which is
not pseudocomplete (see [2]).

The purpose of this paper is to state the positive result for a valued division algebra
in the sense of Zelinsky [16] having the same characteristic as its residue division alge-
bra. This is a generalization of [15, Satz 5] where we give criteria for the embeddability
of a valued division algebra into an appropriate Hahn division algebra. Here, we also
rely on these Hahn division algebras of formal power series constructed and studied in
[12] and [13], but we have to modify their multiplication applying an extension theo-
rem for strictly contracting mappings into a spherically complete valued vector space.

Omitting the algebraic structure of the objects mentioned above, we obtain an ul-
trametric space (with a totally ordered value set). The theory of ultrametric spaces
(even with partially ordered value set) was developed by PrieB-Crampe and Riben-
boim in their papers [8], [9] and [10]; for the convenience of the reader we will recall
the main results of this theory we are going to make use of in the sequel.

Let X be a set, and let (I', <) be a (totally) ordered set and Ty = T" U {0} with 0 < y
for all ye I'. A mapping d : X x X — I is called an ultrametric distance, if the fol-
lowing conditions are satisfied for all x, y and z € X:
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e d(x,y) =0 x=y.

® d(x,y) =d(y,x).
e d(x,z) < Max{d(x,y),d(y,z)}.

In this situation, (X, d, I}) is called an ultrametric space. For x,y,z € X with d(x,y) #
d(y,z) we even have d(x,z) = Max{d(x,y),d(y,z)}.

An equivalence relation ¢ on X is called d-compatible, if for all x, x’, y, y' € X with
xoy and d(x',y") < d(x,y) we also have x'gy’. The set =(X) of all d-compatible
equivalence relations on X is a complete totally ordered set with respect to <. The
most important examples are =, and = for a ye ' with x=,y & dx,y) <y
and x=_y < d(x,y) <y for all x,y € X, respectively. The equivalence classes of
=, and =, are precisely the balls X7(x)={ye X|d(x,y) <y} and X,(x) =
{y e X|d(x,y) <y} with centre x and radius 7, respectively. Any set of pairwise non-
disjoint balls is a chain with respect to <.

By [7], the following completeness properties are equivalent:

e (X,d, 1) is spherically complete: any chain of balls X”(x) with xe X and yeT
has a non-empty intersection.

e (X,d, 1)) is pseudocomplete: any pseudoconvergent sequence has a pseudolimit in
X.

e (X,d,T)) satisfies the ultrametric Banach’s Fixed Point Theorem: any strictly con-
tracting mapping f: X — X, ie., d(f(x),f(»)) <d(x,y) holds for all x,ye X
with x # y, has a fixed point in X.

Analyzing the proof of [7, Satz 1], we realize that in a spherically complete ultra-
metric space any chain of balls has a non-empty intersection.

A subset U of X endowed with the restriction d = d|,;, of d to U is again an
ultrametric space. The extension (U,d,I)) < (X,d,I) is said to be immediate, if
d(U x U) =d(X x X) holds and if for all ue U and x € X with u # x there exists
u’' € U with d(u', x) < d(u,x). An ultrametric space without any proper immediate
extension is called maximal. By [10, Theorem 7.9] and [11, Theorem 2.3], an ultra-
metric space is spherically complete if and only if it is maximal.

The most important examples of spherically complete ultrametric spaces are the
Hahn spaces of formal power series; in this paper, we only consider a special case.
Let Iy be a totally ordered set as above, and let M be a set with at least two elements
and 0 € M. The Hahn space H = (H, du, [) consists of all mappings f: I' — M with
dually well-ordered support supp(f) = {y e T'|f(y) # 0}, i.e., supp(f) is well-ordered
with respect to the opposite order, and carries the ultrametric distance

Max{y e I" [f(y) # , if f#
dH(f7g)={0 {reT[f(y) #9(»)} iff:g'

Usually, the formal power series f € H is symbolized by > - f(y)¢” using the inde-
terminate ¢; thus, mt’ represents the element of H with

)



Maximally valued division algebras 125

m, if y/ =y

(n’lt}’)(y’) = {0 if y/ £ y

forme M and yeT.

We use the same definition of a valued group and a valued field as [9]; for the
convenience of the reader, we recall the notion of a valued division algebra. We con-
sider a division algebra (N, +,-), i.e.,

e (N,+) is an abelian group with neutral element 0,
e (N*,-) with N* = N\{0} is a loop with neutral element 1,
ea (b+c¢)=a-b+a-cand (a+b)-c=a-c+b-chold forall a,b,c e N.

Hence, a division algebra with an associative multiplication is a skewfield. Let I" be
endowed with a multiplication - such that (I, -, ¢, <) becomes a totally ordered loop
with neutral element ¢; we extend the multiplication to Iy x Iy — Iy by putting
y-0=0and 0-y=0 for all yeIy. A mapping v: N — I} is called a valuation, if
the following conditions are satisfied for all x and y € N:

e y(x) =0 x=0.
® v(x-y)=0v(x) v(y).
® u(x+y) < Max{v(x),v(y)}.

In this situation, (N, v, I}) is called a valued division algebra. This can be regarded as
a special case of the concept of a uniformly valued ternary field developed by Kalhoff
in [4]; we should mention that T carries the dual order <, in [16], i.e., forall y, ' e T
we have y <, 7’ if and only if " < y holds.

For all these algebraic structures, the valuation v induces an ultrametric distance d,
by d,(x,y) = v(x — y) for all x and y.

In the following, we transfer the general construction of a Hahn ternary field of
formal power series given in [12] to our special situation. Therefore, we consider
a division algebra K and a totally ordered loop (T,-,¢ <). For all o,feT let
Uy p+ K x K — K be a biadditive mapping satisfying the following conditions:

e For all m,b € K with m # 0 there is a unique x € K with y, (m,x) = b.
e For all x,b € K with x # 0 there is m € K with u, 4(m, x) = b.
® p, (m,x)=m-x,u, (m1)=mand p, z(1,x) = x hold for all m,x € K.

In this case, the family (x, ), s r is called a factor system with respect to K and T".
We define addition and multiplication on the set H by putting

f+9)(») =f()+9(y) and (f-9)(y) = %;yﬂy,ﬂ(f(o‘)ag(ﬁ))

for all f,ge H and y e I'. By [12, Satz 6] and [13, Satz 3 and Satz 4], (H,+,-) is a
division algebra with 0 = 0z and 1 = 1¢%; moreover, (H, vy, [}) is a valued division
algebra with vy(f) = dn(f,0) for all f e H.
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First, we want to state and prove the extension theorem for bilinear mappings al-
ready mentioned above. Therefore, we need a more general concept of a valued vector
space than that given in [17]. We consider a valued field (K, v,I) and a vector space
V over K endowed with a group valuation || - || : ¥ — T). Let - : T x T’V — T be
an operation of the group I on the set I'” such that

Y <y =y ey <y oyp and oy <yy =y <yevy

hold for all y, ', 7" € T and yy,, 7}, % e T'"'; we extend this operation to Iy x I} — T},
by putting y-0 =0 forall yeIyand 0.y, =0 for all y, € FOV. In this situation, we
call (V,|| - 1) a valued vector space over (K,v), if

[[2x][ = v(4) - [|x|

is satisfied for all 1 € K and x € V. We wish to remark that further assumptions are
necessary to ensure that J endowed with the topology ¥ induced by the valuation
| - || is a topological vector space over the topological field (K, T,), where I, is given
by the valuation v. For example, it is sufficient to ask that I - y;, is a coinitial subset
of TV forall y, e".

Let (X, |- |ly), (Y, |- lly) and (Z, || - ||,) be valued vector spaces over the valued
field (K,v,Ty). A mapping o: T* x TV — I'? is called value-multiplication, if the
properties

Yx <Vy = 7Vyory <yyoyy and yy <py=ypyoyy <yyoyy

and
7-(rxory) =0 vx)oyy =7x oy vy)

hold for all y € T, 7y, y%, 7% € TX and yy, 7%, % € T'Y; again, we extend this value-
multiplication to T;* x T} — I by defining yy 0 0 =0 forall y, e [;* and 0 0y, =0
for all yy €T, OY. Then, a bilinear mapping f : X x Y — Z is called strictly contract-
ing with respect to the value-multiplication o, if

1/ Ce )z < llxlly o Il

is satisfied forall0 #xe X and 0 #y e Y.

Theorem 1. Let (X, | - ||y, Tg"), (Y, | |y, T)) and (Z,| - |5, T’) be valued vector
spaces over the valued field (K,v,Ty) and o : T* x T'Y — T'? a value-multiplication.
Let U be a linear subspace of X and f : U x Y — Z a bilinear mapping which is strictly
contracting with respect to o; let V be a linear subspace of Y with f(x,y) = 0 for all
xeUandyeV.If (Z,dy,, FOZ) is spherically complete, then f extends to a bilinear
mapping F : X x Y — Z which is strictly contracting with respect to o and satisfies
F(x,y)=0forallxe X and ye V.
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Proof. Let 9t be the set of all pairs (U’, /') where U’ is a linear subspace of X con-
taining U and f’: U’ x Y — Z is a bilinear extension of f which is strictly con-

tracting with respect to o and satisfies f/(x,y) =0 for all xe U’ and y € V. Since
(U, f) € M, the set M is non-empty. Moreover, M is inductively ordered by

(Ul,f/) S (U”,f//) o Ul c U/l and f//|U/><Y :f/

and therefore contains a maximal element (Up, fy) by Zorn’s lemma. In the follow-
ing, we show that the assumption Uy < X yields a contradiction.
Letse X\Uyand U; = Uy ® Ks < X. For all u € Uy we define 7, = ||s — ul|, € T*.
Let 9t be the set of all pairs (7', g’) where V' is a linear subspace of Y containing
Vand g’ : V' — Z is a linear mapping with
9'(y) € Zyo|yy, (fo(u,p)) forallue Uy and 0#yeV’

and ¢g'(y) =0 for all y e V. By (V,0) € 9%, the set I is non-empty. Moreover, 9t is
inductively ordered by

(V/,g/) S (V”,g”) o= V/ c V// a1,1d gl/|V/ — gl

and therefore contains a maximal element (79, go) by Zorn’s lemma. We now show
that the assumption Vy < Y is absurd.
Letze Y\Vopand V), = Vo @ Kt = Y. For u € Uj and y € V;, we define the ball

Bu,y = Znuo\|y+t\|y(fb(u7y + l) - gO(y))

and we show that the intersection of any two of these balls is non-empty. To this end,
let u,u’ € Uy with 7, < 7, and p,y’ € Vy. In the case u # u’ and y = y’ we have

[(fo(u,y + 1) = go(¥)) — (fou',y + 1) — go(»))l 2
= lfolu—u',y+ 0z <llu—ullyolly+tly <msolly+ily
and B, , € B, ,. In the case u = u' and y # y’ we have
[(fo(u,y +1) = go(¥)) — (fo(u, »" + 1) — go(¥") 2

= fo(u,y = ") —go(y =¥z <muolly =¥y

< Max{m, o[y + iy, mo ¥ +1lly}

and B, , € B, , or B, , B, . Finally, in the case u # u’ and y # )’ we obtain
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I(fo(u,y +1) = g0()) = (o', »" + 1) = go(¥))llz
= 1(fo(u,y = ") = g0(y = ")) +folu —u',y" + 1)l
< Max{[|(fo(u,y = ") = go(y = ¥ Dllz, I folu — ', y" + 1)l £}
< Max{m, o ||y = y'lly, llu—u'lly oy +1lly}
<Max{mo ||y + 1y, m oy +1ly}

and B, € B, , or B, , S B, . Since (Z,|| - ||z, [¥) is spherically complete, there
exists

g e N 1 Buy

uelyeVy
Therefore, g; : V1 — Z is a linear mapping with g1|;, = go and satisfying
1fo(u, y + 22) — g1 (y + A1) 2
= 0(2) - |(fo(w, 27y + 1) = go(27'9)) = g1 (1),
<o(2) - (o |27y 4 tlly) =m0 (@A) - 147y + tlly) =m0 Ly + Aty
forallu e Uy, y € Vpand 0 # 1 € K. So we have obtained (77, g;) € N with (Vy, go) <
(V1,91), which is a contradiction.
Consequently, Vp = Y holds and ¢¢ : Y — Z is a linear mapping with
90(y) € Zyoy, (fo(u,y)) forallue Uy and 0#yeY
and go(y) = 0 for all y € V. We define
Silx 4 2s,3) = fo(x,¥) + Ago(p)

for all xe Uy, Ae K and y e Y; hence, f; : Uy x Y — Z is a bilinear mapping with
fl|u, = fo and

Si(x +24s,») = fo(x,) + Ago(y) = 0

forall x e Uy, A € K and y € V. Furthermore, forallxe Uy,0 #1e Kand0 #ye Y
we have

1/ (x4 2,912 = 0(4) - 11 fo(=27"%,9) = go (W)l < v(2) - (_si 0 I ¥]ly)

= (0(2) - |=2""x = slly) o 17y = [Ix + Aslly o [ V]l y-
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Thus, we have (U, f1) € M with (Uy, fo) < (U, f1) contradicting the maximality of
(U07ﬁ))'

Consequently, Uy = X and we can define F' = f;. O
Due to the necessity of modifying the multiplication of a Hahn division algebra of

formal power series in an appropriate way, we need the following result. For an addi-
tive structure (G, +), we call a mapping f : G x G — G biadditive, if the equations

(g, h +h")=f(g,h')+f(g.h") and f(g"+g" 1) =1 (9" )+ (g" D)
hold for all g,g’,g9",h,h',h" € G.

Theorem 2. Let (L, +, ) be a division algebra endowed with a spherically complete val-
uation v: L — Ty, and let ¢ : L x L — L be a biadditive mapping satisfying

e o(m,1)=0and p(1,x) =0 for all m,x € L,
e v(p(m,x)) < v(m) - v(x) for all m, x € L\{0}.

Then (L,+,*) withm*x =m - x + ¢(m,x) for all m, x € L is again a division algebra
endowed with the (spherically complete) valuation v.

Proof. For all m,n,x,u € L, we have
(m+nxx=m+n)-x+em+nx)=m-x+n-x+ p(im,x)+ ¢(n,x)
=m-x+9mx))+n-x+enx)=mxx+n*x
and
lxx=1-x+¢(l,x)=x
and in an analogous way also
mx*(x+u)=mxx+mx*u and mx*1=m;

thus, it follows 0 x x = 0 and m x 0 = 0.
For all m, x € L\{0} we have v(p(m, x)) < v(m - x) and therefore

v(m* x) = v(m - x + ¢(m, x)) = v(m - x) = v(m) - v(x).

Finally, let m,b € L with m # 0. Since (L,+,-) is a division algebra, there exists
f(x) € L such that

m - f(x) + ¢(m,x) = b.
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For all x,y € L with x # y we have

m-f(x) =m-f(y) = (b= p(m,x)) = (b—9(my)) =gm,y —x)

and therefore

v(m) - v(f(x) = f(y)) = vlp(m,y = x)) < v(m) - v(x = p);

hence, f : L — L is a strictly contracting mapping of the spherically complete ultra-
metric space (L, d,, Ip). By the ultrametric Banach’s Fixed Point Theorem [7, Satz 2,
there exists exactly one xo € L such that f(xy) = x¢, and we obtain

m*xg=m-xo+ @(m,xg) =b.

Similarly one proves that for all x, b € L with x # 0 there exists a unique n € L with
mo*x = b. |

In the sequel, we consider a valuation v: N — I of the division algebra (N, +,-)
with value loop v(N*) =T, and we assume that N has the same characteristic as its
residue division algebra N, = 4,/ M, with 4, = N?(0) and M, = N,(0), i.e., N and
N, have the same prime field P.

The division algebras N and N, as well as the subgroups 4, and M, of N can be
regarded as P-linear spaces, and the canonical mapping

v:A,— N,, x—x+ M,

is a P-epimorphism. So there exists a P-linear subspace K of A4, containing P such
that v|g : K — N, is a P-isomorphism. Therefore, K is a system of representatives of
the equivalence relation =_ in A4,, i.e., for all x € 4, there is a unique k € K with
v(x —k) <e.

Let (H, du, I'y) be the Hahn space of formal power series f : ' — K with dually well-
ordered support supp(f) = {y € I' | f(y) # 0}. For all y € I" we choose elements u” € N
with v(u”) =y and u® = 1.

For all d,-compatible equivalence relations o € =(N), the equivalence class

&

7, =1[0], = {x e N|Oox}

of 0 with respect to ¢ is a P-linear subspace of N, and we have V,; < V, for all
o,7€ =(N) witho = 7.

Let U be the P-linear subspace of N generated by {k-u”|k e K and y e I'}; for
all o € =(N), the P-linear subspace U, of N generated by {k-u’|ke Kand yeT’
with ¢ < =,} is a P-linear complement of ¥, n U in U, and U, < U, holds for all
o,7€ =(N) witho = 1.

Then, according to Banaschewskis proof of [1, Lemma 4], there exists a family
((¥5)) e =(n) of P-linear subspaces of N with
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N=V,®{(V,) forallse=(N),

K-u" <{(V;) forallyel' and oce=(N) withoc=,
and

(V) =l(V;) forallo,te=(N) witho =

In particular, for all x € N there exist unique elements x, € V, and xg € {(V;) with
X = X+ X5

To define a distance-preserving mapping 0 : (N,d,, Iy) — (H,dn,Ip), let xe N
and ye . Since K is a system of representatives of =_ in 4,, we have V- =
VE; @ K - u” and therefore

N = sz @K u’ @C(Vzl)a

thus there is a unique representation

~

x:xz;+xy~u7+xé’

with x=— € V=, X, € K and x£_e {(V=)). By putting 0(x)(y) = x, we define a map-
ping O(x) : T — K with dually well-ordered support. Indeed, suppose there exists a
strictly increasing sequence (7,), . in the support of 0(x). Then ¢ = J,.n =, is a
d,-compatible equivalence relation, and we obtain

x—xe=x,el(Vs) Sl(Ve,),

for all n e N. Since x, € V,, there is nyp € N with x, e V—- ,

Tng

hence x=, = (x,)
which yields

xX=, =(Xg)o =Xs€V=-
7o =g g

and therefore 0(x)(y,,) = 0, a contradiction to 7, € supp(0(x)).
Consequently, the mapping 6 : N — H is well-defined, and we observe that

dy(x,y) = du(0(x),0(y)) forall x,yeN.
In particular, this implies that 0 is injective. Since we have
Ok -u")=kt” foralkeK and ypel,
(O(N),dn,To) < (H,dn, Iy) is an immediate extension of ultrametric spaces.
Next, we define addition and multiplication on H, such that (H, vy, I)) becomes a

valued division algebra. Hereby, we rely on the construction of a Hahn division al-
gebra presented above.
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First, we have to endow K with a multiplication o such that (K, +,0) becomes a
division algebra. Since K = 4, = K ® M, holds, for all m, x € K we obtain unique
elements m o x € K and r € M, such that

m-x=mox-+r

is satisfied. Thus, (K, -+, o) is a not necessarily associative ring with unit 1.
Let m,b € K with m # 0. Since N is a division algebra, there exists 1 € N with

m-h=b,

and since /1 € A, there are x € K and s € M, with & = x + 5. Then, by definition of o,
there is r € M, with m - x = m o x + r, which yields

Kasb—mox=m-h—m-x+r=m-s+reM,
and therefore
mox=>b.

Forall y € K with mo y = b it follows m o (x — y) = 0, hence x = y. In a similar way
we obtain that for all x, b € K with x # 0 there is a unique m € K such that mox =5
holds. Thus, (K, +, o) is a division algebra.

Foralla, f € I' and m, x € K there exist unique elements , 4(m, x) € K and r € V=,
such that

(m-u*) - (x-uf) :uayﬁ(m,x)w“ﬁ—i—r

holds. With the same arguments as above one proves that the family (u, 4), fer
of mappings u, 5 : K x K — K is a factor system with respect to K and I'. We now
endow H with the corresponding division algebra structure and with the spherically
complete valuation vy.

By construction,  is P-linear, and vy(60(x)) = v(x) holds for all x e N. Moreover,
(0(N),vn, Ip) and (H, vy, Ip) can be regarded as valued vector spaces over the (trivially
valued) field P. The mapping

@:O(N) x O(N) > (0(m),0(x)) — O(m-x)—0(m)-0(x) eH
is P-bilinear, and by 6(1) =1 we have ¢(0(m),1) =0 and ¢(1,0(x)) = 0 for all
m,xeN.
Furthermore, for all m,x € N with v(m) = « and v(x) = f we have unique repre-

sentations

m=my, u*+m', x=xz-ul +x and m-x=y,z-u?+)’
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with m,, xg, ., € Kand m' e V=, x" e VE/;, y'e VE;/;. Then

m-x=(my-u*+m')- (x5 uf +x)

€ (my-u) - (xp-ul) + V=, = tty, (s, Xp) u? =

yields
Yop = My p(May Xp).
By
p(0(m), 0(x)) = O(m - x) — 0(m) - 0(x)
= oy, p (M, xp) 1+ 0(3") = (mat” + 0(m')) - (gt + O(x"))
we obtain

o (p(0(m), 0(x))) < von(0(m)) - v (0(x));

hence, ¢ is strictly contracting.

By Theorem 1, successively applied to both arguments of ¢, there exists a P-bilinear
and therefore biadditive extension ® of ¢ to H x H — H which is strictly contracting
and satisfies ®(m,1) = 0 and ®(1,x) = 0 for all m, x € H.

By Theorem 2, (H,+,*) with mxx =m - x + ®(m,x) is a division algebra with
the spherically complete valuation vy. For all m, x € N we have

O(m - x) = 0(m) - 0(x) + p(0(m), 0(x)) = O(m) x 0(x),

thus 6 is a value-preserving monomorphism of division algebras from (N,+,-) to
(H, +, ). Hence, (O(N),vn, Io) < (H, vu, Iy) is an immediate extension of valued divi-
sion algebras.

With these considerations we have shown the following

Theorem 3. Let (N, v,[}y) be a valued division algebra having the same characteristic as
its residue division algebra. Then the following assertions hold:

1. (N,v,I}y) is maximal, i.e., without any proper immediate extension of valued division
algebras, if and only if (N, d,, L) is spherically complete.

2. (N,v,I}y) possesses a maximal immediate extension, and every maximal immediate
extension of (N,v,1}) is spherically complete.

This result generalizes [15, Satz 5], which characterizes the valued division algebras
admitting an embedding into an appropriate Hahn division algebra of formal power
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series. Finally, [14] gives an example of a division algebra of characteristic 0 with a
maximal discrete valuation, i.e., I = Z, which cannot be regarded as a Hahn division
algebra.
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