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Abstract Two empirical formulas for the lepton and
quark masses (i.e. Kartavtsev’s extended Koide formu-
las), Kl = (

∑
l ml)/(

∑
l
√
ml)

2 = 2/3 and Kq =
(
∑

q mq)/(
∑

q
√
mq)

2 = 2/3, are explored in this paper.
For the lepton sector, we show that Kl = 2/3, only if the
uncertainty of the tauon mass is relaxed to about 2σ con-
fidence level, and the neutrino masses can consequently be
extracted with the current experimental data. For the quark
sector, the extended Koide formula should only be applied
to the running quark masses, and Kq is found to be rather
insensitive to the renormalization effects in a large range of
energy scales from GeV to 1012 GeV. We find that Kq is
always slightly larger than 2/3, but the discrepancy is merely
about 5 %.

1 Introduction

Despite the glorious successes of the standard model of parti-
cle physics, the generations of fermion masses remain one of
the most fundamental but unsolved problems therein. These
masses are treated as free parameters in the standard model,
which seem to be rather dispersed and unrelated and can only
be determined experimentally. Therefore, it is reasonable to
first seek some phenomenological relations of these masses
in order to reduce the number of free parameters, and this
will significantly help us for the future model buildings in
and beyond the standard model.

Among the existing phenomenological mass relations, an
empirical formula suggested by Koide three decades ago [1–
3], is one of the most accurate,

kl = me + mμ + mτ

(
√
me + √

mμ + √
mτ )2 = 2

3
,
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where me, mμ, and mτ are the pole masses of three charged
leptons: electron, muon, and tauon, respectively. From the
current experimental data [best-fit (±1σ )] [4]:

me = (0.510998928 ± 0.000000011) MeV,

mμ = (105.6583715 ± 0.0000035) MeV,

mτ = (1776.82 ± 0.16) MeV,

it is straightforward to see the amazing precision of this sim-
ple formula,

kl = 2

3
×

[
1 ± O

(
10−5

)]
.

Besides, it is very interesting to see that kl lies exactly in
the middle of the two extremes of 1/3 (exact democracy in
lepton mass spectrum) and 1 (extreme hierarchy) [5]. Further-
more, although the lepton masses are hierarchical, the exclu-
sion of the smallest mass me still makes kl notably deviate
from 2/3.

This remarkable precision has aroused in both theorists
[5–25] and phenomenologists [26–34] a longtime interest in
the Koide formula, but unfortunately the underlying physics
remains incomplete. The previous studies can be classified
into three categories: (1) to explore the possible physical
origin of the Koide formula (e.g. in a supersymmetric model
[19] or in an effective field theory [20–22]); (2) to generalize
the Koide formula from charged leptons to neutrinos and
quarks (see Refs. [33] and [34] for example); (3) to examine
the energy scale dependence of the Koide formula [18] (i.e.
to check the stability of the Koide formula against radiative
corrections, with the pole masses replaced by the running
masses of fermions). In the present paper, we focus on the
latter two aspects for two extended Koide formulas suggested
by Kartavtsev in Ref. [35]. Before doing so, we briefly review
the relevant work on the extensions of the Koide formula from
charged leptons to neutrinos and quarks.

In Ref. [33], the Koide formula was extended to the sectors
of neutrinos, up-type, and down-type quarks,
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kν = m1 + m2 + m3

(
√
m1 + √

m2 + √
m3)2 ,

kup = mu + mc + mt

(
√
mu + √

mc + √
mt )2 ,

kdown = md + ms + mb

(
√
md + √

ms + √
mb)2 , (1)

where m1, m2, m3 are the masses of three neutrinos, and
mu , . . ., mb are the masses of six quarks. It was found
that these naive extensions of the Koide formula failed to
be valid, as kν = 0.33 ∼ 0.57, kup = 0.73 ∼ 0.93, and
kdown = 0.60 ∼ 0.80. In Ref. [34], Rodejohann and Zhang
generalized the Koide formula to the quark sector in another
way, not according to their charges or isospins, but to their
masses. For the light (u, d, s) and heavy (c, b, t) quarks, they
separately introduced

klight = mu + md + ms

(
√
mu + √

md + √
ms)2 ,

kheavy = mc + mb + mt

(
√
mc + √

mb + √
mt )2 , (2)

and found a better accordance with the Koide formula,
klight = 0.49 ∼ 0.65 and kheavy = 0.66 ∼ 0.68.

Recently, Kartavtsev proposed a new extension [35],
including the neutrino masses in the original Koide formula,

Kl =
∑

l ml

(
∑

l
√
ml)2

= m1 + m2 + m3 + me + mμ + mτ

(
√
m1 + √

m2 + √
m3 + √

me + √
mμ + √

mτ )2 ,

(3)

where the sum is democratically over all the six leptons. Since
the neutrino masses are tiny compared to those of charged
leptons, it is quite possible that the exact ratio 2/3 could be
attained when they are taken into account. Another motiva-
tion for this extension is from the quark sector,

Kq =
∑

q mq

(
∑

q
√
mq)2

= mu + md + ms + mc + mb + mt

(
√
mu + √

md + √
ms + √

mc + √
mb + √

mt )2 .

(4)

It will be shown in Sect. 3 that Kq is also very close to 2/3 and
is almost stable in a large range of energy scales, although the
mass of each quark varies with the energy scale obviously.

These preliminary successes enlighten us to investigate
Kartavtsev’s extensions of the Koide formula in detail, since
the naive estimates in Ref. [35] were still very simple. We
should first of all explore phenomenologically the validity
of Eqs. (3) and (4) for both leptons and quarks, and these
explorations will be greatly helpful for the relevant model

building for the theoretical explanation of the extended Koide
formulas. This is the purpose of our present paper.

This paper is organized as follows. First, in Sect. 2, we
show that the extended Koide formula for leptons is invalid
under the constraints from current experimental data. How-
ever, if the uncertainty of the most inaccurate tauon mass is
relaxed to about 2σ confidence level, the extended Koide for-
mula could be satisfied, and the neutrino masses can thus be
extracted. Next, in Sect. 3, we first clarify some different def-
initions of quark masses and then examine the energy scale
dependence of the extended Koide formula for the running
quark masses. We find that the extended Koide formula holds
fairly well in a large range of energy scales. Some relevant
conclusions and discussions are shown in Sect. 4.

2 Extended Koide formula for leptons

In this section, we examine the extended Koide formula for
leptons. However, this can only be performed with the masses
of all the six leptons known. Unfortunately, the lack of the
absolute masses of neutrinos makes this examination impos-
sible. But on the other hand, thanks to the more and more
precise experiments of neutrino oscillations, we have already
had two firm constraints of the mass-squared differences
of the neutrino mass eigenstates. Therefore, if we assume
the validity of the extended Koide formula for leptons (i.e.,
Kl = 2/3 exactly) and regard it as the third constraint, the
three neutrino masses may thus be extracted.

Based on three-flavor neutrino mixing, a global analysis
[4] of the current experimental data from the oscillations
of the solar, atmospheric, reactor, and accelerator neutrinos
indicates [best-fit (±1σ )]:

m2
2 − m2

1 = (7.53 ± 0.18) × 10−5 eV2,

m2
3 − m2

2 = (2.44 ± 0.06) × 10−3 eV2 (normal mass hierarchy),

m2
2 − m2

3 = (2.52 ± 0.07) × 10−3 eV2 (inverted mass hierarchy).

By normal and inverted mass hierarchies, we mean that
neutrinos have the mass spectra m1 < m2 < m3 and
m3 < m1 < m2, respectively.

Suppose the extended Koide formula is exact for leptons,

Kl = m1 + m2 + m3 + me + mμ + mτ

(
√
m1 + √

m2 + √
m3 + √

me + √
mμ + √

mτ )2 = 2

3
.

(5)

Solving Eq. (5) with the two constraints of the mass-squared
differences, we may first determine one of the three neu-
trino masses (e.g. m2) and then obtain the other two (m1 and
m3). But the direct solving of Eq. (5) is rather inconvenient,
so we convert this problem to search the local minimum of
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Table 1 The first 10 minima of |Kl − 2/3| and the corresponding
neutrino masses from the extended Koide formula in the normal mass
hierarchy. The values of |Kl −2/3| are greatly larger than the precision

of operation, meaning that the extended Koide formula for leptons is
unsuccessful under the constraints from current experimental data.

|Kl − 2/3| m1 (eV) m2 (eV) m3 (eV) me (MeV) mμ (MeV) mτ (MeV)

7.28894 × 10−6 4.89844 × 10−8 8.58877 × 10−3 4.95356 × 10−2 0.510999 105.658 1776.98

7.29051 × 10−6 1.85238 × 10−8 8.58196 × 10−3 4.95343 × 10−2 0.510999 105.658 1776.98

7.29142 × 10−6 9.25236 × 10−8 8.59159 × 10−3 4.95360 × 10−2 0.510999 105.658 1776.98

7.30195 × 10−6 2.81761 × 10−7 8.62488 × 10−3 4.95420 × 10−2 0.510999 105.658 1776.98

7.31602 × 10−6 6.75381 × 10−8 8.60216 × 10−3 4.99676 × 10−2 0.510999 105.658 1776.98

7.32170 × 10−6 3.37241 × 10−10 8.57321 × 10−3 5.02470 × 10−2 0.510999 105.658 1776.98

7.35571 × 10−6 6.34196 × 10−6 8.58244 × 10−3 4.97131 × 10−2 0.510999 105.658 1776.98

8.32900 × 10−6 1.67259 × 10−3 8.73485 × 10−3 4.95610 × 10−2 0.510999 105.658 1776.98

1.00832 × 10−5 6.54993 × 10−3 1.07890 × 10−2 4.99830 × 10−2 0.510999 105.658 1776.97

1.71168 × 10−5 4.87567 × 10−2 4.95407 × 10−2 6.95290 × 10−2 0.510999 105.658 1776.98

|Kl − 2/3|, and this is a typical numerical nonlinear opti-
mization problem. In the following, we synthetically utilize
the Nelder–Mead method (with the shortest runtime) and
the random search method (with the highest accuracy) to
obtain the neutrino masses with the smallest computational
cost.

We start from the normal mass hierarchy. In this cir-
cumstance, what we face now is to search the minimum of
|Kl − 2/3| as an objective function of six variables (m1, m2,
m3, me, mμ, mτ ) under five constraints:

(7.53 − 0.18) × 10−5 eV2

< m2
2 − m2

1 < (7.53 + 0.18) × 10−5 eV2, (6)

(2.44 − 0.06) × 10−3 eV2

< m2
3 − m2

2 < (2.44 + 0.06) × 10−3 eV2, (7)

(0.510998928 − 0.000000011) MeV < me

< (0.510998928 + 0.000000011) MeV, (8)

(105.6583715 − 0.0000035) MeV < mμ

< (105.6583715 + 0.0000035) MeV, (9)

(1776.82 − 0.16) MeV < mτ < (1776.82 + 0.16) MeV.

(10)

For searching the minimum of |Kl − 2/3|, we set the preci-
sion of operation to 30 significant figures. Meanwhile, due
to the limitations of the Nelder–Mead method, a computing
result has a great possibility to oscillate in the vicinity of a
convergence point, so we set the maximal number of itera-
tions to 2000 for a single operation. If the iterations are not
successful, the point will be discarded, and the results from
this point will be excluded by the checking program. From
the operating and checking for 500 random initial points, we

eventually obtain 49 successful convergence points, and the
first 10 minima of |Kl −2/3| and the corresponding neutrino
masses are sorted in Table 1.

From Table 1, we clearly observe that although the values
of |Kl−2/3| are already very small ∼ O(10−6), they are still
greatly beyond the computing accuracy that we adopt. Since
we have set the precision of operation to 30 significant fig-
ures, |Kl−2/3| should be ∼ O(10−30), if the massesm1,m2,
m3 make |Kl − 2/3| converge to zero absolutely. As a result,
we conclude that there is no solution for neutrino masses
from Eq. (5) under the current experimental constraints in
Eqs. (6)–(10). In other words, Kartavtsev’s extended Koide
formula for leptons in Eq. (5) is unsuccessful. This situation
is the same for the inverted mass hierarchy.

Although the extended Koide formula is invalid for lep-
tons with the current experimental data, the deviations of Kl

from 2/3 are still considerably small. This smallness natu-
rally leads us to investigate weather Kl = 2/3 exactly, if
the uncertainties of lepton masses are slightly larger than the
current data. Whereas, we do not need to relax the uncer-
tainty of each lepton mass to test this possibility, because
the uncertainty of Kl is substantially attributed to the uncer-
tainty of the tauon mass mτ , since the uncertainties of m1,
m2, m3, me, and mμ are much smaller. In fact, the measure-
ment of mτ is much more inaccurate than that shown in Eq.
(10): mτ = (1776.82 ± 0.16) MeV, which results from the
weighted average of various experiments [4]. Actually, even
the central value of mτ varies from 1775 to 1783 MeV, with
the error bar of a few MeV [4]. Therefore, in the following,
we keep the constraints in Eqs. (6)–(9) and also the central
value ofmτ as 1776.82 MeV, but only relax its uncertainty, in
order to examine the validity of the extended Koide formula.
We choose the neutrino mass m2 and study its dependence
on mτ , as m2 appears in both constraints in Eqs. (6) and (7).
Our results are shown in Fig. 1.
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Fig. 1 The neutrino mass m2 and its dependence on the tauon mass
mτ . The left and right panels are for the normal and inverted mass hier-
archies, respectively. Each point in the figures is a convergence point for
Kl = 2/3. There is a lower bound 1777.11 MeV for mτ in the normal

mass hierarchy and 1777.17 MeV in the inverted case. The neutrino
mass m2 is not very sensitive to mτ in a relative large range, with the
central value being 8.68 × 10−3 eV in the normal mass hierarchy, and
5.02 × 10−2 eV in the inverted case

From Fig. 1, we obviously find that there is a lower bound
for the tauon mass mτ , such that Kl = 2/3 exactly. For
the normal mass hierarchy, from the left panel in Fig. 1, we
observe

mτ > 1777.11 MeV, i.e. mτ > (1776.82 + 1.81σ) MeV,

meaning that the extended Koide formula for leptons is sat-
isfied, only if the uncertainty of mτ is relaxed to about 2σ

confidence level. Furthermore, the neutrino mass m2 is not
very sensitive to mτ in a relative large range, and we thus
estimate

8.58 × 10−3 eV < m2 < 8.78 × 10−3 eV.

Therefore, combining Eqs. (6) and (7), we have the masses
of the other two neutrinos:

0 eV < m1 < 6.64 × 10−4 eV,

4.95 × 10−2 eV < m3 < 5.07 × 10−2 eV.

The corresponding central values for these three neutrino
masses read

m1 = 2.06 × 10−4 eV, m2 = 8.68 × 10−3 eV,

m3 = 5.02 × 10−2 eV.

Hence, we find a relatively mild hierarchy for the neutrino
masses in this case.

Similarly, for the inverted mass hierarchy, from the right
panel in Fig. 1, we have

mτ > 1777.17 MeV, i.e. mτ > (1776.82 + 2.16σ) MeV,

and

0 eV < m3 < 3.93 × 10−3 eV,

4.87 × 10−2 eV < m1 < 5.02 × 10−2 eV,

4.95 × 10−2 eV < m2 < 5.09 × 10−2 eV,

with the central values being

m3 = 2.00 × 10−4 eV,

m1 = 4.94 × 10−2 eV, m2 = 5.02 × 10−2 eV.

In this case, we find the neutrino mass scheme as m3 �
m1 ≈ m2.

Last, we should stress that we only focus on the pole
masses of leptons in this section, but not their running masses.
Since the lepton mass ratios are rather insensitive to radiative
corrections [18], this is not a severe problem.

3 Extended Koide formula for quarks

In this section, we move on to explore the extended Koide
formula for quarks (i.e. if Kq = 2/3 or not). However, the
situation in the quark sector is much more complicated, or
even ambiguous, than that of lepton. This complication or
ambiguity comes from what masses we mean for quarks. For
instance, in Ref. [4], the six quark masses are recommended
as

mu = 2.3+0.7
−0.5 MeV, md = 4.8+0.5

−0.3 MeV, ms = 95 ± 5 MeV,

mc = 1.275 ± 0.025 GeV, mb = 4.18 ± 0.03 GeV,

mt = 173.21 ± 0.51 ± 0.71 GeV. (11)

From these data, it is easy to find Kq ≈ 0.64. But this triv-
ial result actually makes no sense, as the masses of the light
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quarks (u, d, s) are estimated as the current quark masses,
the masses of relatively heavy quarks (c, b) mean the run-
ning quark masses, and the mass of the heaviest t quark is
measured as its pole mass. Therefore, it is meaningless to cal-
culate Kq as a combination of all these six masses without
distinction.

Different from leptons, quarks are confined inside hadrons
and cannot be observed as physical particles in experiments,
so their masses cannot be measured directly. Therefore, con-
cerning quark masses, we should first make clear their quan-
titative definitions and meanings. For example, the masses
of light quarks in chiral perturbation theory always mean the
current quark masses. While, in a particular non-relativistic
hadron model, we mean the quark masses by the constituent

quark masses. Moreover, the quark masses computed directly
from lattice quantum chromodynamics (QCD) are the bare
quark masses. Whereas, in the Koide formula, the charged
lepton masses are the pole (physical) masses, which corre-
spond to the positions of divergence in their propagators in the
on-shell renormalization scheme. However, the pole masses
of quarks can only be defined in perturbation theory and are
not reliable at low energies because of the non-perturbative
infrared effects in QCD. Hence, the pole masses of quarks
are not well defined, so the extension of the Koide formula
for quarks should only refer to their running masses.

The mass parameters in the QCD Lagrangian depend not
only on the renormalization scheme adopted to define the
theory, but also on the energy scale at which an obser-

vation occurs. Therefore, the values of quark masses may
alter significantly in different renormalization schemes and
at different energy scales. Whereas, one can convert these
values between different schemes in perturbation theory
and run these values to the demanded energy scales by the
renormalization group equations. At high energies, where
non-perturbative QCD effects become small, the calcula-
tions of quark masses are most commonly performed in the
dimensional regularization scheme with the modified min-
imal subtraction (MS), to obtain the running (or renormal-
ized) quark masses mq(μ) at a given energy scale μ. As
a result, we should trace the energy scale dependence of
the extended Koide formula for the quark sector and clar-
ify the mass parameters in Eq. (4) as the running quark
masses,

Kq(μ) = mu(μ) + md(μ) + ms(μ) + mc(μ) + mb(μ) + mt (μ)
[√

mu(μ) + √
md(μ) + √

ms(μ) + √
mc(μ) + √

mb(μ) + √
mt (μ)

]2 .

The running quark masses were systematically calculated in
Refs. [36] and [37], and were especially recalculated with a
much higher precision in Ref. [38] after the discovery of the
Higgs boson. Hence, in this paper, we follow the data in Ref.
[38].

In Table 2, we list the running quark masses taken from
Table 1 of Ref. [38]. These masses were calculated in the stan-
dard model at a number of typical energy scales: for example,
mc evaluated at the scale equal to its mass, 2 GeV where light
quark masses are often quoted in the MS scheme, the Higgs
mass mH ≈ 125 GeV, until the cutoff scale �VS ≈ 4 × 1012

GeV, where the vacuum stability in the standard model is lost
due to a relatively small Higgs mass. We clearly see that the
running quark masses monotonously decrease at large energy

Table 2 The running quark masses and the running parameter Kq (μ)

in the extended Koide formula at some typical energy scales. The mass
of the Higgs boson is taken as 125 GeV, and the cutoff scale for vac-
uum stability is 4 × 1012 GeV (data from Table 1 of Ref. [38]). The

running quark masses are found to decrease monotonically, but Kq (μ)

is almost stable in a sizable range of energy scales from GeV to 1012

GeV. Moreover, Kq (μ) > 2/3 at all energy scales, but the deviations
are only about 5 %.

μ mu(μ) (MeV) md (μ) (MeV) ms(μ) (MeV) mc(μ) (GeV) mb(μ) (GeV) mt (μ) (GeV) Kq (μ)

mc(mc) 2.79+0.83
−0.82 5.69+0.96

−0.95 116+36
−24 1.29+0.05

−0.11 5.95+0.37
−0.15 385.7+8.1

−7.8 0.701+0.010
−0.011

2 GeV 2.4+0.7
−0.7 4.9+0.8

−0.8 100+30
−20 1.11+0.07

−0.14 5.06+0.29
−0.11 322.2+5.0

−4.9 0.698+0.010
−0.011

mb(mb) 2.02+0.60
−0.60 4.12+0.69

−0.68 84+26
−17 0.934+0.058

−0.120 4.19+0.18
−0.16 261.8+3.0

−2.9 0.696+0.011
−0.009

mW 1.39+0.42
−0.41 2.85+0.49

−0.48 58+18
−12 0.645+0.043

−0.085 2.90+0.16
−0.06 174.2+1.2

−1.2 0.691+0.010
−0.010

mZ 1.38+0.42
−0.41 2.82+0.48

−0.48 57+18
−12 0.638+0.043

−0.084 2.86+0.16
−0.06 172.1+1.2

−1.2 0.692+0.010
−0.010

mH 1.34+0.40
−0.40 2.74+0.47

−0.47 56+17
−12 0.621+0.041

−0.082 2.79+0.15
−0.06 167.0+1.2

−1.2 0.691+0.010
−0.010

mt (mt ) 1.31+0.40
−0.39 2.68+0.46

−0.46 55+17
−11 0.608+0.041

−0.080 2.73+0.15
−0.06 163.3+1.1

−1.1 0.691+0.010
−0.010

1 TeV 1.17+0.35
−0.35 2.40+0.42

−0.41 49+15
−10 0.543+0.037

−0.072 2.41+0.14
−0.05 148.1+1.3

−1.3 0.693+0.010
−0.010

�VS 0.61+0.19
−0.18 1.27+0.22

−0.22 26+8
−5 0.281+0.02

−0.04 1.16+0.07
−0.02 82.6+1.4

−1.4 0.705+0.011
−0.011
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scales. The running parameter Kq(μ) in the extended Koide
formula is also listed in the last column in Table 2.

We find from Table 2 that in a sizable range of energy
scales from GeV to 1012 GeV, Kq(μ) is rather insensitive to
the running effects of quark masses. This insensitivity should
be substantially attributed to the large mass hierarchy in the
quark sector. Moreover, Kq(μ) is always slightly larger than
2/3 at all energy scales, indicating the impossibility to extend
the Koide formula to the running quark masses. But the dis-
crepancies between Kq(μ) and 2/3 are only about 5 %, much
smaller than the various attempts in Eqs. (1) or (2). In this
sense, Kartavtsev’s extended Koide formula for quarks is a
rather good choice. In addition, the uncertainties of Kq(μ)

at different energy scales are almost the same, but this is not
unexpected, as the uncertainty of Kq(μ) is mainly from the
uncertainty of the heaviest t quark mass. Besides, we do not
find that Kq(μ) crosses 2/3 at some particular energy scale
2 GeV < μ < mZ , as claimed by Kartavtsev in Ref. [35],
since this cross was naively estimated from the data in Eq.
(11). But as we have explained above, these values of quark
masses in Eq. (11) have different definitions and cannot be
consulted simultaneously. The stability of Kq(μ) against the
running effects is also illustrated in Fig. 2.

4 Conclusions and discussions

The standard model of particle physics has achieved tri-
umphant successes in the last five decades. However, one
of the most crucial shortcomings therein is a large number
of free parameters, including 12 fermion masses. Any reduc-
tion of this number will pave a way for our comprehension
of the underlying flavor physics. The Koide formula is one of
the appealing attempts in this direction. Unfortunately, this

0.55

0.60

0.65

0.70

0.75

0.80

1 TeV

K q(
μ)

μ
Λvsmt(mt)mHmZmWmb(mb)2 GeVmc(mc)

Fig. 2 The running parameter Kq (μ) in the extended Koide formula as
the function of energy scales. Due to the huge differences between these
energy scales, we arrange them equidistantly on the μ-axis. Kq (μ) is
found to be almost stable in a huge range of energy scales from GeV to
1012 GeV

formula only associates the masses of three charged leptons,
but not of all the 12 flavors of fermions. However, charged
leptons should not be particular in fermions, so the idea to
extend the original Koide formula, including all leptons and
quarks on an equal footing, is thus very natural and desir-
able. Kartavtsev’s extensions [35] in Eqs. (3) and (4) treated
six leptons and quarks in a totally democratic manner, with
a maximal S(6) permutation symmetry, and a preliminary
estimate indicated a certain plausibility of these extensions.

In the present paper, we explore Kartavtsev’s extended
Koide formulas for both leptons and quarks at length. For
the lepton sector, it proves that Kl cannot be equal to 2/3
exactly with the current experimental data of the charged
lepton masses and the mass-squared differences of neutrinos
within 1σ confidence level. Then our strategy is to assume
the rigorous validity of the extended Koide formula for lep-
tons and relax the uncertainty of the most inaccurate tauon
massmτ . By this means, the neutrino masses can be extracted
from the extended Koide formula, if the uncertainty of mτ

is relaxed to about 2σ confidence level in both the nor-
mal and the inverted mass hierarchies. The central values
for three neutrino masses read: m1 = 2.06 × 10−4 eV,
m2 = 8.68 × 10−3 eV, m3 = 5.02 × 10−2 eV (normal
hierarchy), and m3 = 2.00 × 10−4 eV, m1 = 4.94 × 10−2

eV, m2 = 5.02×10−2 eV (inverted hierarchy). These results
are consistent with the most stringent upper bound on the
sum of neutrino masses from the measurements of the cosmic
microwave background temperature spectra from the WMAP
and Planck satellite experiments: m1 +m2 +m3 < 0.66 eV
(95 % confidence level) [39], and also from the data combined
with the baryon acoustic oscillations: m1 +m2 +m3 < 0.23
eV (95 % confidence level) [39]. It is interesting to note that,
even if the neutrino masses increase near this cosmological
bound (e.g.m1+m2+m3 ≈ 0.23 eV), with the constraints in
Eqs. (6) and (7), the discrepancies between Kl and 2/3 almost
remain unchanged: 2.0×10−5 < |Kl−2/3| < 3.8×10−5 for
the normal mass hierarchy and 2.0 × 10−5 < |Kl − 2/3| <

3.9 × 10−5 for the inverted mass hierarchy. This is under-
standable, as the uncertainty of Kl mainly comes from the
uncertainties of charged leptons.

For the quark sector, the various definitions of quark
masses greatly complicate the situation. The pole masses in
the Koide formula become ill-defined for the light quarks,
due to the non-perturbative effects in QCD at low energies.
Therefore, the exploration of the extended Koide formula
should only be implemented for the running quark masses.
We find that the running parameter Kq(μ) is almost stable in
a very large range of energy scales from GeV to 1012 GeV,
mainly as a result of the large mass hierarchy in the quark
sector. However, Kq(μ) is always slightly larger than 2/3,
meaning the invalidity of the extended Koide formula for
the running quark masses, but this deviation is merely about
5 %. We omit the discussion of the running behavior of the
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extended Koide formula in the lepton sector, as the running
effects are negligibly tiny because the lepton mass ratios are
rather insensitive to radiative corrections [18].

Below, we give some general discussions on the Koide
formula. The mystery of the Koide formula is twofold. The
first is its surprising simplicity and accuracy, but only for
charged leptons. The inclusion of neutrinos is a reasonable
balance between the charged and uncharged leptons, but this
inclusion is meaningful only if the generation mechanism of
neutrino masses is the same as that of charged lepton masses
(i.e. neutrinos are of Dirac type). On the contrary, if the tiny
neutrino masses are generated from the seesaw mechanism
[40–42], Kartavtsev’s extension of the Koide formula will be
pointless due to the Majorana mass term. The second is that
the Koide formula consists of the pole masses of fermions,
which are the low energy quantities and are defined at differ-
ent energy scales. This is extremely counterintuitive, since we
always expect simple formulas at high energy scales, where
some symmetries are restored. Hence, the renormalization
effects will not allow the Koide-like formulas for both the
pole and the running fermion masses simultaneously.

Finally, we should point out that Kartavtsev’s extension of
the Koide formula [35] and our corresponding detailed explo-
rations are still at the phenomenological level. A similar work
(the most general extension of the Koide formula), taking all
the 12 fermions into account, i.e. (

∑
f m f )/(

∑
f
√
m f )

2 =
2/3, is also not quite successful. Therefore, a possible direc-
tion for further extensions of the Koide-like formulas is to
seek the theoretical basis of these empirical relations, as
Koide originally did in a composite model or an extended
technicolor-like model [1–3]. We should incorporate in the
extended Koide formulas the elements and the mixing and
phase angles in the lepton and quark mixing matrices [43–
47], and maybe also the fermion charges. This will be the
topic for our future research.
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