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An extended fuzzy parametric programming (EFPP)modelwas proposed for supportingwater resources allocation problems under
uncertainty. EFPP deals with flexible constraints (i.e., fuzzy relationships) by allowing violation of constraints at certain satisfaction
degrees (i.e., 𝛼 levels) and employs fuzzy ranking method to handle trapezoidal-shaped fuzzy coefficients. The objective function
is defuzzified by using 𝛽 cuts and weighting factors. The applicability of EFPP was demonstrated by a numerical example and a
water resources allocation case. A series of decision alternatives at various satisfaction degrees were obtained. Generally, the higher
the 𝛼 level, the lower the system benefit. In comparison, the 𝛽 level in the objective function posed less sensitive impacts on both
objective function and model solutions.The reliability of EFPP was tested by comparing its solutions with those from fuzzy chance
constrained programming (FCCP). The results indicated that EFPP performed equally well with FCCP in addressing parameter
uncertainties, but it demonstrated a wider applicability due to its extended capacity of handling fuzzy relationships in the model
constraints.

1. Introduction

Water resources allocation is an important task for dis-
tributing water resources to various users for ensuring
healthy socioeconomic development and ecoenvironmental
protection. The task is especially critical for areas that are
currently suffering from water scarcity problems and facing
even greater challenges under future climate change. The
conflict among different water users is hardly avoidable, but
application of management models, that fully consider the
uneven spatial and temporal distributions of water resources,
the interactions between water supply and demand, and the
regulatory requirement of local authorities, will surely benefit
the related allocation and planning processes. In recent
years, it has been recognized that the intrinsic uncertainties
linking with many system components in water resources
allocation could also affect the effectiveness of management
strategies that are normally made based on deterministic
conditions. These uncertainties could be related to water

availability (e.g., fluctuating hydrological condition), water
demand (e.g., growing population and changing weather),
transportation/storage loss, water prices, and even human
judgment (e.g., regulatory policies).

The previous research efforts relied heavily on stochastic,
fuzzy and interval techniques in tackling uncertainties [1–6].
Among various alternatives, fuzzy mathematical program-
ming (FMP) was found effective in dealing with uncertainties
caused by measurement errors, implicit knowledge, and
ambiguous human judgment. The definition of the fuzzy
parameters in FMP has less strict data requirement than
that of stochastic ones, and the fuzzy parameters contain
richer distribution information than interval numbers [7, 8].
For decades, many types of FMP models were proposed
for solving water resources management problems [9–11].
Depending on the way of handling uncertainties, FMP can
be categorized into fuzzy flexible (e.g., fuzzy parametric
programming) (FF) [12–14], fuzzy possibilistic (FP) (e.g.,
fuzzy chance constrained programming) [15–17], and fuzzy
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robust (FR) [18, 19] programmingmodels.Maqsood et al. [20]
incorporated fuzzy flexible programming into a two-stage
stochastic optimization framework, which embedded risk
information into the constraints and objective function. Nie
et al. [21] advanced a water management model based on
fuzzy robust programming approach for water quality prob-
lem, where the model could reflect a compromise between
system stability and optimality. Xu and Qin [5] proposed a
double-sided fuzzy chance-constrained model and applied
it to an agricultural water quality management problem.
The proposed model could tackle uncertainties expressed as
possibilistic distributions in the constraints and allow system
violations at predetermined confidence levels.

The above-mentioned fuzzy approaches have specific
scopes of applicability, in the sense of handling (i) fuzziness
in objective function and/or constraints and (ii) fuzziness
of relationship and/or model parameters. FF programming
allows flexibility and elasticity to be reflected in the objective
function and constraints but is relatively weak in dealing with
ambiguous coefficients [8, 22]. FP programming tackles fuzzy
coefficients in objective function and/or constraints, but is
less capable of dealing with fuzzy relationships [8, 22]. FR
programming is designed for handling highly uncertain vari-
ables (i.e., dual uncertainties) which are expressed as fuzzy
boundary intervals [19, 21]; it is generally not suitable to be
used for reflecting vague relationships or objective functions
[5]. Inwater resources allocation problems, uncertainty could
exist in many system components and their relationships.
To benefit general-purpose applications, it is desired that
a sophisticated model that could handle all possible fuzzy
conditions mentioned above will be available.

Herrera and Verdegay [23] gave a general introduction
of three models of fuzzy parametric linear programming.
These models have shown advantages in dealing with fuzzy-
relation-based constraints, fuzzy coefficients in system objec-
tive, and fuzzy parameters in model constraints. Although
the different types of fuzziness were treated individually,
the parametric models did show a potential to be coupled
together for handling more complicated cases. This further
topic was not discussed in the previous studies, and the
applicability of such a method in engineering problems has
yet to be explored. In addition, themodels were developed for
triangular-shaped fuzzy sets and were incapable of reflecting
more general cases. Thus, an extended fuzzy parametric
programming (EFPP) method, which is based on the models
proposed by Herrera and Verdegay [23], will be developed
in this study. A numerical example and a water resources
allocation problem will be used for demonstration.

2. Methodology

2.1. Extended Fuzzy Parametric Programming. A fuzzy linear
programming (FLP) problem in consideration of fuzziness
under a general condition can be written as follows [24]:

Max 𝑧 =

𝐽

∑

𝑗=1

�̃�𝑗𝑥𝑗 (1a)

subject to

𝐽
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where �̃�𝑗, �̃�𝑖𝑗, and ̃
𝑏𝑖 are fuzzy coefficients (or parameters); 𝑥𝑗

is deterministic decision variable,𝑑𝑗𝑘 and 𝑒𝑘 are deterministic
coefficients; 𝑗 is the index of decision variable; 𝐽 is the number
of decision variables; 𝑖 is the index of fuzzy constraint;
𝑘 is the index of deterministic constraint; the symbols ≲
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study, we consider the trapezoidal shape a relatively general
shape of a fuzzy membership function. It could address
the minimum, maximum, and most possible range of an
uncertain variable. The triangular-shaped fuzzy membership
function is a special case of trapezoidal ones when the most
possible range converges to a single point.

Assume the flexibility of the constraints could be repre-
sented by fuzzy sets. When the constraints are fully satisfied,
the membership degree of the constraints would be 1, when
the constraints are totally violated, the membership degree of
the constraints would be 0. Let a fuzzy number ̃

𝜃𝑖 represent
the allowablemaximumviolation of the constraints, that is, to
be determined by decision makers. The membership degree
of constraints 𝜇𝑖(𝑥) would linearly decrease over the interval
(
̃
𝑏𝑖,

̃
𝑏𝑖 +

̃
𝜃𝑖), and could be expressed as follows [23]:
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(2)

where the fuzziness could exist in both the fulfillment
of the constraints and the coefficients in constraints. For
simplicity, ∑

𝐽

𝑗=1
(⋅) is represented by ∑(⋅). To deal with fuzzy

relationship, the fuzzy ranking method (FRM), studied by
many researchers [25–28], will be employed. FRM has the
following definitions [23]:

FR (�̃�) ≥ FR (�̃�) ⇒ �̃� ≥ �̃�, (3a)

FR (�̃� + �̃�) = FR (�̃�) + FR (�̃�) , (3b)

FR (𝑟�̃�) = 𝑟 ⋅ FR (�̃�) , (3c)

where FR(⋅) is defined as a fuzzy ranking function; �̃� and �̃�

are fuzzy numbers; 𝑟 is a deterministic coefficient. Examples
of fuzzy ranking functions include Chang’s index [25] and
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Yager’s first, second, and third indexes [26, 27]. In this study,
we use Yager’s first index to deal with fuzzy coefficients.
Therefore, 𝜇𝑖(𝑥) in (2) can be transformed to [29]:

𝜇𝑖 (𝑥) =
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(4)

To handle fuzzy parameters, a satisfaction degree (i.e., 𝛼) is
introduced. If the decisionmakers prefer a confidence level of
constraint satisfaction to be 𝛼, the membership degree of the
constraints 𝜇𝑖(𝑥) should be higher than 𝛼, where 𝛼 ∈ [0, 1].
Then the constraint (1b) could be further transformed to the
following [29]:
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Consider the fuzziness in the objective function, themember-
ship degree of the objective function 𝜇(𝑧) could be expressed
in the following trapezoidal form:
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(6)

Equation (6) can be converted into crisp sets using 𝛽-cut,
where the range under 𝛽-cut represents the aspiration range
of the objective function values that the decision makers
would accept. The membership degree 𝜇(𝑧) should be higher
than 𝛽, then we can obtain the following relationship:

𝜇 (𝑧) ≥ 𝛽 ⇒ 𝐿 (𝛽) ≤ ∑ 𝑐𝑗𝑥𝑗 ≤ 𝑈 (𝛽) , (7)

where 𝐿(𝛽) = (1−𝛽) ∑ 𝑐
1

𝑗
𝑥𝑗+𝛽 ∑ 𝑐

2

𝑗
𝑥𝑗, and𝑈(𝛽) = 𝛽 ∑ 𝑐

3

𝑗
𝑥𝑗+

(1 − 𝛽) ∑ 𝑐
4

𝑗
𝑥𝑗.

Then, it turns into a problem with interval-type objective
function, which can be written as [23, 30]:

Max { 𝑧 | 𝑧 ∈ [𝐿 (𝛽) , 𝑈 (𝛽)] , 𝛽 ∈ [0, 1]} . (8)

A simple way to handle the interval objective function is to
assign a weight vector 𝜀 to both 𝐿(𝛽) and 𝑈(𝛽). In this study,

we assume an equal importance of 𝐿(𝛽) and 𝑈(𝛽) and use
their average as the following objective function:

Max 𝑧 =
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Then, the fuzzy parametric model can be written as follows:
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where 𝛼 reflects the satisfaction degree of constraints. The
selection of 𝛼 depends on the preference of decision makers.
The higher the values of 𝛼, the higher the satisfaction degree
of constraints. If decision makers are willing to make a
conservative plan, higher values of 𝛼 should be selected;
conversely, if they prefer a higher objective function value
(normally this may lead to higher risk of system viola-
tion), lower values of 𝛼 should be chosen. The parameter
𝛽 represents the level of the aspiration range of objective
function. The higher the level of 𝛽, the narrower the range of
[𝐿(𝛽), 𝑈(𝛽)]. To examine the influence of 𝛽 on the objective
function, we could assume that 𝛽 has an increment of Δ𝛽.
Then, the objective function becomes as follows:

Max 𝑧
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4

𝑗
𝑥𝑗) .

(11)

The equation shows that the influence of 𝛽 on the objective
function value relies heavily on the distribution of the fuzzy
coefficients. The trend is generally linear provided that the
decision variables do not have significant variations.

Figure 1 shows the EFPP’s general framework.The steps of
using EFPP are as follows: (i) identify fuzzy uncertain param-
eters and obtain the fuzzy membership function of each
variable; (ii) determine themaximum violation of constraints
that the decision maker would accept; (iii) establish the
aspiration level to the objective function and assign a weight
vector to objective function (or use average); (iv) establish
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Figure 1: General framework of EFPP.

the satisfaction degree to the constraints and transform
constraints using FRM; (v) formulate the fuzzy parametric
linear programming model and generate the final optimal
solutions.

2.2. Numerical Example. Consider the following numerical
problem:

Max𝑓 = �̃�1𝑥1 + �̃�2𝑥2 (12a)

subjective to

�̃�11𝑥1 − �̃�12𝑥2 ≳
̃
𝑏1,

(12b)

�̃�21𝑥1 + �̃�22𝑥2 ≲
̃
𝑏2,

(12c)

𝑥𝑗 ≥ 0, (12d)

where 𝑐1 = (1, 2, 3, 11), 𝑐2 = (3, 7, 8, 9), 𝑎11 = (1, 2, 2.5, 3),
𝑎12 = (1, 2.5, 3.5, 4), 𝑏1 = (2, 3, 5, 6), 𝑎21 = (1.5, 3.5, 4, 6), 𝑎22 =

(3, 4, 6, 7.5), 𝑏2 = (29, 35, 36, 40).
According to (7),

𝑙1 (𝛽) = 1 + 𝛽, 𝑢1 (𝛽) = 11 − 8𝛽,

𝑙2 (𝛽) = 3 + 4𝛽, 𝑢2 (𝛽) = 9 − 𝛽.

(13)

The objective function could be written as follows:

Max𝑓=[(1+𝛽) 𝑥1+(3+4𝛽) 𝑥2, (11−8𝛽) 𝑥1+(9−𝛽) 𝑥2] .

(14)

Assume that ̃
𝜃1 = (1, 1.5, 3, 4.5) and ̃

𝜃2 = (3, 5, 5.5, 7)

are the admissible violations, and a linear ranking function
based on the first index of Yager [27] is used. Then the fuzzy
parametric model can be written as follows:

Max𝑓 =

1

2

[(12 − 7𝛽) 𝑥1 + (12 + 3𝛽) 𝑥2] (15a)

subject to

2.125𝑥1 − 2.75𝑥2 ≥ 4 − 2.5 (1 − 𝛼) , (15b)

3.75𝑥1 + 5.125𝑥2 ≤ 35 + 5.125 (1 − 𝛼) , (15c)

𝑥𝑗 ≥ 0, (15d)

𝛼, 𝛽 ∈ [0, 1] , (15e)

where 𝛼 and 𝛽 are the satisfaction degree of the constraints
and the aspiration level of the objective function, respectively.
At a 𝛽 level of 0.9, the results of (𝑓, 𝑥1, 𝑥2) obtained from
EFPP under 𝛼 levels of 0.9, 0.6, and 0.3 are (36.99, 5.51, 2.89),
(39.15, 5.53, 3.18), and (41.31, 5.55, 3.47), respectively. At an
𝛼 level of 0.9, the results of (𝑓, 𝑥1, 𝑥2) at 𝛽 levels of 0.9, 0.6,
0.3 are (36.99, 5.51, 2.89), (41.48, 5.51, 2.89), and (46.88, 9.47,
0.315), respectively.The results indicate that, as 𝛼 and 𝛽 levels
decrease, the objective function values would both increase.
The decision variables would not change until the 𝛽 level
drops below 0.3, which implies that, 𝛽 may only show notable
impact on the model solutions when its influence on the
objective function reaches a certain threshold.

3. Application in Water Resources
Allocation Problem

3.1. Case Background and Model Formulation. The same
method will be used to a hypothetical water allocation
problem [20, 31], where two reservoirs are serving as water
sources for three users, including municipality, agriculture,
and industry. A target water allocation amount to each
consuming sector is assigned for each reservoir. Generally,
an excessively high water target could lead to water shortage
problems when the water availability is low; the correspond-
ing penalties could also be high. Conversely, a too low
target may cause waste of water resources during high-flow
seasons. Therefore, an optimal water allocation scheme from
reservoirs to water users is desired. Thus, the problem under
consideration is how to allocate water from various water
sources (i.e., reservoirs) to three competing users over three
periods so that the overall system benefit can be maximized,
while, at the same time, the restrictions of water availability
and regulatory requirement should be met.

In such a water resources allocation system, the avail-
able water amount is influenced by many factors such as
the annual and seasonal variation of rainfall, runoff, and
evaporation, as well as groundwater interaction; the values
of net benefit and the penalty rely on the market condition
and human judgment; the water loss rate is affected by trans-
ferring condition (e.g., soil absorption) and infrastructure
reliability. Problems of data procurement, survey methods,
equipment failure, and human judgment could cause large
errors about these parameters. In real-world applications,
efforts should be made to ensure an accurate quantification
of these uncertainties. In this study, we assume the uncertain
parameters be expressed as trapezoidal-shaped fuzzy sets
(listed in Tables 1 and 2).
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Table 1: Parameters of water demand, reservoir capacity, and water loss rate.

Time period
t = 1 t = 2 t = 3

Water demand (×106 m3)
Municipality 9.7 10 11
Agriculture 13 13.5 14.5
Industry 11.5 12 12.5

Capacity (×106 m3)
Reservoir 1 (5, 5.5, 6, 6.5) (5.5, 6, 6.5, 7) (4, 4.5, 5, 6)
Reservoir 2 (3.5, 4.5, 5, 5.5) (4, 4.5, 5.5, 6) (3, 3.5, 4, 5)
Loss rate Municipality Agriculture Industry
Reservoir 1 (0.1, 0.15, 0.18, 0.2) (0.2, 0.23, 0.25, 0.3) (0.25, 0.3, 0.35, 0.4)
Reservoir 2 (0.05, 0.08, 0.1, 0.15) (0.1, 0.15, 0.2, 0.25) (0.15, 0.2, 0.25, 0.3)

Table 2: Parameters of unit net benefit and penalty.

Time period
t = 1 t = 2 t = 3

Unit net benefit ($/m3)
Reservoir 1

Municipality (8, 10, 11, 12) (8.5, 11, 11.5, 12.5) (10, 11, 12, 14)
Agriculture (3, 4.2, 4.3, 5) (3.5, 4.3, 4.5, 5.5) (3.5, 4.7, 5, 6.5)
Industry (6, 8, 8.3, 10) (7, 8, 9, 10) (7, 8.5, 9, 11)

Reservoir 2
Municipality (7, 9, 9.5, 11) (8, 9.5, 10.5, 12) (9, 10.5, 11, 13)
Agriculture (2, 3.5, 3.7, 4) (2, 3.5, 4, 4.5) (3, 4, 4.5, 5)
Industry (5, 7, 7.5, 9) (6, 7.5, 8, 9.5) (6, 8, 8.5, 10)

Unit penalty ($/m3)
Municipality (15.5, 16, 18, 20) (16.5, 18, 20, 22) (18, 20, 22, 24)
Agriculture (5.5, 6, 7, 7.5) (6, 6.5, 7, 7.5) (6.5, 7, 7.5, 8)
Industry (11.5, 13, 14, 15) (12.5, 13, 15, 16.5) (13.5, 15, 16, 18)

The model for this water allocation problem can then be
formulated as follows:

Maximize𝑓=

𝐼
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𝑖=1

𝐽

∑

𝑗=1

𝑇

∑

𝑡=1

𝑁�̃�𝑖𝑗𝑡 ⋅ 𝑇𝐺𝑖𝑗𝑡−

𝐼

∑

𝑖=1

𝑇

∑

𝑡=1

𝐽

∑

𝑗=1

𝐶
̃
𝑇𝑖𝑡 ⋅ 𝐷𝐿 𝑖𝑗𝑡

(16a)

subject to

𝐽

∑

𝑗=1

𝑇𝐺𝑖𝑗𝑡 = 𝑇𝑇𝐺𝑖𝑡, ∀𝑖, 𝑡, (16b)

𝐼

∑

𝑖=1

(1 + �̃�
𝑖𝑗

) ⋅ (𝑇𝐺𝑖𝑗𝑡 − 𝐷𝐿 𝑖𝑗𝑡) ≲ 𝐼�̃�𝐹𝑗𝑡, ∀𝑗, 𝑡, (16c)

𝐼

∑

𝑖=1

𝐽

∑

𝑗=1

�̃�
𝑖𝑗

⋅ (𝑇𝐺𝑖𝑗𝑡 − 𝐷𝐿 𝑖𝑗𝑡) ≲ 𝑇�̃�𝐿, ∀𝑡, (16d)

𝐷𝐿 𝑖𝑗𝑡 ≤ 𝑇𝐺𝑖𝑗𝑡, ∀𝑖, 𝑗, 𝑡, (16e)

𝑇𝐺𝑖𝑗𝑡 ≥ 0, 𝐷𝐿 𝑖𝑗𝑡 ≥ 0, ∀𝑖, 𝑗, 𝑡, (16f)

where 𝑖 = index of water users, and 𝑖 = 1, 2, . . . , 𝐼 (𝐼 = 3); 𝑗 =

index of reservoirs, and 𝑗 = 1, 2, . . . , 𝐽 (𝐽 = 2); 𝑡 = index of
periods, and 𝑡 = 1, 2, . . . , 𝑇, (𝑇 = 3); 𝜂𝑖𝑗 = water loss rate from
reservoir 𝑗 to user 𝑖;𝑁𝐵𝑖𝑗𝑡 = unit net benefit of water delivered
from reservoir 𝑗 to user 𝑖 at period 𝑡 ($/m3); 𝑇𝐺𝑖𝑗𝑡 = water
allocation target of reservoir 𝑗 to user 𝑖 at period 𝑡 (106m3);
𝐶𝑇𝑖𝑡 = unit penalty of not satisfying the target of user 𝑖 at
period 𝑡 ($/m3); 𝐷𝐿 𝑖𝑗𝑡 = water amount failed to be delivered
(i.e., deficit) from reservoir 𝑗 to user 𝑖 at period 𝑡 (106m3);
𝑇𝑇𝐺𝑖𝑡 = water allocation target for user 𝑖 at period 𝑡 (106m3);
𝑇𝑊𝐿 = total allowable water loss (106m3); 𝐼𝑁𝐹𝑗𝑡 = available
water amount for reservoir 𝑗 at period 𝑡 (106m3).

The objective function (16a) is to obtain the maximum
systembenefit of allocatingwater from two reservoirs to three
consumers. Constraint (16b) means that the total allocation
target of reservoirs to each water user should be equal to
the demand of each user; constraint (16c) denotes that the
total allocated water from each reservoir should be smaller
than its available capacity; constraint (16d) means that the
total amount of water loss should be lower than the allowable
water loss; constraint (16e) denotes that the shortage should
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Table 3: Solutions from EFPP.

𝛼, 𝛽 = 0.95 𝛼, 𝛽 = 0.9 𝛼, 𝛽 = 0.8 𝛼, 𝛽 = 0.7

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3
Target from reservoirs to users (×106 m3)

M R1 5.32 5.59 7.30 5.36 5.79 7.14 5.75 6.18 6.82 6.13 6.57 6.50
R2 4.38 4.41 3.70 4.34 4.21 3.86 3.95 3.82 4.17 3.57 3.43 4.50

A R1 8.91 9.10 11.1 8.77 8.95 10.9 8.47 8.65 10.6 8.17 8.35 10.3
R2 4.09 4.40 3.45 4.23 4.55 3.60 4.53 4.85 3.89 4.83 5.15 4.19

I R1 7.58 7.78 9.19 7.44 7.63 9.05 7.15 7.35 8.77 6.87 7.06 8.48
R2 3.92 4.22 3.31 4.06 4.37 3.45 4.35 4.65 3.73 4.63 4.94 4.02

Water deficit for users (×106 m3)

M R1 0.15 0 2.90 0 0 2.54 0 0 1.83 0 0 1.12
R2 0 0 0 0 0 0 0 0 0 0 0 0

A R1 4.12 3.89 6.96 3.79 3.57 6.63 3.13 2.91 5.97 2.47 2.25 5.31
R2 0 0 0 0 0 0 0 0 0 0 0 0

I R1 3.07 2.89 5.34 2.76 2.58 5.03 2.13 1.95 4.41 1.51 1.33 3.78
R2 0 0 0 0 0 0 0 0 0 0 0 0

M: municipality; A: agriculture; I: industry; R1: reservoir 1; R2: reservoir 2.

not exceed a predefined target; constraint (16f) stipulates the
nonnegativity of all decision variables. The fuzzy parameters
are associated with unit benefits, unit penalties, water loss
rates, allowable water losses, and available water amounts.
The fuzzy relations in constraints (16c) and (16d) mean that
the total allocation amounts and water loss amounts are not
strictly restricted by the policy regulations and violations
are allowable to a certain degree (i.e., satisfaction degree).
Constraints (16c) and (16d) can be transformed to:
𝐼

∑

𝑖=1

(1 + �̃�
𝑖𝑗

) ⋅ (𝑇𝐺𝑖𝑗𝑡 − 𝐷𝐿 𝑖𝑗𝑡) ≲ 𝐼�̃�𝐹𝑗𝑡 + (1 − 𝛼) ⋅
̃
𝜃

inf
𝑗𝑡

(17a)

𝐼

∑

𝑖=1

𝐽

∑

𝑗=1

�̃�
𝑖𝑗

⋅ (𝑇𝐺𝑖𝑗𝑡 − 𝐷𝐿 𝑖𝑗𝑡) ≲ 𝑇�̃�𝐿 + (1 − 𝛼) ⋅
̃
𝜃

𝑡𝑤𝑙

, (17b)

where ̃
𝜃

inf
𝑗𝑡

and ̃
𝜃

𝑡𝑤𝑙

are the acceptable tolerances of water
availability and total water loss amount, respectively. Con-
straint (17a) shows that if the total allocated water from reser-
voir is higher than its total water availability, the satisfaction
degree would decrease. It would not be acceptable if the
total allocated water amount exceeds the tolerance of water
availability (i.e., 𝐼�̃�𝐹𝑗𝑡+

̃
𝜃

inf
𝑗𝑡
). Constraint (17b) shows a similar

treatment for water losses.

3.2. Results. For simplicity of demonstration, we firstly
assume the aspiration level of the objective function is
identical to the satisfaction degree of constraints. The fuzzy
parameters in constraints are dealt with by the first index
of Yager [26, 27]. Table 3 lists the solution of the allocated
target and shortage under various satisfaction degrees. For
reservoir 1, the water target assigned to agriculture is the
highest, followed by industry and municipality. For example,
at period 1, under satisfaction degree of 0.9, the target

amounts from reservoir 1 to municipality, agriculture, and
industry are 5.36, 8.77, and 7.44 (×106m3), respectively. This
is because the demand of agriculture is the highest and the
available flow of reservoir 1 is higher than that of reservoir
2; consequently, more water would be allocated to satisfy the
demand of agriculture from reservoir 1. Table 3 also shows
that, as the satisfaction degree decreases, the target amount
from reservoir 1 tomunicipality would increase. For example,
at period 2, as the satisfaction decreases from 0.95 to 0.7,
the target allocation amount from reservoir 1 to municipality
would increase from 5.32 to 6.13 (×106m3). This is due to the
fact that a lower satisfaction level corresponds to a higher
violation degree; reservoir 1, which has a higher net benefit,
would be preferred to supply more water.

The total shortages of municipality, agriculture, and
industry over periods 1 to 3 under various satisfaction degrees
have been plotted in Figure 2. The total shortage amount
of municipality is the lowest and that of agriculture is the
highest. It means that the target of municipality would be
satisfied first, and that of agriculture would be of least
priority.This is due to the highest net benefit themunicipality
could bring in and also the highest penalty if the target of
municipality could not be satisfied. It also shows that as
𝛼 level decreases, the shortage amount of the three users
would decrease. For example, at period 3, under satisfaction
degrees of 0.95, 0.9, 0.8, and 0.7, the total water shortage
amount of agriculture are 6.96, 6.63, 5.97, and 5.31 (×106m3),
respectively. This implies that, under a lower satisfaction
degree (i.e., higher risk of constraint violation), the decision
makers would be more optimistic about the water availability
and prefer to allocate more water and avoid more shortage
problem.

Figure 3 shows the total target and water allocation
amount from reservoirs 1 and 2. It demonstrates that the total
target amount from reservoir 2 is lower than that from reser-
voir 1; correspondingly, the total allocated amount would be
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Figure 3: Total target and allocation amounts from reservoirs 1
and 2.

lower. For example, at period 1, under satisfaction degree
of 0.9, the total target from reservoirs 1 and 2 is 21.56 and
12.64 (×106m3), respectively, and the total allocation is 15.02
and 12.63 (×106m3), respectively. This is because reservoir 1
has higher net benefit and capacity. It also shows that, as 𝛼

decreases, the total target from reservoir 1 would decrease and
the total allocation amount from reservoir 1 would increase.
For example, at period 2, as the satisfaction degree drops from
0.95 to 0.7, the total target of reservoir 1 would decrease from
22.5 to 22.0 (×106m3), and the allocation from reservoir 1
would increase from 15.7 to 18.4 (×106m3). This is because,
as the satisfaction degree decreases, the allowable violation
of the constraints (i.e., constraints of water available and loss)
would increase, and the discrepancy betweenwater target and
allocation (i.e., shortage amount) would reduce; this could
lead to a higher system benefit.

Figure 4 presents the net benefits of the system at various
satisfaction degrees. A higher satisfaction degree has an
obvious lower system benefit but a lower risk of system
reliability, and vice versa. Generally, the results obtained
through EFPP demonstrate that the approach is capable of (i)
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Figure 4: System benefits obtained from EFPP and FCCP.

tackling uncertainties in water allocation problems as fuzzy
sets; (ii) dealing with fuzzy parameters in both objective
function and constraints; (iii) handling fuzzy relationship by
allowing violation of the accomplishment of the constraints;
(iv) helping decisionmakers understand the balance between
system benefit and reliability.

3.3. Comparison with FCCP. To verify the reliability of the
solutions from EFPP, the fuzzy chance constrained program-
ming (FCCP) model, proposed by Liu and Iwamura [32], is
applied to solve the same problem after a few modifications.
As FCCP could only tackle fuzzy parameters, the treatment of
fuzzy relationship is not considered. For simplicity, the fuzzy
objective function has been converted to its deterministic
version by averaging the upper and lower bounds of the
fuzzy coefficients. The fuzzy parameters in the constraints
are still expressed as trapezoidal-shaped fuzzy sets. We use
confidence levels of 0.95, 0.9, 0.8, and 0.7 for the FCCP
model; they are deemed equivalent to the satisfaction degrees
used in EFPP. The objective-function values obtained from
both FCCP and EFPP are shown in Figure 4, and decision
variables are shown in Figure 5. At a high satisfaction degree
or confidence level (i.e., 0.95), the system benefit obtained
from EFPP is slightly lower than that from FCCP. As the
satisfaction degree decreases, the system benefits from EFPP
would outstrip the results at the same confidence level from
FCCP. For example, under satisfaction degrees of 0.9, 0.8,
and 0.7, the system benefits from EFPP would be 498.26,
551.79, and 605.18 (×106$), respectively; those from FCCP at
confidence levels of 0.9, 0.8, and 0.7 are 488.90, 502.13, and
515.48 (×106$), respectively.

Figure 5 shows the values of decision variables obtained
from FCCP and EFPP. It is obvious that the solutions from
both models are fairly close to each other at the same levels
of satisfaction or confidence. For instance, at period 3, at a
satisfaction degree of 0.7, the target amounts from reservoir 1
tomunicipality, agriculture, and industry fromEFPP are 6.50,
10.3, and 8.48 (×106m3), respectively, and at a confidence level
of 0.7, the target amounts obtained from FCCP are 6.99, 10.7,
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Figure 5: Comparison between FCCP and EFPP.

and 8.87 (×106m3), respectively. The solutions of allocation
from EFPP are somewhat higher than those obtained from
FCCP when 𝛼 level is lower than 0.8; this explains the higher
benefits of EFPP shown in Figure 4. From the comparison
results, it appears that FCCP and EFPP are both capable of
reflecting the balance of system benefit and reliability and
could lead to comparable solutions under the same model
settings. Obviously, EFPP has a wider applicability due to
its extended capacity of handling fuzzy relationships in the
model constraints.

3.4. Solutions under Different 𝛼 and 𝛽 Levels. Figure 6 shows
the net benefits under various 𝛼 and 𝛽 levels. Obviously, the
higher the 𝛼 value, the more reliable the system and the lower
the system benefit. For instance, when 𝛽 = 0.9, the net
benefit would increase from 498.26 to 793.68 (×106$) when
𝛼 level decreases from 0.9 to 0.1. Figure 6 also shows that the
objective function is more sensitive to 𝛼 than 𝛽. For example,
when 𝛼 = 0.9, the difference of net benefits between 𝛽 = 0.9

and 0.1 is 9.23 (×106$), when 𝛽 = 0.9, the difference of net
benefits between 𝛼 = 0.9 and 0.1 is 295.42 (×106$). It is
also found that the values of decision variables would not
vary with the change of 𝛽 for this study case. This is due
to the fact that the distributions of fuzzy coefficients in the
objective function only cause negligible influence on model
solutions; this is consistent with what we have explained in
the numerical example section.

3.5. Applicability of EFPP to Other Engineering Management
Problems. Theproposedmethod has a potential to be applied
to many other engineering management problems, where
uncertainties could be described by fuzzy sets. For example,
water quality management is also complicated with uncer-
tainties existed among many socioeconomic, environmental,
and technical factors, as well as their interactions. The opti-
mization model for water quality management may include
environmental constraints, such as the pollutant loading
restrictions.The estimation of pollutant loads and maximum
allowable discharge amounts involves experience of experts,
model estimation errors, and data shortage, and the related
parameter uncertainties could be described by fuzzy sets.The
decisionmakers may also accept a certain level of exceedance
of environmental constraints, and the unit cost associated
with the water quality treatment may also vary with market
conditions and subject to uncertainties. EFPP would be
most suitable for such type of problems, provided that the
model structures and parameters be specifically designed and
estimated.

4. Conclusion

An extended fuzzy parametric programming (EFPP) app-
roach was developed in this study and applied to a
water resource allocation problem. The proposed method
could deal with fuzzy parameters with trapezoidal-shaped



Mathematical Problems in Engineering 9

450

500

550

600

650

700

750

800

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

𝛼 = 0.9

𝛼 = 0.8

𝛼 = 0.7

𝛼 = 0.6

𝛼 = 0.5

𝛼 = 0.4
𝛼 = 0.3

𝛼 = 0.2

𝛼 = 0.1

N
et

 b
en

efi
t (
×
10

6
$)

𝛽

Figure 6: Net benefits under different 𝛼 and 𝛽 values.

distribution functions in the model, and also fuzzy relation-
ships in the constraints. The results obtained from a water
allocation problem showed that EFPP was capable of tackling
a wide range of fuzziness in the management model and
allowed water managers to analyze the balance of system
benefit and risk of failure. Compared with conventional
FCCP method, EFPP was flexible in handling the fuzzy
relationship and fuzzy parameters in both objective function
and constraints and had a more general applicability.

The EFPP method also showed a number of limita-
tions. Firstly, EFPP was restricted to fuzzy variables with
triangular- or trapezoidal-shapedmembership functions. For
more general-shape fuzzy variables, heuristic techniquesmay
be employed [32]. Secondly, the value of using EFPP should
also be compared with methods with multiple uncertainty-
analysis techniques such as coupled fuzzy-stochastic theory
[20, 31] as some particular forms of uncertaintymay be better
described by other algorithms like interval or stochastic ones.
Nevertheless, the proposed method was proved effective in
simple water allocation problems, and further applications
and verifications in a wider range of engineering fields with
more complicated conditions are expected.
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