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Abstract. In recent years, a strong debate has emerged in the
hydrologic literature regarding how to properly treat nontra-
ditional error residual distributions and quantify parameter
and predictive uncertainty. Particularly, there is strong dis-
agreement whether such uncertainty framework should have
its roots within a proper statistical (Bayesian) context using
Markov chain Monte Carlo (MCMC) simulation techniques,
or whether such a framework should be based on a quite dif-
ferent philosophy and implement informal likelihood func-
tions and simplistic search methods to summarize parame-
ter and predictive distributions. This paper is a follow-up of
our previous work published inVrugt and Sadegh(2013)
and demonstrates that approximate Bayesian computation
(ABC) bridges the gap between formal and informal statis-
tical model–data fitting approaches. The ABC methodology
has recently emerged in the fields of biology and population
genetics and relaxes the need for an explicit likelihood func-
tion in favor of one or multiple different summary statistics
that measure the distance of each model simulation to the
data. This paper further studies the theoretical and numerical
equivalence of formal and informal Bayesian approaches us-
ing discharge and forcing data from different watersheds in
the United States, in particular generalized likelihood uncer-
tainty estimation (GLUE). We demonstrate that the limits of
acceptability approach of GLUE is a special variant of ABC
if each discharge observation of the calibration data set is
used as a summary diagnostic.

1 Introduction

In a common inverse problem, we wish to estimate the pa-
rameters,θ = {θ1, . . . ,θd}, of a model,H, given observations
of the system behavior,Ỹ = {ỹ1, . . . , ỹn}. The observations or
data are linked to the unknown parametersθ∗ through some
physical system,=:

Ỹ←=(θ∗)+ ε, (1)

whereε = {ε1, . . . ,εn} is an×1-vector of measurement er-
rors. Examples of such problems are widespread in many dif-
ferent fields of study, including medical imaging (Kaipio et
al., 2004), reservoir characterization (Stenerud et al., 2008)
and cosmology (Jimenez et al., 2004). When a model hypoth-
esis or simulator,Y←H(θ∗, ũ, x̃0), of the physical process
is available, one can model the data:

Ỹ←H(θ∗, ũ, x̃0)+e, (2)

whereũ= {ũ1, . . . , ũn} denotes the forcing data,x̃0 signifies
the initial states, ande= {e1, . . . ,en} includes observation er-
ror (input and calibration data) as well as error due to the
fact that the simulator,H(θ∗|·) may be systematically dif-
ferent from reality,=(θ∗), for the parametersθ∗. The latter
may arise from, e.g., numerical error, spatial discretization
and improper (conceptual) model formulation.

Figure 1 provides an overview of possible error sources
that affect our ability to correctly describe the physical sys-
tem,=(θ∗), of interest. Forcing data, model parameter, model
state, and calibration data error are represented with a proba-
bility density function (pdf), whose statistical properties are
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Fig. 1. Explicit recognition of the role of(1) parameter,(2) forc-
ing data,(3) initial state,(4) model structural,(5) output,(6) state,
and(7) calibration data uncertainty. The pitchfork symbol illumi-
nates the difficulty with formulating the likelihood function (and
prior distribution/parameterization of individual error sources) used
to summarize the error residuals. Explicit treatment of individual
error sources is required to increase the prospects of explaining the
reasons for model inadequacy and learning from the experimental
data.

typically unknown. Errors in the modeled (5) output,yt (t>0),
and (6) state,xt (t>0), dynamics originate from a wide vari-
ety of different error sources, including (1) inadequate and/or
incomplete knowledge of the model parameters,θ∗; (2) er-
rors in the input (forcing) data,u, and (3) initial states;x0
(4) structural inadequacies in the model equations and/or im-
proper dimensionality of the state space; and (7) errors in the
calibration data,̃yt (t>0). The mathematical operator

⊗
(also

called “likelihood function”) is used to judge the distance be-
tween the model predictions and corresponding calibration
data. This function should explicitly recognize the contribu-
tion and role of each individual error source in determining
the error residual, but is very difficult to specify correctly
with very weak prior information, and hence the pitchfork
symbol is used.

Within the context of hydrologic modeling, measured rain-
fall depths and estimates of (potential) evapotranspiration
typically constitute the main forcing data. These two in-
put variables strongly determine the simulated streamflow
at interior points and the catchment outlet, surface runoff,
soil moisture fluxes and storage of water in the catchment.
Examples of model states are soil moisture, groundwater
table depth, and hydraulic heads (amongst others). Their
knowledge is beneficial to adequately represent the stor-
age of water in the variably saturated zone and groundwa-
ter, and hence ensure an adequate model calibration. Fi-
nally, calibration data often involves time series of (spatially-
distributed) streamflow observations or time-lapse measure-
ments of tracer concentrations. Inevitably, each of these data
sources is subject to uncertainty, which severely complicates
parameter estimation and quantification of model structural
errors.

During the past 4 decades much research has been devoted
to the development of computer based methods for fitting hy-
drologic models to calibration data (e.g., streamflow, water
chemistry, groundwater table depth, soil moisture, snow wa-
ter equivalent). That research has primarily focused on six
different issues: (1) the development of specialized objec-
tive functions that appropriately represent and summarize the
errors between model predictions and observations, (2) the
search for efficient optimization algorithms that can reliably
solve the hydrologic model calibration problem, (3) the de-
termination of the appropriate quantity and most informative
kind of data, (4) the selection of an appropriate numerical
solver for the partially structured differential and algebraic
equation systems of hydrologic models, (5) the representa-
tion of uncertainty, and (6) the development of methods for
inferring and refining the mathematical structure and process
equations of hydrologic models.

Research into error residual distributions had led to the
development of a suite of different (hierarchical) likelihood
functions for measuring the closeness between the model
simulations (predictions) and the corresponding data (Ibbitt
and O’Donnell, 1974; Sorooshian and Dracup, 1980; Kucz-
era, 1983a; Bates and Campbell, 2001; Kavetski et al., 2006a;
Marshall et al., 2007; Schoups and Vrugt, 2010a; Smith et al.,
2010). Recent work bySchoups and Vrugt(2010a) has re-
sulted in a generalized likelihood function that encapsulates
many of the existing likelihood functions in the hydrologic
literature, but with additional flexibility to simultaneously ac-
count for correlated, heteroscedastic, and nontraditional error
residual distributions.

Research into optimization methods has led to the de-
velopment of a wide variety of different search methods.
Whereas initial approaches utilized local search principles
that seek iterative improvement of the objective function
from a single starting point in the parameter space (Ib-
bitt, 1972; Johnston and Pilgrim, 1976; Sorooshian and
Dracup, 1980; Restrepo, 1982; Kuczera, 1983a, b; Gupta
and Sorooshian, 1983; Sorooshian et al., 1983b; Troutman,
1985a, b), problems with parameter insensitivity, curved
ridges, local minima, and multiple different regions of at-
traction has stimulated the development of population based
search algorithms that use multiple different points concur-
rently to locate the global optimum (Wang, 1991; Duan et
al., 1992; Yapo et al., 1998; Seibert, 2000; Khu and Mad-
sen, 2005; Chu et al., 2010). In this regard, the shuffled com-
plex evolution global optimization algorithm ofDuan et al.
(1992) has shown to be effective and efficient in calibrat-
ing conceptual watershed models. Recent developments in-
clude simple randomized adaptation (Mazi et al., 2004; Tol-
son and Shoemaker, 2007), multimethod ensemble (Vrugt
and Robinson, 2007; Vrugt et al., 2009b), and filtering based
(Pauwels, 2008) parameter estimation methods that further
improve search efficiency and reliability.

Research into the information content of data has led to the
understanding that it is not the length of the data that matters
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but the variability of the observed discharge data (Kuczera,
1982; Sorooshian et al., 1983a; Gupta and Sorooshian, 1985;
Yapo et al., 1996). Wet and dry periods are both required to
make sure that all the different components of the watershed
model are excited and the different parameters can be esti-
mated from the calibration data. Post-audit simulations pre-
sented inVrugt et al.(2002) using a Bayesian analysis, adap-
tive random walk Metropolis resampling, and value of infor-
mation (VOI) framework has demonstrated that only a few
(daily) streamflow data measurements are necessary to reli-
ably calibrate a conceptual hydrologic model. The remain-
ing data contain redundant information and could be used to
evaluate the reliability of the actual model structure.

Research into numerical solvers has demonstrated that ex-
plicit (Euler based) time-stepping schemes introduce con-
siderable streamflow simulation errors and spurious local
minima, “pits”, and irregularities in the objective function
space (Kavetski et al., 2003, 2006c; Kavetski and Clark,
2010; Schoups et al., 2010b). These findings provide a deeper
understanding of the convergence problems of local search
methods and demonstrate a need for implicit solvers that it-
eratively adjust the integration time step based on the state
dynamics.

Research into the characterization of uncertainty has re-
sulted in formal and informal statistical approaches. While
initial attempts have focused primarily on methods to quan-
tify parameter uncertainty (Beven and Binley, 1992; Freer
et al., 1996; Gupta et al., 1998; Kuczera and Parent, 1998;
Vrugt et al., 2002; Wagener et al., 2003; Beven, 2006;
Vrugt and Robinson, 2007), emerging approaches include
state-space filtering (Vrugt et al., 2005; Moradkhani et al.,
2005a, b; Slater and Clark, 2006; Reichle, 2008; Salamon
and Feyen, 2009; DeChant and Moradkhani, 2012; Vrugt
et al., 2013), multimodel averaging (Butts et al., 2004;
Georgakakos et al., 2004; Ajami et al., 2007), and various
(non)Bayesian approaches to treat individual error sources
and assess predictive uncertainty (Montanari and Brath,
2004; Vrugt et al., 2005; Kavetski et al., 2006a, b; Kuczera
et al., 2006; Huard and Mailhot, 2006; Jacquin and Sham-
seldin, 2007; Fenicia et al., 2007; Marshall et al., 2007; Mon-
tanari and Grossi, 2008; Vrugt et al., 2008a, b; Reichert and
Mieleitner, 2009; Solomatine and Shrestha, 2009; Kuczera
et al., 2010; Renard et al., 2011; Rings et al., 2012). Much
progress has also been made in the treatment of forcing data
error (Clark and Slater, 2006; Kavetski et al., 2006a, b; Vrugt
et al., 2008a); development of a formal hierarchical frame-
work to formulate, build and test different watershed models
(Clark et al., 2008); and algorithms for efficient sampling of
parameter and predictive uncertainty distributions (Kuczera
and Parent, 1998; Vrugt et al., 2008a; Kuczera et al., 2010;
Laloy and Vrugt, 2012).

Finally, research into structural adequacy has resulted in
data-based mechanistic (Young, 2002, 2012), data assimi-
lation (Vrugt et al., 2005; Smith et al., 2008; Bulygina and
Gupta, 2011), and other stochastic techniques (Reichert and

Mieleitner, 2009) for inference and iterative refinement of
the mathematical structure of conceptual hydrologic models.
This has led to the understanding that discharge data contain
sufficient information to warrant the identification of a suit-
able model structure that mimics as closely and consistently
as possible the observed watershed behavior at the temporal
and spatial scale of measurement.

Most of these developments assume input data and model
structural errors to be “negligibly small” or to be somehow
“absorbed” into the output error residuals. The residuals are
then expected to behave statistically similar to the calibra-
tion data measurement error. These assumptions are statis-
tically convenient but typically not borne out of the actual
probabilistic properties of the residual errors that may show
changing bias, variance (heteroscedasticity), skewness, and
correlation structures under different hydrologic conditions
(and for different parameter sets). This is in part due to the
presence of model structural and forcing (input) data errors
whose contribution may, in general, be substantially larger
than the (calibration) data measurement error. These errors
do not necessarily have any inherent probabilistic properties
that can be exploited in the construction of an explicit like-
lihood function. For linear systems it is known that ignoring
such errors will lead to bias in the estimates of parameter val-
ues. The strong and generally difficult to justify assumptions
about the nature of the errors have led Beven and coworkers
to advocate informal statistical approaches using the general-
ized likelihood uncertainty estimation (GLUE) methodology
(Beven and Binley, 1992; Beven, 1993, 2006, 2009; Beven
and Freer, 2001; Beven et al., 2008).

The origins of the GLUE method lie in trying to deal with
uncertainty estimation problems for which simple explicit
(theoretical) likelihood assumptions do not seem appropri-
ate. The GLUE methodology rejects the traditional statistical
basis for the likelihood function in favor of finding a set of
representations (model inputs, model structures, model pa-
rameter sets, model errors) that are behavioral in the sense
of being acceptably consistent with the (non-error-free) ob-
servations. An informal likelihood measure is used to avoid
over conditioning and exclude parts of the model (parame-
ter) space that might provide acceptable fits to the data and
be useful in prediction. Since its introduction in 1992, GLUE
has found widespread application for uncertainty assessment
in many fields of study, including modeling of the rainfall–
runoff transformation (Beven and Binley, 1992; Freer et
al., 1996; Lamb et al., 1998), soil erosion (Brazier et al.,
2001), tracer dispersion in a river reach (Hankin et al., 2001),
groundwater and well capture zone delineation (Feyen et al.,
2001; Jensen, 2003), unsaturated zone (Mertens et al., 2004),
flood inundation (Romanowicz et al., 1996; Aronica et al.,
2002), land-surface–atmosphere interactions (Franks et al.,
1997), soil freezing and thawing (Hanson and Lundin, 2006),
crop yields and soil organic carbon (Wang et al., 2005), and
ground radar-rainfall estimation (Tadesse and Anagnostou,
2005). Applications of GLUE are also found in distributed
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hydrologic modeling (McMichael et al., 2006; Muleta and
Nicklow, 2005).

In recent years, a strong debate has emerged in the hydro-
logic community between proponents that adhere strongly
to the underlying philosophy of GLUE and believe that the
method is a useful working methodology for assessing pa-
rameter and predictive uncertainty in nonideal cases, and re-
searchers and practitioners that strongly oppose incorrect us-
age of statistics in favor of coherent probabilistic approaches
(Gupta et al., 1998; Beven and Young, 2003; Gupta et al.,
2003; Christensen, 2004; Montanari, 2005; Mantovan and
Todini, 2006; Stedinger et al., 2008; Beven et al., 2008;
Beven, 2009; Vrugt et al., 2008b, c). This paper is a follow-
up of our earlier work (Vrugt and Sadegh, 2013) and demon-
strates the similarity of likelihood-free inference used in pop-
ulation and evolutionary genetics (Pritchard et al., 1999;
Beaumont et al., 2002) and informal statistical approaches
such as GLUE. Likelihood-free inference was introduced in
the statistical literature about three decades ago (Diggle and
Gratton, 1984) for cases where the likelihood is intractable,
too expensive to be evaluated, or an explicit formulation is
not available. This method is also referred to as approximate
Bayesian computation (ABC) (Marjoram et al., 2003; Sis-
son et al., 2007; Del Moral et al., 2008; Joyce and Marjo-
ram, 2008; Grelaud et et al., 2009; Ratmann et al., 2009) and
widens the class of models for which statistical inference can
be performed. This paper follows a different line of reasoning
and approach thanNott et al.(2012) who demonstrated that
GLUE corresponds to a certain approximate Bayesian pro-
cedure even when the "generalized likelihood" is not a true
likelihood.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly summarizes the Bayesian approach to model
parameter and predictive uncertainty estimation, with partic-
ular emphasis on the choice of the likelihood function used to
summarize the probabilistic properties of the error residuals.
In Sect. 3 we subsequently introduce likelihood-free compu-
tation and demonstrate the main elements of the ABC proce-
dure by application to a simple Nash cascade series of three
linear reservoirs. This is followed by Sect. 4 in which the
conceptual and statistical equivalence of ABC and the lim-
its of acceptability approach of GLUE is demonstrated. Sec-
tion 5 then proceeds with a comparison between GLUE and
ABC using the Sacramento soil moisture accounting (SAC-
SMA) model (Burnash et al., 1973) and hmodel (Schoups
and Vrugt, 2010a), and discharge data form two contrasting
watersheds in the US. Finally, in Sect. 6 we summarize our
results and discuss the main findings.

2 Bayesian Inference

Bayes theorem is a simple rule for how to update the prior
probability of a certain hypothesis when new, relevant infor-
mation (data) becomes available. The term “Bayesian” refers

to the 18th century mathematician and minister, Reverend
Thomas Bayes (1701–1761), who studied how to compute a
distribution for the probability parameter of a binomial distri-
bution. If we conveniently assume that the model parameters
are the only source of uncertainty, we can write Bayes’ rule
as follows:

p(θ |Ỹ)=
p(θ)p(Ỹ|θ)

p(Ỹ)
, (3)

wherep(θ) (p(θ |Ỹ)) signifies the prior (posterior) param-
eter distribution,L(θ |Ỹ)≡ p(Ỹ|θ) denotes the likelihood
function, andp(Ỹ) represents the evidence (or normalization
constant).

A key task is now to summarize the posterior distribution,
p(θ |Ỹ), for example, by the mean, the covariance or per-
centiles of individual model parameters. When this task can-
not be carried out by analytical means or analytical approx-
imation, iterative methods are needed to generate a sample
from the posterior distribution. The desired summary is then
obtained from this sample. Knowledge of the normalization
constant,p(Ỹ), is not required for sampling of the parame-
ters as all our statistical inferences can be made from the un-
normalized density. Explicit knowledge ofp(Ỹ) is however
desired for Bayesian model selection and averaging.

Epistemic uncertainty (model inadequacy due to a lack of
knowledge) and forcing data errors can, in principle, be sum-
marized using hyper-parameters (latent variables) and their
distribution derived from Bayesian inference. Yet, practical
experience suggests that it is very difficult, if not impos-
sible, to disentangle the effects of individual error sources
particularly if a single data type,̃Y, constitutes the only
basis for model evaluation. In our previous paper (Vrugt
and Sadegh, 2013) we have demonstrated the ability of
likelihood-free inference methods to significantly enhance
the chances of detecting model structural deficiencies. This
approach marks progress towards improving our perceptual-
conceptual-theoretical view(s) of the world, expressed as
model structural hypotheses (assumptions and conjectures).

The scope of the present paper is fundamentally differ-
ent than that of our previous work published inVrugt and
Sadegh(2013). We show herein that ABC has many ele-
ments in common with the limits of acceptability approach of
GLUE, but benefits from a much better statistical underpin-
ning. To be consistent with GLUE, we map the input-output
uncertainty on the model parameters. Under ideal conditions
with an adequate model and perfect forcing data, the error
residuals follow a zero-mean Gaussian distribution:

L(θ |Ỹ, ũ, x̃0)=

n∏
t=1

1√
2πσ̂ 2

Ỹ

exp

[
−

1

2
σ̂−2

Ỹ

(
ỹt − yt (θ , ũ, x̃0)

)2]
, (4)

andθ should converge toθ∗ whereσ̂
Ỹ

is an estimate of the
standard deviation of the measurement error. The value of
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σ̂
Ỹ

can be specified a priori based on knowledge of the mea-
surements errors, or alternatively its value can be inferred
simultaneously with the values ofθ (Vrugt et al., 2008b;
Bikowski et al., 2012; Laloy and Vrugt, 2012). It is worth
noting that the data often come from only a single experi-
ment. So while it is possible to quantify numerical errors,
such as those due to discretization (seeKaipio et al., 2004;
Nissinen et al., 2009), there is no opportunity to control the
boundary conditions of (large-scale) natural systems to ob-
tain data from additional experiments in which some con-
trollable inputs have been varied.

The likelihood function,L(·), in Eq. (4) is useful for sim-
ple regression problems, but the assumption of independent
identically distributed Gaussian error residuals cannot be
justified in environmental modeling. The presence of input
data and model structural errors introduces complex error
residual distributions whose probabilistic properties are dif-
ficult to describe accurately with classical likelihood func-
tions. The choice of an adequate likelihood function,L(θ |Ỹ),
has therefore been the subject of considerable debate in
the hydrologic and statistical literature. In response to this,
Schoups and Vrugt(2010a) have introduced a generalized
likelihood function that better extends the applicability of
commonly likelihood functions to situations where residual
errors are correlated, heteroscedastic, and non-Gaussian with
varying degrees of kurtosis and skewness. Application to
daily rainfall–runoff data from a dry and humid basin showed
that (1) residual errors are much better described by a het-
eroscedastic, first-order, auto-correlated error model with a
Laplacian distribution function characterized by heavier tails
than a Gaussian distribution; and (2) compared to a standard
least-squares approach, proper representation of the statisti-
cal distribution of residual errors yields tighter predictive un-
certainty bands and different parameter uncertainty estimates
that are less sensitive to the particular time period used for
inference, (3) multiplicative bias factors improve the predic-
tion of peak flow, and (4) near zero-flows are better described
with a skewed error distribution.

The generalized likelihood function improves the statisti-
cal description of the error residuals, yet it does not separate
out the effect of individual error sources. Another, from the
viewpoint of this paper, less important deficiency is that the
use of a single performance metric,L, no matter how care-
fully chosen, is inadequate to extract all information from the
available calibration data. The use of such “insufficient statis-
tic” promotes equifinality, making it unnecessarily difficult to
find the preferred parameter values. This is not desirable and
explains why calibration of highly-parameterized models is
often found to be very time consuming and difficult.

3 Approximate Bayesian computation

Whereas traditional Bayesian approaches require us to spec-
ify an explicit likelihood function,L(θ |Ỹ), ABC approaches

avoid explicit evaluation of the likelihood function in favor
of (a set of) summary variables that better extract the in-
formation from the available data. The premise behind ABC
is thatθ

′

should be a sample from the posterior distribution
as long as the distance between the observed and simulated
data, hereafter referred to asρ

(
Ỹ,Y(θ

′

)
)
, is less than some

small value,ε. For sufficiently complex models and large
data sets the probability of happening upon a simulation run
that yields precisely the same data set as the one observed
will be very small, often unacceptably so. So rather than con-
sidering the data,̃Y, itself we consider a summary statistic of
the data,S(Ỹ), and use a distance function (Marjoram et al.,
2003; Sisson et al., 2007)

ρ
(
S(Ỹ),S(Y(θ

′

))
)
≤ ε (5)

to decide whether to accept the parameter values,θ
′

, or not.
A pseudo-code of the generic ABC approach is given below.

Algorithm 1 Rejection sampler (ABC-REJ)

for i = 1, . . . ,N do
repeat

generateθ
′

from the prior distribution,p(θ)

simulateY from the model,Y←H(θ
′

|·)

until ρ
(
S(Ỹ),S(Y(θ

′

))
)
≤ ε

setθ i = θ
′

end for

In words, the ABC algorithm proceeds as follows. First we
sample a candidate point,θ

′

, from some prior distribution,
p(θ). We then use this proposal to simulate the output of
the model,Y←H(θ

′

|·), and use thisn-vector to calcu-
late one or multiple summary metrics. A distance function,
ρ
(
S(Ỹ),S(Y(θ

′

))
)
, is then used to decide whether to accept

θ
′

or not. If this distance function is smaller than some prede-
fined tolerance value,ε, then the simulation is close enough
to the observations that the candidate point,θ

′

, has some
nonzero probability of being in the approximate posterior

distribution,p̂
(
θ |ρ

(
S(Ỹ),S(Y)

)
≤ ε

)
. This algorithm con-

verges to the true posteriorp(θ |Ỹ) when ε→ 0, provided
that the summary statistic(s),S(·), is (are) near sufficient
(Pritchard et al., 1999; Beaumont et al., 2002; Ratmann et
al., 2009; Turner and van Zandt, 2012).

The choice of summary metrics is obviously an important
consideration in the application of ABC. These criteria (sig-
natures) should be chosen so that the loss of information from
the original data is minimized. Information theory can help
to determine such (set of) sufficient statistic(s) (Barnes et al.,
2011), but this is beyond the scope of the present study (as
will soon become evident) and will therefore be a main focus
in future publications.

Another issue that deserves careful attention is that ABC
can only be used with a stochastic model operator. Other-
wise, the posterior parameter distribution will continue to
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Fig. 2. Synthetic discharge time series (blue line) simulated with
the Nash cascade model, and the corrupted observations (red points)
used in the GLUE and ABC analysis.

shrink in the limit of ε going to zero and eventually con-
verge to a Dirac delta function (single point) if the model
is sufficiently adequate. In theory, we should therefore cor-
rupt the output of the deterministic model,Y←H(θ |·), with
a random (measurement) error, but this is deemed unneces-
sary within the present context. We will revisit this important
issue in the penultimate paragraph of this paper. The ABC
findings presented in Tables3–6 and Figs.3–14 thus pertain
to deterministic model output only.

To illustrate the ABC methodology, we consider a Nash
cascade instantaneous unit hydrograph. This model routes
inflow (rainfall) through a series of linear reservoirs that all
have the same recession coefficient. Mathematically, this cas-
cade ofm linear reservoirs with recession coefficientr can be
written as follows (Nash, 1960):

ht (r,m)=
1

r0(m)

(
t

r

)(m−1)

exp

(
−

t

r

)
, (6)

wheret (days) denotes time,0(·) signifies the gamma func-
tion, andht (·) is the modeled response at timet . A 365-day
period with synthetic daily streamflow data (in m3 s−1) was
generated by driving the Nash cascade model of Eq. (6) with
an artificial precipitation record. We assumem= 3 reservoirs
and a recession constant ofr = 2 days. This artificial data set
is subsequently perturbed with a heteroscedastic error (non-
constant variance) with standard deviation equal to 20 % of
the original simulated discharge values. Figure2 plots the
original simulated discharge time series (blue line) and the
corrupted observations (red circles) used in the ABC analysis
to derive the posterior distribution of the recession constant.

We are now left with a selection of the summary statistic,
S(·) to decide whether a candidate point (model simulation)
is behavioral or not. For illustrative purposes we start with
the mean of the actual data,

ρ
(
S(Ỹ),S(Y(θ))

)
=
∣∣mean(Ỹ)−mean(Y(θ))

∣∣, (7)

to estimate the posterior distribution of the recession con-
straint. This metric is rather weak and cannot be considered
sufficient, but for now it helps to illustrate the main elements
of the ABC methodology.
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Fig. 3. Posterior distribution of the recession parameter derived
from (A) ABC using the mean of the data as summary metric,
(B) DREAM using a heteroscedastic measurement error, and(C)
ABC using the mean and standard deviation of the data as summary
statistics. The true parameter value is indicated with the red symbol.

A uniform prior with r ∈ [0,4] was used in all our cal-
culations. To increase computational efficiency, we used an
improved variant of the ABC population Monte Carlo (PMC)
scheme ofTurner and van Zandt(2012), the details of which
appear in Appendix A. In short, the PMC sampler starts
out as ABC-REJ during the first iteration,j = 1, but us-
ing a much larger initial value forε. During each succes-
sive next step,j = {2, . . . ,J }, the value ofε is decreased and
the proposal distribution,qj (θ

j−1
k , ·)=Nd(θ

j−1
k ,

∑j
)(j>1)

adapted using
∑j
= Cov(θ j−1

1 , . . . ,θ
j−1
N ) with θk drawn

from a multinomial distribution,F(θ
j−1
1:N |w

j−1
1:N ), wherewj−1

1:N

denote the posterior weights (w
j−1
l ≥ 0;

∑N
l=1w

j−1
l = 1).

Through a sequence of successive (multi)normal proposal
distributions, the prior sample is thus iteratively refined until
a sample of the posterior distribution is obtained. This ap-
proach, similar in spirit to the adaptive Metropolis sampler
of Haario et al.(1999, 2001), receives a much higher sam-
pling efficiency than ABC-REJ, particularly for cases where
the prior sampling distributionp(θ) is a poor approximation
of the actual posterior distribution.

The PMC sampler ofTurner and van Zandt(2012) as-
sumes that the sequence ofε values is specified by the user.
This does not necessarily lead to the most efficient search.
Our sampler therefore adaptively determines the next value
of εj ;j > 1 from the cumulative distribution function of the
ρ(·) values of theN most recent accepted samples. Details of
this procedure are given in Appendix B. For the present case
study, an initial value ofε = 1 is used, and this value is adap-
tively decreased until a value ofε = 0.05 is reached. Lower
values ofε provide similar posterior estimates, yet unneces-
sarily increase the computational burden of the ABC analysis
(Vrugt and Sadegh, 2013).

Figure3a presents a histogram of the posterior marginal
distribution ofr derived from the ABC-PMC analysis using
the mean observed flow as summary statistic. The red square
denotes the true parameter value used to create the synthetic
data. For completeness we also present in the middle panel
the results of DREAM (Vrugt et al., 2008a, 2009a) using the
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Fig. 4. 95 % streamflow uncertainty ranges (dark region) derived
from GLUE (top panel) and ABC (bottom panel). The red points
mark the actual discharge observations. The prediction uncertainty
ranges derived with both methods appear virtually identical and
nicely capture the desired percentage of streamflow observations.

likelihood function of Eq. (4) with a heteroscedastic mea-
surement error,̂σ

Ỹ
= 0.2Ỹ.

Perhaps not surprisingly, the ABC-derived posterior distri-
bution is poorly defined by calibration against the mean ob-
served discharge value. The behavioral recession constants
extend a larger portion of its prior distribution. This suggests
that the observed (synthetic) discharge data do not contain
information about the recession constant of the three reser-
voirs. This finding is perhaps not surprising. Many different
values of the recession constant,r, can be found with mean
simulated discharge value similar to that of the observed data
but with poor accuracy of the simulated streamflow dynam-
ics. Indeed, if a classical likelihood function is used (Fig.3b),
the recession constant is much better defined with maximum
a posteriori density equal tor = 2 and 95 % posterior param-
eter uncertainty ranges that vary between 1.95 and 2.05.

Fortunately, nothing prevents us from using more than one
summary statistic in the ABC analysis to measure different
and complementary parts of model behavior. To be meaning-
ful in practice, such statistics should preferably measure hy-
drologically relevant signatures of watershed behavior. Such
an approach was introduced in our previous work (Vrugt and
Sadegh, 2013), and for simplicity we now augment the first
metric (mean of the data) with another simple statistic (stan-
dard deviation of data)

ρ
(
S(Ỹ),S(Y(θ))

)
=max

(∣∣mean(Ỹ)−mean(Y(θ))
∣∣,∣∣std(Ỹ)− std(Y (θ))

∣∣) , (8)

to decide whether the model simulation can be considered
behavioral or not. The results of this analysis are shown in
Fig. 3c using a minimum value ofε = 0.05. The recession

constant appears much better defined, but the width of the
(marginal) posterior distribution is still considerably larger
than what can be expected from a classical likelihood func-
tion using MCMC simulation with DREAM (Fig.3b). This
simply conveys that our two summary metrics are jointly
insufficient and that, if so desired, more powerful metrics
should be used.

The ABC methodology allows the use of a wide arsenal
of summary metrics and distance functions to judge the dis-
tance between the model simulation and observations. Com-
mon examples in genetics include the Canberra, Euclidean,
and Manhattan distance. Those are readily applied in hydrol-
ogy as well, including summary statistics such as the Nash–
Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), mean
square error (MSE), and others listed in Table 1 ofGupta
et al.(1998). Temporal disaggregation of the data and model
simulations would preserve the statistical moments ofỸ such
as the mean, median, standard deviation, kurtosis, and skew-
ness. The use of flow duration curves could be beneficial in
this regard as characteristic of the watersheds response to
rainfall (Vrugt and Sadegh, 2013).

4 Statistical equivalence of ABC and GLUE

Now that the basic principles of ABC have been discussed in
some detail using the simple one-parameter unit hydrograph
toy problem, it is not difficult to see the many similarities of
GLUE and ABC:

1. The distance function specified in Eq. (5) has many el-
ements in common with the informal threshold used in
the classical GLUE approach to differentiate between
behavioral and nonbehavioral samples. This is perhaps
more obvious if we use the following notation

ρ
(
S(Ỹ),S(Y(θ))

)
=

n∑
t=1

I
(
|ỹt − yt (θ)| ≤ δt

)
, (9)

where I(A) is a simple indicator function that is “1” if
A is true and “0” otherwise, andδt ; t = {1, . . . ,n} con-
stitutes the effective observation error that takes into
account multiple sources of error (Beven, 2006). This
value is defined a priori by the user. The ABC approach
can thus be made mathematically equivalent to the lim-
its of acceptability approach of GLUE if each observa-
tion is used as summary statistic.

2. The ABC-REJ sampler is similar to the Latin hyper-
cube sampling strategy used in GLUE to find behav-
ioral solutions. Both methods use a fixed proposal dis-
tribution to sample from the prior parameter distribu-
tion. If the corresponding simulation falls within the
bounds specified by the effective observation error,
then the parameter combination will be classified as
behavioral; otherwise, the proposal will be rejected.
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Sampling continues untilN behavioral solutions are
found.

Following the first proposition, a solution is deemed behav-
ioral with ABC if its simulated discharge time series falls
within the interval[ỹt − δt , ỹt + δt ] for t = {1, . . . ,n}. This
is similar to the limits of acceptability approach of GLUE
if a simple discrete (0/1) membership function is used. For
the synthetic toy example used herein, we define the effec-
tive observation error to beδ = α× σ̂ỹ with α = 2. This is
equivalent toδt = 0.4ỹt .

The goal of the ABC analysis now becomes finding all
those parameter combinations that consistently fall within
the effective observation error of the discharge data and
hence receive a perfect score of Eq. (9) equal ton. This
constitutes a maximization problem, differing from a typical
implementation of ABC where the distance to the summary
statistics and value ofε is being minimized. In our numerical
implementation with the PMC sampler, we therefore adapt
Eq. (9) and calculate

ρ
(
S(Ỹ),S(Y(θ))

)
=

1

n

(
n−

n∑
t=1

I
(
|ỹt − yt (θ)| ≤ δt

))
(10)

to decide whether a simulation is behavioral or not. For a
perfect simulation,ρ

(
·
)

will be zero. However, in most prac-
tical applications it is not possible to find a simulation that
satisfiesε = 0. For instance, for the present Nash cascade
toy example withα = 2 and thusδt = 0.4ỹt , t = {1, . . . ,n},
a minimum value ofρ

(
·
)

of about 0.05 is to be expected.
This follows directly from statistical theory (about 95 % of
the observations are included in the interval of 2 times the
standard deviation).

The adaptive updating strategy ofε in PMC not only
guarantees a more efficient search strategy than ABC-REJ
(GLUE), but also automatically determines the maximum at-
tainable coverage of the discharge observations within the
limits of acceptability. In the first iteration, we setε = 0.75
and thus define a behavioral solution as one that contains at
least 25 % of the observed discharge data within the inter-
val, [yt − δt ,yt + δt ](t={1,...,n}). During each successive next
iteration, the value ofε is sequentially reduced and the PMC
sampler terminates when the difference between two subse-
quentε values is less than 0.02, or in mathematical nota-
tion εj−εj−1 < 0.02. In all our simulations presented herein
we request PMC to createN = 1000 behavioral solutions at
each differentε value (iteration). We report our results for
ε ≤ 0.10.

Figure4A presents the results of the ABC-PMC analysis
and plots the 95 % streamflow simulation uncertainty ranges
(dark grey region) using the ABC-PMC sampler. This re-
sult is derived from theN = 1000 posterior solutions using
the 2.5 and 97.5 percentile of the simulated discharge val-
ues. The artificial discharge observations are indicated with
red circles. The simulations nicely track the observed data

with uncertainty intervals that appear relatively narrow and
encompass about 90 % of the data. The upper panel plots the
results for GLUE using the same limits of acceptability. Latin
hypercube sampling was used to create 1000 behavioral solu-
tions atε = 0.10 using an algorithm virtually identical to that
of ABC-REJ. Perhaps not surprising, the results are identical
to those presented for ABC. Although the numerical results
are identical, the computational efficiency of both methods
is not. The ABC-PMC sampler exhibits an acceptance rate
of about 53.5 % whereas for GLUE (and hence ABC-REJ)
this is about 17.0 %.

5 Case studies: hydrologic modeling

Now that the ABC method has been discussed in some detail
and the theoretical connection of this approach with GLUE
has been demonstrated, we proceed with numerical simula-
tion using five years of daily streamflow data from the French
Broad river basin at Asheville, North Carolina (1 Januar 1962
to 30 December 1966) and the Leaf River (1 October 1952
to 30 September 1957) north of Collins, Mississippi. These
watersheds have been studied extensively in the literature
and details of the data can be found in related publications.
Two lumped conceptual hydrologic models are used to de-
scribe the rainfall–runoff transformation. This includes the
7-parameter hmodel described in detail inSchoups and Vrugt
(2010a) and the 13-parameter SAC-SMA model (Burnash et
al., 1973). Inputs to these models include mean areal precip-
itation (MAP) and potential evapotranspiration (PET) while
the outputs are estimated evapotranspiration and channel in-
flow. Numerical, conceptual, and computational details of
both models can be found in the cited publications, and so
will not be repeated herein. Tables1 and2 summarize the
parameters of both models and their upper and lower bound
values.

Implementation of the limits of acceptability approach re-
quires knowledge of the effective observation error. This er-
ror varies dynamically with flow level and constitutes the
combined effect of input data, model structural and calibra-
tion data measurement error. In practice, the user defines the
limits of acceptability for each individual observation, but
for convenience we follow a different approach and set the
effective observation error as a multiple of the actual dis-
charge measurement error. We followVrugt et al.(2005) and
use consecutive differences of the calibration observations to
calculate the measurement data error (e.g., 7 in Fig. 1):

σ̂
Ỹ
=

√(
2l

l

)−1

(1l ỹt )2, (11)

where1l denotes the difference operator appliedl subse-
quent times (Rice, 1984; Hall et al., 1990; Seifert et al., 1993;
Dette et al., 1998). This estimator was introduced inVrugt et
al. (2005) and was shown to work well for daily and hourly
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Table 1.Prior uncertainty ranges of hmodel parameters.

Parameter Symbol Minimum Maximum Units

Maximum interception Imax 0 10 mm
Soil water storage capacity Smax 10 1000 mm
Maximum percolation rate Qmax 0 100 mm d−1

Evaporation parameter αE 0 100 –
Runoff parameter αF −10 10 –
Time constant, fast reservoir KF 0 10 days
Time constant, slow reservoir KS 0 150 days

Table 2.Description of the SAC-SMA model parameters and their (uniform) prior uncertainty ranges.

Parameter Symbol Minimum Maximum Units

Upper zone tension water maximum storage UZTWM 1.0 150.0 mm
Upper zone free water maximum storage UZFWM 1.0 150.0 mm
Lower zone tension water maximum storage LZTWM 1.0 500.0 mm
Lower zone free water primary maximum storage LZFPM 1.0 1000.0 mm
Lower zone free water supplemental maximum storage LZFSM 1.0 1000.0 mm
Additional impervious area ADIMP 0.0 0.40 –
Upper zone free water lateral depletion rate UZK 0.1 0.5 day−1

Lower zone primary free water depletion rate LZPK 0.0001 0.025 day−1

Lower zone supplemental free water depletion rate LZSK 0.01 0.25 day−1

Maximum percolation rate ZPERC 1.0 250.0 –
Exponent of the percolation equation REXP 1.0 5.0 –
Impervious fraction of the watershed area PCTIM 0.0 0.1 –
Fraction percolating from upper to lower zone free water storage PFREE 0.0 0.6 –

Table 3. Computational efficiency of GLUE and ABC for the
French Broad river basin data set: Acceptance rate (AR, %) and
total number of SAC-SMA and hmodel function evaluations (FE)
required to sampleN = 1000 behavioral solutions.

SAC-SMA hmodel

ABC GLUE ABC GLUE

AR, % 0.41 0.016 0.50 0.06
FE, – 242 004 6 110 640∗ 201 192 1 608 810∗

∗ Derived from linear scaling of FE needed to sample 300 (SAC-SMA) and 100
(hmodel) behavioral solutions.

discharge data. Heteroscedasticity is easily identified by ap-
plying the nonparametric estimator locally in the calibration
data time series. This provides ann-vector of measurement
errors, hereafter referred to asσ̂

Ỹ
= {σ̂ỹ1, . . . , σ̂ỹn

}. The lim-
its of acceptability in Eq. (9) are now defined to beδt =

α×σ̂ỹt
for t = {1, . . . ,n} usingα = 2. We now summarize the

results of GLUE and ABC for both models and watersheds.
Figure5 plots histograms of the behavioral solutions of an

illustrative set of five SAC-SMA model parameters for the
French Broad watershed. The PMC sampler terminated its
search withε ≤ 0.06, corresponding to a coverage of 94% of
the discharge data within the effective observation error. The
top panel presents the results for GLUE (limits of accept-
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Fig. 5. Posterior distribution of five randomly chosen SAC-SMA
model parameters derived from(A) GLUE and(B) ABC using his-
torical streamflow data from the French Broad river basin.

ability) and the bottom panel shows the corresponding coun-
terparts for ABC. To limit the computational burden, GLUE
was terminated after 300 behavioral solutions were found.
This is sufficient for comparative purposes. The marginal
distribution of the lower zone primary free water depletion
rate (LZPK) follows a normal distribution, whereas the his-
tograms of the other parameters deviate considerably from
normality and tend to assign the highest probability mass
at the lower (PCTIM, ADIMP and LZFSM) or upper bound
(LZFPM). The posterior parameter uncertainty ranges appear
rather large and essentially cover the entire prior distribution
defined previously in Table2. This uncertainty is perhaps
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Table 4.Statistics of the GLUE, ABC and DREAM (formal likelihood function) derived posterior parameter distribution for the calibration
and evaluation period of the French Broad river basin: root mean square error (RMSE) of the posterior mean SAC-SMA simulation and
coverage of the associated 95 % streamflow simulation uncertainty ranges.

ABC DREAM GLUE

Calibration Evaluation Calibration Evaluation Calibration Evaluation

RMSE, m3 s−1 5.44 4.76 4.79 4.85 5.33 4.63
Coverage, % 73.89 69.89 17.35 11.59 76.74 71.08

Table 5.Statistics of the GLUE, ABC and DREAM (formal likelihood function) derived posterior parameter distribution for the calibration
and evaluation period of the French Broad river basin: root mean square error (RMSE) of the posterior mean hmodel simulation and coverage
(%) of the associated 95 % streamflow simulation uncertainty ranges.

ABC DREAM GLUE

Calibration Evaluation Calibration Evaluation Calibration Evaluation

RMSE, m3 s−1 6.14 5.80 5.23 5.08 6.15 5.76
Coverage, % 67.38 61.86 7.33 10.58 68.14 60.86
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Fig. 6. SAC-SMA derived 95 % streamflow simulation uncertainty
ranges (grey region) of the calibration period of the French Broad
river basin using(A) GLUE and(B) ABC. The observed discharge
data are indicated with the solid red dots. We limit our display to
the first 365-days of the calibration data set to simplify graphical
interpretation. The simulation uncertainty ranges appear very simi-
lar and nicely cover the observed discharge data.

unrealistically large and much larger than what can be ex-
pected from an explicit likelihood function, but not surprising
given the size of the effective observation error used to de-
fine the limits of acceptability. What is most important, how-
ever, is the finding that the GLUE and ABC derived posterior
parameter distributions are essentially similar. This provides
further support for our claim that the limits of acceptability
approach of GLUE can be interpreted as a special case of
formal Bayes. We will further elaborate on this equivalence
in the final section of this paper.
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Fig. 7. Bivariate scatter plots of the behavioral (posterior) sam-
ples of three different (randomly selected) parameter pairs using
GLUE (top panels) and ABC (bottom panels):(A) LZSK-LZPK,
(B) PFREE-ADIMP, and(C) ZPERC-LZPK. The scatter plots de-
rived with both methods are in close agreement but demonstrate an
important difference in sampling density. The computational bud-
get of GLUE was limited to approximately 2 days, and within this
time frame the Latin hypercube sampling method located only 300
behavioral solutions.

Now that the posterior parameter uncertainty has been de-
fined, we focus our attention on the actual discharge simu-
lations. Figure6 presents the outcome of this analysis and
presents the 95 % streamflow uncertainty ranges (gray re-
gion) of the GLUE (top panel) and ABC (bottom panel) de-
rived posterior parameter distribution. The simulation uncer-
tainty ranges appear rather large but nicely cover approxi-
mately 74 % of the discharge observations. The simulation
results of GLUE and ABC are in strong agreement, which is
to be expected given the strong similarity of the behavioral
samples derived with both methods.
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Fig. 8. SAC-SMA derived 95 % streamflow simulation uncertainty
ranges (grey region) for a three-year portion of the evaluation period
of the French Broad river basin using the(A) GLUE and(B) ABC
derived posterior parameter distribution. The observed discharge
data are indicated with the solid red dots.

Although the numerical results of GLUE and ABC are
very similar, the PMC sampler requires only 1/30 (1/8) of the
simulations of GLUE to locateN = 1000 posterior solutions
for the SAC-SMA (hmodel) (see Table3). The advantage of
PMC is more and more apparent with increasing dimension-
ality of the parameter space. If the search space is relatively
low-dimensional (hmodel) and the space of behavioral so-
lutions relatively large in comparison to the prior parameter
space, both sampling methods will rapidly sampleN = 1000
behavioral solutions. If, on the contrary, the search space is
of higher dimensions (SAC-SMA), or the behavioral solu-
tion space is made up of a small portion of the prior parame-
ter space, Latin hypercube sampling (and ABC-REJ) will be
rather inefficient, needing many thousands of draws from the
prior distribution to find just a handful of good (behavioral)
solutions. The PMC sampler achieves a higher sampling effi-
ciency by iteratively reducing the value ofε during the search
and adaptively updating the scale and orientation of the pro-
posal distribution. Note that the PMC and Latin hypercube
sampling strategies used herein vary all parameters at a time,
and hence further efficiency improvements are to be expected
in high-dimensional parameter spaces with the usage of ge-
netic operators such as crossover and mutation.

To provide more insights into the sampled parameter space
of the French Broad river basin, please consider Fig.7, which
presents two-dimensional scatter plots of the posterior sam-
ples derived with GLUE (top panel) and ABC-PMC (bottom
panel) for three selected parameter pairs. The bivariate sam-
ple plots appear very similar and confirm our previous find-
ings in Fig.5 and demonstrate significant scatter with behav-
ioral samples that extend their entire uniform prior ranges.
But this does not necessarily mean that the posterior param-
eter space is badly defined. Instead, large portions of the (A)
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Fig. 9. Posterior distribution of five randomly selected hmodel
parameters derived from the French Broad calibration data set:
(A) Imax, (B) Qmax, (C) αE, (D) αF, and(E) KF.

LZSK-LZPK, (B) PFREE-ADIMP, and (C) ZPERC-LZPK
subspaces are virtually empty and thus deemed nonbehav-
ioral. This suggests at least some level of correlation between
the posterior parameter samples. The difference in sampling
density between both panels is simply due to an insufficient
computational budget for GLUE to createN = 1000 behav-
ioral solutions. GLUE was terminated after 300 posterior
samples were found.

We now proceed with out-of-sample prediction and plot
in Fig. 8 the streamflow uncertainty ranges (gray region) of
the SAC-SMA model for a three-year portion of the eval-
uation data set of the French Broad watershed. This period
commences immediately after the last day of the calibration
data set, with the initial state att = 0 having been derived
from the calibration ensemble. The top panel presents the re-
sults of GLUE and the bottom panel plots the corresponding
results of ABC. Perhaps not surprisingly, both methods ex-
hibit similar results and provide a discharge ensemble that
envelops about 70 % of the observed discharge data (red cir-
cles). The strong similarity between the simulation results of
the calibration and evaluation sample inspires confidence in
the ability of the behavioral parameter set to accurately de-
scribe the rainfall–runoff transformation of the French Broad
river basin.

Table 4 summarizes the results of GLUE and ABC for
the SAC-SMA model and French Broad watershed, present-
ing the root mean squared error (RMSE) of the posterior
mean discharge simulation and associated coverage of the
95 % prediction intervals for the calibration and evaluation
period. For completeness, we also list the results of the SAC-
SMA model with a formal likelihood function, Eq. (4), us-
ing the heteroscedastic measurement errorσ̂

Ỹ
derived from

the nonparametric difference operator. The listed statistics
summarize our main findings thus far. The results of GLUE
and ABC are virtually identical and show a consistent per-
formance during the calibration and evaluation period. The
95 % uncertainty ranges derived with both methods encom-
pass about 70 % of the discharge observations. This coverage
of the parameter uncertainty is significantly larger than the
approximately 12–17 % derived from a classical likelihood
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Fig. 10.Bivariate scatter plots of the behavioral (posterior) samples
of three different (randomly selected) hmodel parameter pairs us-
ing GLUE (top panels) and ABC (bottom panels):(A) αF−Qmax,
(B) KF−KS, and(C) Smax−KF. The scatter plots derived with
both methods are in close agreement but demonstrate an important
difference in sampling density. The computational budget of GLUE
was limited to about 3 days, which has resulted in 100 behavioral
solutions.

function. This finding has important practical utility, for in-
stance within the context of flood forecasting. The behavioral
parameter distribution derived with ABC and GLUE pro-
vides a reasonable initial estimate of the total out-of-sample
prediction uncertainty. On the contrary, the posterior param-
eter uncertainty derived from a classical likelihood function
only envelops a small percentage of the streamflow obser-
vations. It is worth noting that this coverage will be inflated
if other sources of uncertainty are considered in the formal
Bayesian analysis. Nevertheless, this requires a better under-
standing of precipitation and model structural errors.

Our main focus thus far has been on the SAC-SMA model,
without recourse to the simulation results of the hmodel. Fig-
ure 9 shows posterior histograms of five of the hmodel pa-
rameters derived with GLUE (top panel) and ABC (bottom
panel) using the French Broad calibration data set. The PMC
sampler determined a maximum possible coverage of 95 %
of the discharge data within the uniform hypercube defined
by the effective observation error. The results in Figs.9–11
thus pertain to this coverage level. The marginal posterior
parameter distributions derived with GLUE and ABC again
demonstrate a strong agreement. Most of the hmodel param-
eters, with the exception ofImax andαE , are reasonably well
defined by calibration against the observed discharge data.
The parameterQmax is particularly well resolved and favors
values close to zero – something that is physically rather un-
realistic and likely due to errors in the model formulation and
precipitation data.

Figure 10 presents two-dimensional scatter plots of the
posterior samples of three selected parameter pairs. The top
panel corresponds to GLUE and the bottom panel illustrates
the same results for ABC. Each plus symbol depicts a behav-
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Fig. 11. Hmodel derived 95 % streamflow simulation uncertainty
ranges (grey region) of the calibration period of the French Broad
river basin using(A) GLUE and(B) ABC. The observed discharge
data are indicated with the solid red dots. We limit our display to
the first 365 days of the calibration data set to facilitate graphical in-
terpretation. The uncertainty ranges appear very similar and nicely
cover the observed discharge data.

ioral solution. Because of sampling inefficiency, the GLUE
calculations were terminated after 100 behavioral samples
were identified. This explains the apparent differences in
sampling density. Nevertheless, the bivariate plots of the pos-
terior samples derived with both methods are in strong agree-
ment with each other, with behavioral solutions that occupy
only a relatively small part of the prior parameter space. This
is particularly true for theαF−Qmax subspace. The sampled
parameter pairs appear rather uncorrelated, which suggests
that the different hmodel parameters each control a differ-
ent part of the simulated watershed response. This simpli-
fies posterior inference, favoring a hierarchical sampling ap-
proach in which parameters are estimated sequentially.

We now demonstrate how the hmodel parameter uncer-
tainty translates into streamflow simulation uncertainty. We
separately depict the results for the calibration (Fig.11) and
evaluation (Fig.12) period. As expected, the simulation re-
sults derived with GLUE and ABC are in close agreement.
The 95 % simulation uncertainty ranges encompass about
67 % of the calibration data observations (see Table5). This
is much higher than the 7 % coverage derived with a classical
likelihood function using MCMC simulation with DREAM.
Yet between days 205 and 270 the posterior ensemble sys-
tematically over predicts the actual discharge observations.
This positive bias is likely caused by an error in the measured
rainfall data around day 205. This rainfall error accumulates
in the simulated state variables and continues to persist un-
til the next significant rainfall event around day 270. Rain-
fall data correction would seem appropriate (Kavetski et al.,
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Table 6.Statistics of the GLUE, ABC and DREAM (formal likelihood function) derived posterior parameter distribution for the calibration
and evaluation period of the Leaf River watershed: root mean square error (RMSE) of the posterior mean SAC-SMA simulation and coverage
(%) of the associated 95 % streamflow simulation uncertainty ranges.

ABC DREAM GLUE

Calibration Evaluation Calibration Evaluation Calibration Evaluation

RMSE, m3 s−1 20.95 20.76 16.39 19.23 20.73 20.62
Coverage, % 80.02 64.78 22.11 21.90 82.54 68.25
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Fig. 12. Hmodel derived 95 % streamflow simulation uncertainty
ranges (grey region) for a three-year portion of the evaluation pe-
riod of the French Broad river basin using the(A) GLUE and(B)
ABC derived posterior parameter distribution. The observed dis-
charge data are indicated with the solid red dots.

2006a, b; Vrugt et al., 2008a; Beven, 2009) but is beyond the
scope of the present paper.

The evaluation data period again highlights the strong op-
erational similarity of GLUE and ABC, but the average width
of the 95 % streamflow simulation uncertainty ranges ap-
pears somewhat smaller. Indeed, the coverage has reduced
to approximately 61 %. Note that the posterior ensemble sys-
tematically underestimates the peak flow events. This can be
the effect of an increased rainfall intensity during the eval-
uation period or some sort of epistemic error (Beven, 2006,
2009; Beven et al., 2011). For practical application it would
seem most productive to extend the length of the calibration
data period to include a number of larger storm events. This
would certainly improve the fitting of the peak flow events
but not affect the main conclusions of this paper.

We now turn our attention on the Leaf River data set and
present in Fig.13 histograms of the marginal posterior dis-
tributions of a representative group of five SAC-SMA pa-
rameters. The PMC sampler determined a maximum cov-
erage of about 56 % of the discharge data within the effec-
tive observation error used herein. The top panel displays
the results for GLUE for this coverage level, whereas the
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Fig. 13. Posterior distribution of five randomly chosen SAC-SMA
model parameters derived from GLUE (top panels), and ABC (bot-
tom panels) using historical streamflow data from the Leaf River
watershed in Mississippi.

bottom panel shows the corresponding counterparts derived
with ABC. The histograms derived with both methods are
again strikingly similar, yet the PMC sampler used in ABC is
about 30 times more efficient (not tabulated) in sampling the
N = 1000 behavioral solutions. Note that SAC-SMA param-
eters are not particularly well defined by calibration against
the limits of acceptability. The marginal posterior uncertainty
ranges are rather large, with the exception of the parameter
LZPK, which tends to favor values close to zero.

Finally, Fig. 14 illustrates the performance of the GLUE
and ABC derived posterior parameter distributions for an
independent evaluation period. The GLUE (top panel) and
ABC (bottom panel) derived 95 % posterior streamflow un-
certainty ranges and again appear nearly equivalent (ex-
pected), containing about 65 % of the observed discharge val-
ues. This is somewhat smaller than the 80 % coverage ob-
tained during the calibration data period (not shown herein).

6 Discussion and conclusions

In the past two decades, the GLUE methodology ofBeven
and Binley(1992); Beven and Freer(2001); Beven(2006)
has found widespread application and use for model pa-
rameter and predictive uncertainty analysis. This method re-
jects the formal Bayesian paradigm in favor of finding a
set of of behavioral solutions that are acceptably close to
the non-error-free observations. This avoids over condition-
ing of the posterior parameter space in nonideal cases with
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Fig. 14.SAC-SMA derived 95 % streamflow simulation uncertainty
ranges (grey region) for a three-year portion of the evaluation period
of the Leaf River watershed using the(A) GLUE and(B) ABC de-
rived posterior parameter distribution. The observed discharge data
are indicated with the solid red dots.

nontraditional error residual distributions. Indeed, Tables4–
6 demonstrate that the GLUE derived 95 % simulation un-
certainty ranges encompass a much higher percentage of the
discharge observations than the posterior parameter predic-
tive uncertainty intervals derived from a classical likelihood
function. Formal likelihood functions that do not adequately
describe the probabilistic properties of the error residuals
tend to overestimate the actual information content of the
data, providing estimates of the posterior parameter uncer-
tainty that are overly optimistic.

Many have criticized the GLUE methodology for being
subjective and lacking an appropriate mathematical under-
pinning. To help bridge the gap between informal and for-
mal Bayesian approaches, this paper introduced likelihood-
free inference to hydrologic modeling and uncertainty anal-
ysis. This approach was introduced in the statistical litera-
ture about three decades ago (Diggle and Gratton, 1984) for
cases when an explicit likelihood (objective) function can-
not be justified. Such approaches, also referred to as ABC,
use one or multiple (sufficient) statistics to estimate the pos-
terior parameter distribution. The premise behind ABC is
that θ

′

should be a sample from the posterior distribution
as long as the distance between the observed and simulated
summary statistics is smaller than some small value,ε. An
example of this was given in Sect. 3 by calibration of the
Nash cascade model against the mean and standard devia-
tion of the discharge data. In the limit ofε going to zero,
the behavioral solution space should converge to the actual
posterior distribution, pending the assumption that the cho-
sen summary statistic(s) is (are) near sufficient (Pritchard et
al., 1999; Vrugt and Sadegh, 2013). But this was certainly
not the case for the Nash cascade example. The mean and
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Fig. 15. Illustration of the effect of measurement data uncertainty
on the ABC-derived posterior parameter and streamflow uncer-
tainty for a representative 250-day portion of the French Broad cal-
ibration data set:(A) 95 % simulation uncertainty assuming a de-
terministic,Y←H(θ |·), and(D) stochastic model operator,Y←
H(θ |·)+N(0, σ̂

Ỹ
) with discharge measurement error derived from

the nonparametric estimator in Eq. (11). The observed discharge
data are indicated with solid red dots. The histograms at the right-
hand side of each individual panel plot the corresponding marginal
posterior distributions of the SAC-SMA model parameters ADIMP
and PCTIM.

standard deviation are rather weak summary metrics, which
explains why the marginal posterior distribution of the reces-
sion constant was too wide (see Fig.3c) and did not converge
to its expected distribution (Fig.3b). Thus, there is a clear
need for meaningful summary statistics with a compelling
diagnostic power. Examples include the annual runoff and
baseflow coefficient and the flow duration curve as used in
Vrugt and Sadegh(2013). Note that the ABC approach dif-
fers from multiple objective calibration methods in that the
distance between the observed and simulated summary met-
rics is jointly minimized.

Numerical simulations presented in Figs.4–14have shown
that, if each observation is treated as a summary variable,
then the ABC approach obtains very similar results to the
limits of acceptability approach of GLUE. A similar conclu-
sion was drawn in previous work byNott et al. (2012) but
following a different line of reasoning and within the con-
text of the more traditional GLUE methodology presented
by Beven and Binley(1992). One issue deserves special at-
tention, which is that within the limit of acceptability frame-
work, the value ofε needs to be taken much larger than
what is deemed statistically adequate. Standard applications
of likelihood free inference define a solution to be behavioral
if the chosen summary statistics are within a small distance of
their observed counterparts. Yet for hydrologic systems with
many calibration observations, the probability of happening
upon a simulation run that yields exactly the same data set as
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the one observed will be extremely small. The effective ob-
servation error remedies this problem, but the magnitude of
this value is typically much larger than the theoretical value
of ε to guarantee converge to the “true” posterior param-
eter distribution. Thus, although the limits of acceptability
approach of GLUE is a special variant of the more generic
ABC approach, one should be careful with interpretation of
the posterior parameter distribution.

The results in Tables4–6 demonstrate that the RMSE
of the posterior mean ABC (GLUE) simulation is substan-
tially larger than its counterpart derived with DREAM using
a formal likelihood function. This finding is not surprising.
The likelihood function used in DREAM is specifically de-
signed to minimize the squared distance between the model
simulation and corresponding data. This metric poses much
stronger constraints on the parameter values than the limits
of acceptability used in GLUE or ABC, and hence results in
a better compliance of the simulated and observed discharge
data. The performance of the posterior mean ABC simulation
can be enhanced if the limits of acceptabilityδ are tightened
and/or additional summary metrics are used during model
fitting. Ideally, the chosen summary statisticS(·) is sufficient
for θ and thus provides as much information for the param-
eters as the original data setỸ itself. However, if the exact
(perfect) likelihood function is unknown, it will be difficult
to determine a sufficient statistic. One could then use mul-
tiple different summary statistics that each capture different
aspects/signatures/patterns of the input-output response (Rat-
mann et al., 2009; Vrugt and Sadegh, 2013).

The findings presented thus far are derived by compar-
ing the SAC-SMA and hmodel simulated streamflow time
series with the observed data. This deterministic approach
does not generate a random sample at each time step, and
therefore violates a basic requirement of ABC. Neverthe-
less, the use of a deterministic model is adequate within
the current context because the limits of acceptability used
herein are substantially larger (four times) than the measure-
ment error of the streamflow data. To illustrate this, please
consider Fig.15 that plots the ABC-derived parameter and
95 % posterior simulation uncertainty ranges for the French
Broad river basin using deterministic (top panel) and stochas-
tic (bottom panel) SAC-SMA modeling. We limit our display
to a 250-day portion of the calibration data period and the
marginal posterior distribution of two selected SAC-SMA
model parameters (right-hand side). The stochastic simula-
tion is simply derived by adding a random measurement er-
ror to the daily modeled SAC-SMA discharge values. As ex-
pected, the posterior streamflow uncertainty ranges and pos-
terior histograms appear very similar. This concludes our nu-
merical simulations.

The ABC methodology opens an entire new field of re-
search with infinite scope for (amongst others) (a) inventing
new summary metrics that are self-sufficient and properly
rooted in hydrologic and information theory, (b) developing
methods and guidelines to interpret the outcome of the ABC

analysis and help aid in detection of model malfunctioning
(Vrugt and Sadegh, 2013), (c) exploring ways to determine
the temporal/spatial variability of individual summary met-
rics for stochastic (Bayesian) analysis, (d) new approaches
to diagnostic model selection using stochastic minimization
of the mutual information, (e) improving the computational
efficiency of ABC sampling (Sadegh and Vrugt, 2013), and
(f) practical applications. Challenges lie in the proper selec-
tion of summary metrics that properly extract the information
from the calibration data, how to deal with input data un-
certainty, and how to detect epistemic errors (lack of knowl-
edge). Our current research efforts are devoted to these dif-
ferent topics.

Appendix A

Suppose some measurement dataỸ = {ỹ1, . . . , ỹn} and a
model that predictsY←H(θ |·) with parameter valuesθ ∈
θ ∈ Rd . We define a prior distributionp(θ) and a vec-
tor with decreasing tolerance valuesε = {ε1, . . . ,εJ } so
thatεj+1 < εj ,∀j ∈ {2, . . . ,J }. The ABC population Monte
Carlo method pproceeds as follows (Turner and van Zandt,
2012).

Algorithm 2 ABC-PMC

At iterationj = 1,
for i = 1, . . . ,N do

while ρ(S(Ỹ),S(Y)) > ε1 do
Sampleθ

′

from the prior,θ
′

∼ p(θ)

Simulate dataY usingθ
′

, Y←H(θ
′

|·)

Calculateρ(S(Ỹ),S(Y(θ
′

)))

end while
Setθ1

i
← θ

′

Setw1
i
←

1
N

end for
Setσ2

1 ← 2Cov(θ1
1:N ),

At iterationj > 1,
for j = 2, . . . ,J do

for i = 1, . . . ,N do
while ρ

(
S(Ỹ),S(Y)

)
> εj do

Sampleθ
′

from the previous iteration,θ
′

∼ θ1:N,j−1

with probabilitywj−1
1:N

Perturbθ
′

by samplingθ
′′

∼N(θ
′

,σ2
j−1)

Simulate dataY usingθ
′′

, Y←H(θ
′′

|·)

Calculateρ
(
S(Ỹ),S(Y(θ

′′

))
)

end while
Setθj

i
← θ

′′

Setwj
i
←

p(θ
j
i )∑N

k=1w
j−1
k q(θ

j−1
k |θ

j
i ,σ2

j−1)

end for
Setσ2

j
← 2Cov(θj

1:N )

end for
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This concludes the pseudo-code of the population Monte
Carlo sampler.

Appendix B

The PMC sampler ofTurner and van Zandt(2012) assumes
that the sequence ofε values is specified by the user. Practical
experience suggests that a poor selection ofε = {ε1, . . . ,εJ }

can lead to very low acceptance rates or even premature con-
vergence ifε has been taken too small. We therefore imple-
ment an arguably more advanced strategy and let the sampler
adaptively select the values ofεj (j > 1).

This strategy is implemented as follows. The user defines
ε1. In practice, a large value will typically suffice. At the
end of the first iteration (just afterσ 2

1 has been calculated),
the algorithm computes the cumulative distribution function
(cdf) of theN acceptedρ

(
S(Ỹ),S(Y)

)
values. This function

ranges between 0 and 1 and describes the probability that a
random variableX ( in this caseρ

(
·
)

) will be found at a
value less than or equal tox. The value ofε2 is then taken
to be that value ofρ

(
·
)

at which the cdf is equal to 0.1. The
PMC sampler proceeds with the next iteration,j = 2, and
this recipe is continued during each successive next iteration
until εj reaches some lower default value defined by the user
(Sect. 3) or when the successive reduction inε has become
smaller than 0.02(εj − εj−1 < 0.02) (Sect. 4).

Numerical simulation has shown that this adaptive updat-
ing strategy ofε significantly enhances the search efficiency
of the PMC sampler. Moreover, this implementation does not
require the user to specifyε = {ε2, . . . ,εJ }, which is an im-
portant practical advantage.
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