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Modern dialects of Fortran enjoy wide use and good support
on high-performance computers as performance-oriented
programming languages. By providing the ability to express
nested data parallelism, modern Fortran dialects enable irreg-
ular computations to be incorporated into existing applica-
tions with minimal rewriting and without sacrificing perfor-
mance within the regular portions of the application. Since
performance of nested data-parallel computation is unpre-
dictable and often poor using current compilers, we inves-
tigate threadingand flattening, two source-to-source trans-
formation techniques that can improve performance and per-
formance stability. For experimental validation of these tech-
niques, we explore nested data-parallel implementations of
the sparse matrix-vector product and the Barnes–Hutn-body
algorithm by hand-coding thread-based (using OpenMP di-
rectives) and flattening-based versions of these algorithms
and evaluating their performance on an SGI Origin 2000 and
an NEC SX-4, two shared-memory machines.

1. Introduction

Modern science and engineering disciplines make
extensive use of computer simulations. As these sim-
ulations increase in size and detail, the computational
costs of naive algorithms can overwhelm even the
largest parallel computers available today. Fortunately,
computational costs can be reduced using sophisti-
cated modeling methods that vary model resolution
as needed, coupled with sparse and adaptive solution
techniques that vary computational effort in time and
space as needed. Such techniques have been developed
and are routinely employed in sequential computation,
for example, in cosmological simulations (using adap-
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tive n-body methods) and computational fluid dynam-
ics (using adaptive meshing and sparse linear system
solvers).

However, these so-called irregular or unstructured
computations are problematic for parallel computa-
tion, where high performance requires equal distri-
bution of work over processors and locality of refer-
ence within each processor. For many irregular com-
putations, the distribution of work and data cannot be
characterizeda priori, as these quantities are input-
dependent and/or evolve with the computation itself.
Further, irregular computations are difficult to express
using performance-oriented languages such as Fortran,
because there is an apparent mismatch between data
types characteristic of irregular computations such as
trees, graphs, and nested sequences, and the statically
analyzable rectangular multi-dimensional arrays that
are the core data types of Fortran.

In Fortran 90 and Fortran 95 [1,24], irregular data
types can be introduced using the data abstraction
facilities, with a representation exploiting pointers.
However, compilers have difficulty generating high-
performance parallel code for irregular computations
expressed using such data types. In this paper we illus-
trate how irregular computations can be expressed well
in Fortran 9X, and how additional source-level tech-
niques can be used to achieve high performance ex-
ecution of such computations on parallel processors.
While HPF [21] focuses on the irregular distribution
of regular data structures, our approach is based on the
(regular) distribution of irregular data structures.

These modern Fortran dialects enjoy increasing use
and good support as mainstream performance-oriented
programming languages. By providing the ability to
express irregular computations as Fortran modules,
and by preprocessing these modules into a form that
current Fortran compilers can successfully optimize,
we enable irregular computations to be incorporated
into existing applications with minimal rewriting and
without sacrificing performance within the regular por-
tions of the application.
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For example, consider the NAS Conjugate Gradient
(CG) benchmark, which solves an unstructured sparse
linear system using the method of conjugate gradients
[3]. Within the distributed sample sequential Fortran
solution, 79% of the lines of code are standard For-
tran 77 concerned with problem construction and per-
formance reporting. The next 16% consist of scalar
and regular vector computations of the BLAS 2 va-
riety [22], while the final 5% of the code is the ir-
regular computation of the sparse matrix-vector prod-
uct. Clearly to obtain high performance on the irreg-
ular computation we want to rewrite only this 5% of
the code (which performs 97% of the work in the NAS
CG class B benchmark), while the remainder should
be left intact for the Fortran compiler. This is not just
for convenience. It is also critical for performance rea-
sons; following Amdahl’s Law, as the performance of
the irregular computation improves, the performance
of the regular component becomes increasingly critical
for sustained high performance overall. Fortran com-
pilers provide good compiler/annotation techniques to
achieve high performance for the regular computations
in the problem and thus constitute an effective plat-
form for building an efficient and seamless interface
between the regular and irregular portions of the com-
putation.

We manually applied the implementation techniques
described in Section 4 to the irregular computation in
the NAS CG problem. (Ultimately, these techniques
are intended to be mechanized for inclusion in a com-
piler system.) The resultant Fortran program achieved
a performance on the NAS CG class B benchmark of
13.5 GFLOPS using a 32 processor NEC SX-4 [32].
We believe this to be the highest performance achieved
for this benchmark to date (April 1998). It exceeds,
by a factor of 2.6, the highest performance reported in
the last NAS Parallel Benchmark (1.0) Results [34],
and is slightly faster than the 12.9 GFLOPS recently
achieved using a 1024 processor Cray T3E-900 [23].
These encouraging initial results support the thesis that
high-level expression and high-performance for irreg-
ular computations can be supported simultaneously in
a production Fortran programming environment.

2. Expressing irregular computations using nested
data parallelism

We adopt the data-parallel programming model of
Fortran as our starting point. The data-parallel pro-
gramming model has proven to be popular because of

its power and simplicity. Data-parallel languages are
founded on the concept of collections (e.g., arrays) and
a means to allow programmers to express parallelism
through the application of an operation independently
to all elements of a collection (e.g., the elementwise
addition of two arrays). Sipelstein and Blelloch survey
“collection-oriented” languages in [39].

Most of the common data-parallel languages, such
as Fortran 9X, offer restricted data-parallel capabili-
ties: they limit collections to multidimensional rectan-
gular arrays, limit the elements of a collection to scalar
and record types, and limit the operations that can be
applied in parallel. These limitations simplify compile-
time analysis and partitioning of the work and commu-
nication for parallel execution, but make it difficult to
express irregular computations in this model.

If the elements of a collection are themselves per-
mitted to have arbitrary type, then arbitrary functions
can be applied in parallel over collections. In partic-
ular, by operating on a collection of collections, it is
possible to specify a parallel computation, each si-
multaneous operation of which in turn involves (a po-
tentially different-sized) parallel subcomputation. This
programming model, callednested data parallelism,
combines aspects of both data parallelism and control
parallelism. It retains the simple programming model
and portability of the data-parallel model while being
better suited for describing algorithms on irregular data
structures. The utility of nested data parallelism as an
expressive mechanism has been understood for a long
time in the LISP, SETL [36], and APL [25] commu-
nities, although always with a sequential execution se-
mantics and implementation.

Nested data parallelism occurs naturally in the suc-
cinct expression of many irregular scientific problems.
Consider the general sparse matrix-vector product at
the heart of the NAS CG benchmark. In the popular
compressed sparse row (CSR) format of representing
general sparse matrices, the nonzero elements of an
m × n sparse matrixA are represented as a sequence
of m rowsA = [R1, . . . ,Rm]. Each rowR is, in turn,
represented by a sequence of (v, c) pairs that combine
a nonzero valuev with the columnc, 1 6 c 6 n, in
which it occurs. With the dense vectorx represented
as a simple sequence ofn values, the sparse matrix-
vector producty = Ax can be visualized graphically
as shown in Fig. 1 and may be written using the NESL

notation [6] as follows:

y = {sparse_dot_product( R, x) : R in A} .
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Fig. 1. Nested parallelism contained in the sparse matrix-vector product. We writedot_product instead ofsparse_dot_product for
brevity.

This expression specifies the application ofsparse_
dot_product (grey boxes), in parallel, to each row
of A to yield them element result sequencey. The se-
quence constructor{ . . . } serves a dual role: it speci-
fies parallelism (for eachR inA), and it establishes the
order in which the result elements are assembled into
the result sequence, i.e., for 16 i 6 m,

yi = sparse_dot_product( Ri, x) .

We obtain nested data parallelism if the body expres-
sionsparse_dot_product( R, x) itself specifies
the parallel computation of the dot product of rowR
with x as the sum-reduction of a sequence of nonzero
products:

function sparse_dot_product( R, x)

= sum({ v ∗ x[c]: (v, c) in R})

More concisely, the complete expression could also be
written as follows:

y = {sum({ v ∗ x[c]: (v, c) in R}): R in A}

where the nested parallelism is now visible as nested
sequence constructors in the source text.

Nested data parallelism thus provides a succinct and
powerful notation for specifying parallel computation,
including irregular parallel computations. Many more
examples of efficient parallel algorithms expressed us-
ing nested data parallelism have been described in [6].

3. Nested data parallelism in Fortran

If we consider the expression of nested data paral-
lelism in standard imperative programming languages,

we find that they either lack a data-parallel control con-
struct (C, C++) or else lack a nested collection data
type (Fortran). A nested data-parallel control construct
can be added to C [13] or C++ [37], but the perva-
sive pointer semantics of these languages complicate
its meaning. There is also incomplete agreement about
the form parallelism should take in these languages.

The FORALL construct, originated in HPF [21]
and later added into Fortran 95 [1,24], specifies data-
parallel evaluation of expressions and array assign-
ments. To ensure that there are no side effects be-
tween these parallel evaluations, functions that occur
in the expressions must have thePUREattribute. For-
tran 90 lacks a construct that specifies parallel evalua-
tions. However, many compilers infer such an evalua-
tion if specified using a conventionalDOloop, possibly
with an attached directive asserting the independence
of iterations. Fortran 95FORALLconstructs (or For-
tran 90 loops) may be nested. To specify nested data-
parallel computations with these constructs, it suffices
to introduce nested aggregates, which we can do via
the data abstraction mechanism of Fortran 9X.

3.1. Sparse matrix-vector product

As a consequence of these language features, it is
entirely possible to express nested data-parallel com-
putations in modern Fortran. For example, we might
introduce the types shown in Fig. 2 (top) to represent a
sparse matrix.Sparse_element_t is the type of a
sparse matrix element, i.e., the (v, c) pair of the NESL

example.Sparse_row_t is the type of vectors (1-D
arrays) of sparse matrix elements, i.e., a row of the ma-
trix. A sparse matrix is characterized by the number
of rows and columns, and by the nested sequence of
sparse matrix elements.

Using these definitions, the sparse matrix-vector
product can be succinctly written as shown in Fig. 2
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MODULE Sparse_matrices

IMPLICIT none

TYPE Sparse_element_t
REAL :: val
INTEGER :: col

END TYPE Sparse_element_t

TYPE Sparse_row_t
TYPE (Sparse_element_t), DIMENSION (:), POINTER :: elts

END TYPE Sparse_row_t

TYPE Sparse_matrix_t
INTEGER :: nrow, ncol
TYPE (Sparse_row_t), DIMENSION (:), POINTER :: rows

END TYPE Sparse_matrix_t

CONTAINS

SUBROUTINE smvp(a, x, y)

TYPE (Sparse_matrix_t), INTENT(IN) :: a
REAL, DIMENSION(:), INTENT(IN) :: x
REAL, DIMENSION(:), INTENT(OUT) :: y

FORALL (i = 1:a%nrow)
y(i) = SUM(a%rows(i)%elts%val * x(a%rows(i)%elts%col))

END FORALL

END SUBROUTINE smvp

END MODULE Sparse_matrices

Fig. 2. Fortran 9X definition of a nested sequence type for sparse matrices (top) and its use for computing a sparse matrix-vector product (bottom).

(bottom). TheFORALLloop specifies parallel evalua-
tion of the inner products for all rows. Nested paral-
lelism is a consequence of the use of parallel opera-
tions such as sum and elementwise multiplication, pro-
jection, and indexing.

3.2. Barnes–Hut force calculation algorithm

An illustration of a more complex form of nested
data-parallel computation in Fortran 95 is the hierar-
chical force calculation algorithm of Barnes and Hut
[4], as used, for example, in the simulation of self-
gravitating systems. This algorithm exploits the fact
that, at a distance, the combined potential of a group
of particles can beapproximatedby the potential of
the center of mass of that group. The algorithm makes
use of a hierarchical quad-tree (or oct-tree in 3D) de-

composition of the space containing the particles, and
associates with each region its center of mass. Fig. 3
(top) shows the Fortran types for this structure in the
2D case. The attributentype distinguishes between a
particle and an inner cell of the tree that has up to four
subtrees.

The force calculation traverses the tree top down
for each particle to accumulate the total force on the
particle. Subregions are explored only if the region’s
center of mass is not sufficiently far away from the
particle to be used as an approximation. The function
tree_force shown in Fig. 3 (bottom) encodes this
algorithm in Fortran 95. Note that it is qualified as be-
ing RECURSIVEand, because it is called in a paral-
lel context,PURE. The functionzero_force returns
the zero force vector; and the functionsum_forces
sums an array of force vectors.
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MODULE Barnes_Hut

IMPLICIT NONE

TYPE Node_t
INTEGER :: ntype
REAL :: mass
REAL, DIMENSION(2) :: pos
TYPE (Body_t), POINTER :: body
TYPE (Node_p), DIMENSION(4) :: subtree

END TYPE Node_t

TYPE Node_p
TYPE (Node_t), POINTER :: node

END TYPE Node_p

TYPE Body_t
REAL, DIMENSION(2) :: vel
REAL, DIMENSION(2) :: acc

END TYPE Body_t

CONTAINS

PURE RECURSIVE FUNCTION tree_force(p,q) RESULT(f)

TYPE (Node_t), POINTER :: p, q
REAL, DIMENSION(2) :: f

INTEGER :: I
REAL, DIMENSION(4,2) :: fs

IF (“ q is a body” THEN
f = 〈body(p)-body(q) interaction〉

ELSE
IF (“ p is distant enough fromq”) THEN

f = 〈body(p)-cell(q) interaction〉

ELSE
fs = zero_force()
FORALL (I = 1:4, ASSOCIATED(q%subtree(i)%node))

fs(I,:) = tree_force(p,q%subtree(i)%node)
END FORALL
fs = sum_forces(fs)

END IF
END IF

END SUBROUTINE tree_force

END MODULE Barnes_Hut

Fig. 3. Fortran 95 definition of a quad-tree for hierarchical force calculation in 2D (top) and its use in a hierarchical force calculation (bottom).
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Since the different force-computations are indepen-
dent of each other, they can be performed in parallel
for all particles. For a given tree rooted atroot and an
array of particlesps , we can write

FORALL (I=1:SIZE(ps))
CALL tree_force(ps(I),root)

END FORALL

to compute the forces on all particles in parallel.
This FORALL loop expresses nested parallelism

becausetree_force specifies parallelism in its
recursive application. The parallelism specified in
tree_force is dynamic since the available paral-
lelism increases with the depth of the recursion. It is
irregular because the degree of parallelism specified
depends on the distribution of the particles. The real-
ization of this kind of parallelism is complex and ap-
proaches to it are discussed in Section 4.

3.3. Nested data parallelism in an imperative setting

Earlier experiments with nested data parallelism in
imperative languages include V [13], Amelia [37], and
F90V [2]. For the first two of these languages the is-
sues of side-effects in the underlying notation (C++
and C, respectively) were problematic in the potential
introduction of interference between parallel iterations,
and the efforts were abandoned. Fortran 95 finesses
this problem by requiring procedures used within a
FORALLconstruct to bePURE, an attribute that can be
verified statically. This renders invalid those construc-
tions in which side effects (other than the nondetermin-
istic orders of stores) can be observed, although such a
syntactic constraint is not enforced in Fortran 90.

The specification of nested data parallelism in For-
tran and NESL differ in important ways, many of them
reflecting differences between the imperative and func-
tional programming paradigms. While V and F90V
are imperative languages, they introduce nested paral-
lelism in a functional fashion, following the approach
found in NESL.

First, a sequence is formally a function from an in-
dex set to a value set. The NESL sequence constructor
specifies parallelism over the value set of a sequence
while the FortranFORALLstatement specifies paral-
lelism over the index set of a sequence. This makes ex-
plicit the shape of the common index domain shared
by several collections participating in aFORALLcon-
struct, and, in some cases, allows a more concise syn-
tax.

Second, the NESL sequence constructor implicitly
specifies the ordering of result elements, while this or-
dering is explicit in theFORALLstatement. One con-
sequence is that the restriction clause has different se-
mantics. For instance, the NESL expression

v = { i: i in [ 1: n] | oddp( i) }

yields a result sequencev of lengthbn/2c of odd val-
ues while the Fortran statement

FORALL (i = 1: n, odd( i)) v( i) = i

replaces the elements in the odd-numbered positions of
v.

Third, the FortranFORALLconstruct provides ex-
plicit control over memory. Explicit control over mem-
ory can be quite important for performance. For exam-
ple, if we were to multiply the same sparse matrix re-
peatedly by different right hand sides (which is in fact
exactly what happens in the CG benchmark), we could
reuse a single temporary instead of freeing and allocat-
ing each time. Explicit control over memory also gives
us a better interface to the regular portions of the com-
putation.

Finally, the base types of a nested aggregate in For-
tran are drawn from the Fortran data types and include
multidimensional arrays and pointers. In NESL, we
are restricted to simple scalar values and record types.
Thus, expressing a sparse matrix as a collection of su-
pernodes would be cumbersome in NESL. Another im-
portant difference is that we may construct nested ag-
gregates of heterogeneous depth with Fortran, which
we used in the representation of the Barnes–Hut tree.

4. Implementation issues

Expression of nested data-parallelism in Fortran is
of limited interest and of no utility if such computa-
tions can not achieve high performance. Parallel exe-
cution and tuning for the memory hierarchy are the two
basic requirements for high performance. Since the lo-
cus of activity and amount of work in a nested data-
parallel computation can not be statically predicted,
run-time techniques are generally required.

In the following, we will discuss two general strate-
gies for the parallel execution of nested data paral-
lelism, both consisting of a compile-time and a run-
time component. The two strategies are illustrated for
a nested data-parallel computation shown in Fig. 4(a).
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Fig. 4. (a) Nested data-parallel program. (b) The associated dependence graph. (c) Thread decomposition of the graph. (d) Data-parallel decom-
position of the graph.

Its associated dependence graph1 is shown in Fig. 4(b).
HereG andH denote assignment statements that can
not introduce additional dependences, since there can
be no data dependences between iterations ofFORALL
loops.

4.1. The thread-based approach

This technique conceptually spawns a different
thread of computation for every parallel evaluation
within a FORALLconstruct. The compile-time com-
ponent constructs the threads from the nested loops.
A run-time component dynamically schedules these
threads across processors. Scheduling very fine-grained
threads (e.g., a single multiplication) is impractical,
hence compile-time techniques are required to increase
thread granularity, although this may result in lost par-
allelism and increased load imbalance. Recent work
has resulted in run-time scheduling techniques that
minimize completion time and memory use of the gen-
erated threads [11,8,27]. The automatic construction of
threads of appropriate granularity is currently being in-
vestigated by several researchers [26,19].

In Fig. 4(c) we show a decomposition of the total
work into four parallel threadsT1, . . . ,T4. In this de-
composition the body of the innerFORALLloop has
been serialized to increase the grain size of each thread.

1We are using HPFINDEPENDENTsemantics for the control de-
pendences of aFORALLloop.

As a result the amount of work in each thread is quite
different. On the other hand, since each thread executes
a larger portion of the sequential implementation, it can
exhibit good locality of reference.

Applying this strategy to the the sparse matrix-
vector product code shown in Fig. 2 results in a par-
allelization of the outer loop and a serialization of the
dot-product inner loop. This is not always optimal,
since the distribution of work over outermost iterations
depends on the input matrix and may be uneven or
there may be insufficient parallelism in the outer itera-
tions.

Similarly, applying the strategy to the Barnes–Hut
force computation shown on page 6,

FORALL (I=1:SIZE(ps))
fs(I) = tree_force(ps(I),root)

END FORALL

would serialize the parallelism within thetree_
force function, but applytree_force to each par-
ticle in parallel. In execution, each thread might eval-
uate the force on one or more particles, leading to po-
tential load imbalances depending on the particle dis-
tribution. Some of the techniques that have been devel-
oped for the parallelization of treecodes in general and
the Barnes–Hut algorithm in particular, have applica-
tion in this setting. These include geometric orderings
of the particles to improve locality, and cost-zoning to
improve load balance [43,38].
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4.2. The flattening approach

This technique replaces nested loops by a sequence
of steps, each of which is a simple data-parallel opera-
tion. The compile-time component of this approach is
a program transformation that replacesFORALLcon-
structs with “data-parallel extensions” of their bodies
and restructures the representation of nested aggregate
values into a form suitable for the efficient implemen-
tation of the data-parallel operations [10,33]. The run-
time component is a library of data-parallel operations
closely resembling HPFLIB, the standard library that
accompanies HPF.

In Fig. 4(d) we show a decomposition of the work
into sequential stepsS1, . . . ,S3, each of which is a sim-
ple data-parallel operation. The advantage of this ap-
proach is that we may partition the work in each opera-
tion very easily since it is all independent. Thus we can
partition the work over processors and create parallel
slack at each processor to hide network or memory la-
tencies. In this example, the dependence structure per-
mits the parallel execution of stepsS2 andS3, although
this increases the complexity of the run time scheduler.

A nested data-parallel loop that has been flattened
may perform a small multiplicative factor of addi-
tional work compared with a sequential implementa-
tion. However, full parallelism and optimal load bal-
ance are easily achieved in this approach. Compile-
time techniques to fuse data-parallel operations can re-
duce the number of barrier synchronizations, decrease
space requirements, and improve reuse [14,31,19].

To flatten the sparse matrix-vector productsmvp,
we replace the nested sequence representation ofA
with a linearized (flattened) representation (A′, s).
HereA′ is an array ofr pairs, indexed byval and
col , partitioned into rows ofA by s, i.e., s is an ar-
ray of n integers equal to the length of each row and
whose sum isr. This datatype transformation is part of
the flattening transformation rules. Application of the
flattening transformations to the loop in Fig. 2 yields
the single statement

y = segmented_sum(A’%val * x(A’%col),s) ,

wheresegmented_sum is a data-parallel operation
with efficient parallel implementations [5]. By sub-
stituting A’%val * x(A’%col) for the first argu-
ment in the body ofsegmented_sum , the sum and
product may be fused into asegmented dot-product.

To flatten the Barnes–Hut force computation is more
complex and requires an extension of the conventional

flattening transformation to handle tree-like recursive
datatypes. This extension has recently been proposed
by Keller and Chakravarty in a functional setting [20,
19]. In this transformation, each level of the Barnes–
Hut tree is represented by the sequence of the nodes at
that level together with a segment descriptor that parti-
tions the nodes according to their parents at the preced-
ing level. This representation permits all invocations
of tree_force to be evaluated in parallel at a given
level of the tree.

5. Nested parallelism using current Fortran
compilers

To gain some insight into the performance of nested
data parallel Fortran programs, we examined the NAS
CG benchmark and the sparse matrix-vector product
contained within it. We started by presenting the pro-
gram in Fig. 2 to be compiled for parallel execution
by current Fortran compilers. For Fortran 90 compil-
ers we replaced theFORALLwith a correspondingDO
statement.

For shared-memory multiprocessors we examined
two auto-parallelizing Fortran 90 compilers: the SGI
F90 V7.2.1 compiler (beta release, March 1998) for
SGI Origin class machines and the NEC FORTRAN90/
SX R7.2 compiler (release 140, February 1998) for the
NEC SX-4. Since the nested parallel loops insmvp
do not define a polyhedral iteration space, many clas-
sical compiler techniques for parallelization do not ap-
ply. However, both compilers recognize that iterations
of the outer loop (over rows) are independent and, in
both cases, these iterations are distributed over proces-
sors. The dot-product inner loop is compiled for serial
execution (SGI F90) or vectorized (NEC F90).

For distributed memory multiprocessors we exam-
ined one HPF compiler. This compiler failed to com-
pile smvp because it had no support for pointers in
Fortran 90 derived types. Our impression is that this
situation is representative of HPF compilers in gen-
eral, since the focus has been on the parallel execu-
tion of programs operating on rectangular arrays. The
data distribution issues for the more complex derived
types with pointers are unclear. Instead, HPF 2.0 sup-
ports the non-uniform distribution of arrays over pro-
cessors. This requires the programmer to embed irreg-
ular data structures in an array and determine the ap-
propriate mapping for the distribution.

We concluded that current Fortran compilers do not
sufficiently address the problems of irregular nested
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data parallelism. The challenge for irregular computa-
tions is to achieve uniformly high and predictable per-
formance in the face of dynamically varying distribu-
tion of work.

Our approach is therefore use the threading and
flattening techniques to transform nested data parallel
constructs into simpler Fortran 90, providing integra-
tion with regular computations, and leveraging the ca-
pabilities of current Fortran compilers. This source-to-
source translation restricts our options somewhat for
the thread scheduling strategy. Since threads are not
part of Fortran 90, the only mechanism for their (im-
plicit) creation are loops, and the scheduling strategies
we can choose from are limited by those offered by the
compiler/run-time system. In this regard, standardized
loop scheduling directives like the OpenMP directives
[30] improve portability. Dynamic scheduling can be
used to tolerate variations in progress among threads.

5.1. Sparse matrix-vector product

Consider a sparsem × n matrix A with a total of
r nonzeros. Implementation of the simple nested data
parallelism in the proceduresmvp of Fig. 2 must ad-
dress many of the problems that may arise in irregular
computations:

– Uneven units of work:A may contain both dense
and sparse rows.

– Small units of work:A may contain rows with
very few nonzeros.

– Insufficient units of work: ifn is less than the
number of processors andr is sufficiently large,
then parallelism should be exploited within the
dot products rather than between the dot products.

We constructed two implementations ofsmvp. The
nestedimplementation is obtained by direct compila-
tion of the program in Fig. 2 using loop-level paral-
lelization directives. This results in a parallelized outer
loop, in which the dot products for different rows are
statically or dynamically scheduled across processors.
Theflat implementation is obtained by flatteningsmvp
as outlined in the previous section.

For the SGI Origin 2000, the flattened representation
A′ of A is divided intopσ sections of lengthr/(pσ)
wherep is the number of processors andσ > 1 is a fac-
tor to improve the load balance in the presence of mul-
tiprogramming and operating system overhead on the
processors. Sections are processed independently and
dot products are computed sequentially within each

section. Sums for segments spanning sections are ad-
justed after all sections are summed.

For the NEC SX-4,A′ is divided intopqσ sections
where q is the vector length required by the vector
units [7]. Sectioni, 0 6 i < pq, occupies element
i modq in a vector of lengthq in threadbi/pc. Prefix
dot-products are computed independently for all sec-
tions using a sequence ofr/(pq) vector additions on
each processor. Segment dot-products are computed
from the prefix dot-products and sums for segments
spanning sections are adjusted after all sections are
summed [32]. On the SX-4, typicallyσ = 1 since the
operating system performs gang-scheduling and the
threads experience very similar progress rates.

5.2. Experimental results

The SGI Origin 2000 used is a 32 processor cache-
based shared memory multiprocessor. The processors
are 250MHz R10000s with 32KB data cache and 4MB
L2 unified instruction/data cache per processor. The
NEC SX-4 used is a 16 processor shared-memory par-
allel vector processor with vector length 256. Each
processor has a vector unit that can perform 8 or 16
memory reads or writes per cycle. The clock rate is
125 MHz. The memory subsystem provides sufficient
sustained bandwidth to simultaneously service inde-
pendent references from all vector units at the maxi-
mum rate.

The performance on square sparse matrices of both
implementations is shown for 1, 2, 4, and 8 processors
for the Origin 2000 in Fig. 5 and for 1, 2, and 4 proces-
sors for the SX-4 in Fig. 6. The top graph of each figure
shows the performance as a function of problem size
in megaflops per second, where the number of floating
point operations for the problem is 2r. Each row con-
tains an average of 20 nonzeros and the number of rows
is varied between 1000 and 175000. The bottom graph
shows the influence of the average number of nonzeros
per row (r/n) on the performance of the code. To mea-
sure this, we chose a fixed total number of non-zeros
(12 million for the Origin 2000 and 3.6 million for the
SX-4) and varied the average number of nonzeros on
each row. In each case, the performance reported is av-
eraged over 50 different matrices.

On the Origin 2000 the flattened implementation
performed at least as well as the nested version over
most inputs. The absolute performance of neither im-
plementation is particularly impressive. The sparse
matrix-vector problem is particularly tough for pro-
cessors with limited memory bandwidth since there is
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Fig. 5. Performance measurements for the nested and the flattened implementations ofsmvp on the SGI Origin 2000.

no temporal locality in the use ofA (within a single
matrix-vector product), and the locality in reference to
x diminishes with increasingn. While reordering may
mitigate these effects in some applications, it has little
effect for the random matrices used here. The Origin
2000 implementations also do not exhibit good parallel
scaling. This is likely a function of increased latency to
remote memory with increasing processor count, cou-
pled with limited latency-hiding capabilities in the pro-

cessors. Higher performance can be obtained with fur-
ther tuning. For example, the current compiler does not
perform optimizations to map theval andcol com-
ponents ofA into separate arrays. When applied man-
ually, this optimization increases performance by 25%
or more.

On the SX-4 the flattened implementation performs
significantly better than the nested implementation
over all inputs. This is because the flattened implemen-
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Fig. 6. Performance measurements for the nested and the flattened implementations ofsmvp on the NEC SX-4. (Note the logarithmic scale of
they-axis.)

tation always operates on full-sized vectors (provided
r > pq), while the nested implementation performs
vector operations whose length is determined by the
number of nonzeros in a row. Hence the nested imple-
mentation is insensitive to problem size but improves
with average row length. For the flattened impleme-
mentation, absolute performance and parallel scaling
are good primarily because the memory system has

sufficient bandwidth and the full-sized vector opera-
tions fully amortize the memory access latencies.

5.3. Summary

This experiment provides evidence that the flatten-
ing technique can be used in an implementation to im-
prove the performance stability for irregular problems
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while maintaining or improving on the performance of
the simple thread-based implementation. The flatten-
ing techniques may be particularly helpful in support-
ing the instruction-level and memory-level parallelism
required for high performance in modern processors.
The experiments also demonstrate that, for the matri-
ces generated by the NAS benchmark, the scheduling
strategies provided by the Fortran runtime system suf-
fice for good load balance.

It is possible to construct sparse matrices with large
variations in the number of nonzeros per row for which
the dynamic thread scheduling techniques, in the sim-
ple form generated by Fortran compilers, can not solve
the load imbalance problems. While these irregular
matrices may not be representative of typical problems,
the basic characteristic of large amounts of work in
small portions of the iteration space is not unusual. For
example, it can arise with data structures for the adap-
tive spatial decomposition of a highly clusteredn-body
problem, or with divide-and-conquer algorithms like
quicksort or quickhull [6].

The flattened sparse matrix-vector product described
in this section was incorporated into the NAS CG
benchmark code to obtain the results quoted in the in-
troduction for the NEC SX-4.

6. Related work

The facilities for data abstraction and dynamic ag-
gregates are new in Fortran 9X. Previously, Norton et
al. [28], Deczyk et al. [16], and Nyland et al. [29] have
experimented with these advanced features of Fortran
90 to analyze their impact on performance.

HPF 2.0 provides aMAPPEDirregular distribution
to support irregular computations. This is a mechanism
and not a policy, and leaves the user responsible for de-
veloping a coherent policy for its use. Further, the ram-
ifications of this distribution on compilation are not yet
fully resolved. Our approach is fundamentally different
in attempting to support well a smaller class of com-
putations with an identifiable policy (nested data par-
allelism) and by preprocessing the irregular computa-
tion to avoid reliance on untested strategies in the HPF
compiler. While HPF focuses on the irregular distribu-
tion of regular data structures, our approach is based on
the (regular) distribution of irregular data structures.

The FX programming model [17,42] integrates data
and task parallelism using directives in a Fortran envi-
ronment. The data-parallel features are similar to those
of High Performance Fortran. The task parallelism di-

rectives are based on the notions of task partitions and
processor subgroups, and thus represents a processor-
centric approach. Recent versions of this model al-
low task regions to be dynamically nested, allowing
the representation of algorithms such as quicksort and
Barnes–Hut.

Split-C [15] also provides a number of low-level
mechanisms for expressing irregular computations. We
are attempting to provide a higher level of abstraction
while providing the same level of execution efficiency
of low-level models.

The Chaos library [35] is a runtime library based
on the inspector/executor model of executing parallel
loops involving irregular array references. It is a suit-
able back end for the features supporting irregular par-
allelism in HPF 2.0. The library does not provide obvi-
ous load balancing policies, particularly for irregularly
nested parallel loops. Recent work on Chaos is looking
at compilation aspects of irregular parallelism.

Flattening transformations have been implemented
for the languages NESL [9], Proteus [33], Amelia [37],
and V [13], differing considerably in their complete-
ness and in the associated constant factors. There has
been little work on the transformation of imperative
constructs such as sequential loops within aFORALL,
although there do not appear to be any immediate prob-
lems. The flattening techniques are responsible for sev-
eral hidden successes. Various high performance im-
plementations are really hand-flattened nested data-
parallel programs: FMA [18], radix sort [44], as well
as the NAS CG implementation described in the intro-
duction. Furthermore, the set of primitives in HPFLIB
itself reflects a growing awareness and acceptance of
the utility of the flattening techniques.

The mainstream performance programming lan-
guages Fortran and SISAL [12,40] can express nested
data parallelism, but currently do not address its ef-
ficient execution in a systematic way. Languages that
do address this implementation currently have vari-
ous disadvantages: they are not mainstream languages
(NESL, Proteus); they subset or extend existing lan-
guages (Amelia, V, F90V); they do not interface well
with regular computations (NESL, Proteus); they are
not imperative, hence provide no control over mem-
ory (NESL, Proteus); and they are not tuned for perfor-
mance at the level of Fortran (all).

7. Conclusions

Nested data parallelism in Fortran is attractive be-
cause Fortran is an established and important language
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for high-performance parallel scientific computation
and has an active community of users. Many of these
users are now facing the problem of implementing ir-
regular computations on parallel computers. They have
substantial investments in existing code and depend on
Fortran or HPF to achieve high performance on the
regular portions of their computations. For them it is
highly desirable to stay within the Fortran framework.

The advanced features of modern Fortran, such as
derived data types, modules, pointers, and theFORALL
construct, together constitute a sufficient mechanism
to express complex irregular computations as nested
data parallel computations. This makes it possible to
express both irregular and regular computations within
a common framework and in a familiar programming
style.

How to achieve high performance from such high-
level specifications of irregular computation is a more
difficult question. The flattening technique can be
effective for machines with very high and uniform
shared-memory bandwidth, as that found in current
parallel vector processors from NEC and SGI/Cray
or the parallel multithreaded Tera machine [41]. For
cache-based shared-memory processors, the improved
locality of the threading approach is a better match.
Here, the flattening techniques may help to extract
threads from a nested parallel computation that, on the
one hand, are sufficiently coarse grain to obtain good
locality of reference and amortize scheduling over-
head, and, on the other hand, are sufficiently numer-
ous and regular in size to admit good load balance with
run-time scheduling.

We have illustrated that irregular computations can
be efficiently executed through a combination of
source-to-source preprocessing, leveraging of the For-
tran compilers, and runtime support. The source-to-
source preprocessing is presently beyond the capabili-
ties of automatic parallelization techniques and hence
has been tediously performed manually [29,18]. How-
ever, we believe that compiler support for flattening
and threading, possibly guided by additional directives,
is achievable, and will provide a simple route to high-
performance irregular computation.
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