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Abstract We compute the two-loop QCD corrections to the
neutral Higgs-boson masses in the Minimal Supersymmet-
ric Standard Model, including the effect of non-vanishing
external momenta in the self-energies. We obtain correc-
tions of O(αtαs) and O(ααs), i.e., all two-loop corrections
that involve the strong gauge coupling when the only non-
vanishing Yukawa coupling is the top one. We adopt either
the DR renormalization scheme or a mixed on-shell (OS)–
DR scheme where the top/stop parameters are renormalized
on-shell. We compare our results with those of earlier calcula-
tions, pointing out an inconsistency in a recent result obtained
in the mixed OS–DR scheme. The numerical impact of the
new corrections on the prediction for the lightest-scalar mass
is moderate, but already comparable to the accuracy of the
Higgs-mass measurement at the Large Hadron Collider.

1 Introduction

The accuracy of the measurement of the Higgs-boson mass
by the ATLAS and CMS collaborations at the Large Hadron
Collider (LHC) has already reached the level of 300–
400 MeV [1,2] and, being still dominated by statistics, is
bound to improve further when the LHC restarts operations
in 2015. This puts new emphasis on the need for high-
precision calculations in those extensions of the Standard
Model (SM), such as the Minimal Supersymmetric Standard
Model (MSSM), in which the Higgs-boson mass can be pre-
dicted as a function of other physical observables.

The Higgs sector of the MSSM consists of two SU (2)

doublets, H1 and H2, whose relative contribution to elec-
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troweak (EW) symmetry breaking is determined by the ratio
of vacuum expectation values (VEVs) of their neutral compo-
nents, tan β ≡ v2/v1. The spectrum of physical Higgs bosons
is richer than in the SM, consisting of two neutral scalars, h
and H , one neutral pseudoscalar, A, and two charged scalars,
H±. At the tree level, the neutral scalar masses mh and m H

and the scalar mixing angle α can be computed in terms
of the Z -boson mass m Z , the pseudoscalar mass m A and
tan β, and the bound mh < | cos 2β| m Z applies. In a sig-
nificant portion of the parameter space the lightest scalar
h has SM-like couplings to fermions and gauge bosons, in
which case the tree-level bound on mh has long been dis-
proved by the LEP [3,4]. However, radiative corrections can
raise the prediction for the lightest-scalar mass up to the value
mh ≈ 125 GeV observed at the LHC, and they bring along
a dependence on all MSSM parameters. Among the latter,
particularly relevant are the masses and mixing of the scalar
partners of the third-generation quarks, the stop and sbottom
squarks.

Due to the crucial role of radiative corrections in push-
ing the prediction for the lightest-scalar mass above the
tree-level bound, an impressive theoretical effort has been
devoted over more than 20 years to the precise determination
of the Higgs sector of the MSSM.1 After the early realiza-
tion [5–9] of the importance of the one-loop O(αt ) correc-
tions2 involving top and stop, full one-loop computations
of the MSSM Higgs masses have been provided [10–13],

1 We focus here on the MSSM with real parameters. Significant efforts
have also been devoted to the Higgs-mass calculation in the presence of
CP-violating phases, as well as in non-minimal supersymmetric exten-
sions of the SM.
2 We define αt,b = h2

t,b/(4π), where ht and hb are the superpotential
top and bottom couplings, respectively. We follow the standard conven-
tion of denoting by O(αt ) the one-loop corrections to the Higgs masses
that are in fact proportional to h2

t m2
t , i.e. to h4

t v
2
2 . Similar abuses of

notation affect the other one- and two-loop corrections.
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leading logarithmic effects at two loops have been included
via renormalization-group methods [14–17], and genuine
two-loop corrections of O(αtαs) [18–25], O(α2

t ) [18,24,26],
O(αbαs) [27,28] and O(αtαb + α2

b) [29] have been eval-
uated in the limit of vanishing external momentum in the
Higgs self-energies. All of these corrections have been imple-
mented in widely used computer codes for the calculation
of the MSSM mass spectrum, such as FeynHiggs [30],
SoftSUSY [31,32], SuSpect [33] and SPheno [34,35].
Furthermore, a complete two-loop calculation of the MSSM
Higgs masses in the effective potential approach (i.e., at zero
external momentum), including also two-loop corrections
controlled by the EW gauge couplings, has been presented in
Refs. [36,37]. Some of the dominant three-loop corrections
to mh have also been obtained, both via renormalization-
group methods [38–40] and by explicit calculation of the
Higgs self-energy at zero external momentum [41,42].

Already at the two-loop level, going beyond the approxi-
mation of zero external momentum brings significant compli-
cations to the calculation of the Higgs self-energies. Differ-
ent algorithms for expressing all two-loop self-energy inte-
grals with arbitrary external momentum in terms of a minimal
set of Master Integrals (MIs) were developed in Refs. [43–
46]. However, explicit analytical formulas for the MIs can be
derived only for special values of the masses of the particles
circulating in the loops, whereas in the general case a numer-
ical calculation becomes unavoidable. A method to compute
all the MIs of Ref. [46] by numerically solving a system of
differential equations in the external momentum was devel-
oped in Ref. [47], extending earlier results of Refs. [48–51].
A library of routines for the computation of the MIs with the
method of Ref. [47] was then made available in the package
TSIL [52].

A calculation of the two-loop contributions to the Higgs
self-energies involving the strong gauge coupling or the third-
family Yukawa couplings, based on the methods of Refs. [47,
52], was presented in Ref. [53]. That calculation goes beyond
the two-loop results implemented in public codes [19–21,25–
29] in that it includes external-momentum effects, as well
as contributions involving the D-term-induced EW inter-
actions between Higgs bosons and sfermions. When com-
bined with the effective-potential results of Refs. [36,37],
the results of Ref. [53] provide an almost-complete two-loop
calculation of the Higgs masses in the MSSM – the only
missing contributions being external-momentum effects that
involve only the EW gauge couplings. However, no code
for the calculation of the MSSM mass spectrum implement-
ing the results of Refs. [36,37,53] was ever made avail-
able, and the way those results are organized does not lend
itself to a straightforward implementation in the existing
public codes. On one hand, the DR renormalization scheme
adopted in Refs. [36,37,53] for the parameters of the MSSM
lagrangian does not match the “mixed on-shell (OS)–DR”

scheme adopted in FeynHiggs. On the other hand, imple-
mentation of the results of Refs. [36,37,53] in SoftSUSY,
SuSpect andSPheno, which also adopt the DR scheme, is
complicated by the fact that in Refs. [36,37,53] the running
masses of the Higgs bosons entering the loop corrections are
defined by the second derivatives of the tree-level potential.
While this choice amounts to a legitimate reshuffling of terms
between different perturbative orders, it restricts the applica-
bility of the calculation to rather specific ranges of renor-
malization scale where none of the running Higgs masses –
as defined in Refs. [36,37,53] – is tachyonic. Perhaps as a
consequence of these complications, a full decade after the
publication of Ref. [53] its results have yet to be included in
phenomenological analyses of the MSSM Higgs sector.

In this paper we present a new calculation of the
momentum-dependent part of the two-loop corrections to the
neutral Higgs masses of O(αtαs), i.e. those involving both
the top Yukawa coupling and the strong gauge coupling. We
also compute “mixed” two-loop corrections that we denote
by O(ααs): they involve both the strong gauge coupling and
the EW gauge couplings, under the approximation that the
only non-vanishing Yukawa coupling is the top one. It is nat-
ural to consider these two classes of corrections together,
because in both of them the dominant terms affecting the
lightest-scalar mass are expected to be suppressed by a factor
of O(m2

Z/mt
2) with respect to the zero-momentum O(αtαs)

corrections (in practice, we find that both classes of correc-
tions are considerably more suppressed than that, but still
comparable to each other in size).

In our calculation we rely on the integration-by-parts
(IBP) technique of Refs. [54,55] to express the momentum-
dependent loop integrals in terms of the MIs of Ref. [46],
which we evaluate by means of the packageTSIL. We obtain
results for both the DR and the OS–DR renormalization
schemes, organized in such a way that they can be directly
implemented in the existing codes for the computation of the
MSSM mass spectrum. We verify that our results are in full
agreement with the ones of Ref. [53] where they overlap.
After describing our calculation in some detail, we briefly
discuss the numerical impact of the momentum-dependent
O(αtαs) and O(ααs) corrections to the Higgs masses in a
set of representative points in the MSSM parameter space.

While our paper was in preparation, an independent calcu-
lation of the momentum-dependent O(αtαs) corrections to
the neutral Higgs masses in the MSSM appeared [56], rely-
ing on the results of Ref. [43] for the decomposition of two-
loop integrals into MIs and on the package SecDec [57,58]
for the numerical evaluation of the latter. The results of that
calculation are expressed in the OS–DR scheme, and they
have been implemented in the latest version ofFeynHiggs.
Although we have verified that our results for the contribu-
tions of genuine two-loop diagrams involving the strong-
gauge and top-Yukawa couplings agree numerically with
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those of Ref. [56], we do not reproduce the overall val-
ues of the momentum-dependent O(αtαs) corrections to the
Higgs masses. We trace the reason for the discrepancy to
an inconsistency in Ref. [56] concerning the definitions of
the wave-function-renormalization (WFR) constants for the
Higgs fields and of the parameter tan β.

2 Neutral Higgs boson masses in the MSSM

We outline here our calculation of the two-loop corrections
to the masses of the neutral Higgs bosons in the MSSM with
real parameters (we do not consider the possibility of CP
violation in the Higgs sector). We decompose the neutral
components of the two Higgs doublets into their VEVs plus
their CP-even and CP-odd fluctuations as follows:

H0
1 ≡ 1√

2
(v1 + S1 + i P1),

H0
2 ≡ 1√

2
(v2 + S2 + i P2). (1)

The CP-odd components P1 and P2 combine into the pseu-
doscalar A and the neutral would-be Goldstone boson G0.
The CP-even components S1 and S2 combine into the scalars
h and H . The squared physical masses of the latter are the
two solutions for p2 of the equation

det
[
�S(p2)

]
= 0, (2)

where �S(p2) denotes the 2×2 inverse-propagator matrix in
the (S1, S2) basis, p being the external momentum flowing
into the scalar self-energies. We can decompose �S(p2) as

�S(p2) = p2 − M2
0 − �M2(p2), (3)

where M2
0 denotes the tree-level mass matrix written in

terms of renormalized parameters, and �M2(p2) collec-
tively denotes the radiative corrections. At each order in the
perturbative expansion, the latter include both the contribu-
tions of one-particle-irreducible (1PI) diagrams and non-1PI
counterterm contributions arising from the renormalization
of parameters that enter the lower-order parts of �S(p2). We
express M2

0 in terms of the parameter tan β renormalized
in the DR scheme, and of the physical masses of the pseu-
doscalar and of the Z boson

M2
0 =

(
c2
β m2

Z + s2
β m2

A −sβ cβ

(
m2

Z + m2
A

)

−sβ cβ

(
m2

Z + m2
A

)
s2
β m2

Z + c2
β m2

A

)
, (4)

using (here and thereafter) the shortcuts cφ ≡ cos φ and
sφ ≡ sin φ for a generic angle φ. Neglecting terms that do
not contribute at O(αtαs) or O(ααs), our choices for the
parameters entering M2

0 lead to the following expressions
for the two-loop parts of the individual entries of �M2(p2):

[
�M2(p2)

](2)

11 = s2
β Re �

(2)
AA (m2

A) + c2
β Re �

(2)
Z Z (m2

Z )

−�
(2)
11 (p2) − δZ(2)

1

(
p2 − c2

β m2
Z − s2

β m2
A

)

+ (
1 − sβ

4) T (2)
1

v1
− s2

βc2
β

T (2)
2

v2

−2 s2
βc2

β

(
m2

Z − m2
A

) δ tan β(2)

tan β
, (5)

[
�M2(p2)

](2)

12 = −sβcβ

[
Re �

(2)
AA (m2

A) + Re �
(2)
Z Z (m2

Z )

− s2
β

T (2)
1

v1
− c2

β

T (2)
2

v2

]
− �

(2)
12 (p2)

−1

2
sβcβ

(
m2

Z + m2
A

)

×
[

2 (c2
β − s2

β)
δ tan β(2)

tan β
+δZ(2)

1 +δZ(2)
2

]
,

(6)

[
�M2(p2)

](2)

22 = c2
β Re �

(2)
AA (m2

A) + s2
β Re �

(2)
Z Z (m2

Z )

−�
(2)
22 (p2) − δZ(2)

2

(
p2 − s2

β m2
Z − c2

β m2
A

)

−s2
βc2

β

T (2)
1

v1
+ (

1 − cβ
4) T (2)

2

v2

+2 s2
βc2

β

(
m2

Z − m2
A

) δ tan β(2)

tan β
. (7)

In the equations above, T (2)
i and �

(2)
i j (with i, j = 1, 2)

denote the two-loop parts of tadpoles and self-energies,
respectively, for the scalars Si , while �

(2)
AA and �

(2)
Z Z denote

the two-loop parts of the pseudoscalar and Z -boson self-
energies. In addition, δZ(2)

i (with i = 1, 2) in Eqs. (5)–(7)
denote the two-loop parts of the WFR counterterms for the
Higgs fields H0

i , which we renormalize as follows:

H0
i −→ √

Zi H0
i �

(
1 + 1

2
δZ(1)

i + 1

2
δZ(2)

i

)
H0

i , (8)

where in the expansion of the square root we have again
neglected terms that do not contribute at O(αtαs) or O(ααs).
We adopt a DR definition for the Zi , which can then be
determined from the anomalous dimensions of the Higgs
fields and from the β functions of the couplings entering the
anomalous dimensions. Taking from the general formulas of
Refs. [59,60] only the terms relevant to our approximation,
we get

δZ(1)
1 = δZ(2)

1 = 0, δZ(1)
2 = − αt

4π
Nc · 1

ε
,

δZ(2)
2 = αtαs

(4π)2 2 Nc CF ·
(

1

ε2 − 1

ε

)
, (9)

where Nc = 3 and CF = 4/3 are color factors, ε = (4−d)/2
in dimensional reduction, and the coupling αt entering the
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one-loop counterterm δZ(1)
2 is in turn renormalized in the

DR scheme. Finally, δ tan β(2) in Eqs. (5)–(7) denotes the
two-loop part of the counterterm for the parameter tan β.
The choice of a DR definition for tan β implies that, in our
approximation, its counterterm can be expressed via the WFR
counterterms:

δ tan β(�)

tan β
= 1

2

(
δZ(�)

2 − δZ(�)
1

)
(� = 1, 2). (10)

All tadpoles and self-energies in Eqs. (5)–(7) include
both 1PI two-loop contributions and non-1PI contributions
arising from the renormalization of the parameters entering
their one-loop counterparts. Since we are focusing on the
O(αtαs) and O(ααs) corrections to the Higgs masses, we
need to introduce counterterms only for the parameters that
are subject to O(αs) corrections, namely the top mass mt ,
the stop masses mt̃1 and mt̃2 , the stop mixing angle θt , the
soft supersymmetry-breaking Higgs-stop coupling At and
the masses mq̃i of all squarks other than the stops. The latter
enter the one-loop tadpoles and self-energies of the Higgs
bosons via D-term-induced EW couplings, and the one-loop
self-energy of the Z boson via the gauge interaction. In
our calculation we neglect all Yukawa couplings (and hence
quark masses) other than the top one,3 therefore none of the
other squarks mix. We obtained results for the O(αtαs) and
O(ααs) contributions to tadpoles and self-energies assum-
ing that the relevant quark/squark parameters are renormal-
ized either in the DR or in the OS scheme. Formulas for
the DR–OS shift of the parameters in the top/stop sector can
be found, e.g., in appendix B of Ref. [25], while the shifts
for the remaining squark masses can be obtained by setting
mt = θt = 0 in the corresponding formulas for the stop
masses. We remark that the right-hand sides of Eqs. (5)–(7)
are constructed to give finite entries in the inverse-propagator
matrix of the scalars. Indeed we have explicitly verified that
– after summing all 1PI and counterterm contributions – the
1/ε2 and 1/ε poles in the right-hand sides of Eqs. (5)–(7)
cancel out.

In principle, the two-loop contributions to the Higgs
inverse propagator given in Eqs. (5)–(7) must be combined
with a full calculation of the corresponding one-loop con-
tributions, and used to determine the physical Higgs masses
by solving directly Eq. (2). However, as will be discussed in

3 The corrections to the Higgs masses involving the bottom Yukawa
coupling could become relevant for large values of tan β. When all
parameters in the bottom/sbottom sector are renormalized in the DR
scheme, the O(αbαs) corrections can be obtained from the correspond-
ing results for the O(αtαs) corrections via trivial replacements. On the
other hand, an OS renormalization of the bottom/sbottom parameters
would entail additional complications, as discussed in Refs. [27–29].
Anyway, the regions of the MSSM parameter space where the O(αbαs)

corrections to the Higgs masses are most relevant are being severely
constrained by direct searches of Higgs bosons decaying to tau leptons
at the LHC [61–64].

the next section, the computing times required for the eval-
uation of momentum-dependent two-loop integrals are not
negligible. A numerical search for the solutions of Eq. (2)
could significantly slow down the codes for the calculation
of the Higgs masses, making them unsuitable for extensive
phenomenological analyses of the MSSM parameter space.
It is therefore convenient to compute the Higgs masses in
two steps, with a procedure similar to the one discussed
in Refs. [10,26]. We first call FeynHiggs, which solves
Eq. (2) including in �M2(p2) the full one-loop correc-
tions plus the dominant two-loop corrections of O(αtαs),
O(αbαs), and O(α2

t + αtαb + α2
b) computed in the approxi-

mation of vanishing external momentum. FromFeynHiggs
we obtain the scalar masses m2

h and m2
H , and an effective

mixing angle α which diagonalizes the loop-corrected scalar
mass matrix at vanishing external momentum. Our full results
for the scalar masses are then obtained by adding to the
results of FeynHiggs the momentum-dependent parts of
the O(αtαs) corrections and the whole O(ααs) corrections:

m2
h,H = m2

h,H + (�m2
h,H )αt αs , p2 + (�m2

h,H )ααs . (11)

Concerning the former, we have

(
�m2

h

)αt αs , p2

= c2
β−α ��

(2)
AA

(
m2

A

)
− s2

α ��
(2)
11

(
m2

h

)

+ s2α ��
(2)
12

(
m2

h

)
− c2

α ��
(2)
22

(
m2

h

)
,

(12)

(
�m2

H

)αt αs , p2

= s2
β−α ��

(2)
AA

(
m2

A

)
− c2

α ��
(2)
11

(
m2

H

)

− s2α ��
(2)
12

(
m2

H

)
− s2

α ��
(2)
22

(
m2

H

)
,

(13)

where we define ��(p2) ≡ �(p2) − �(0), and retain
only the real and finite part of the O(αtαs) contributions to
the two-loop self-energies. For what concerns the O(ααs)

corrections, they contain all terms from Eqs. (5)–(7):

(
�m2

h

)ααs = s2
α

[
�M2 (

m2
h

)]ααs

11

− s2α

[
�M2 (

m2
h

)]ααs

12 + c2
α

[
�M2 (

m2
h

)]ααs

22 ,

(14)
(
�m2

H

)ααs = c2
α

[
�M2 (

m2
H

)]ααs

11

+ s2α

[
�M2 (

m2
H

)]ααs

12 + s2
α

[
�M2 (

m2
H

)]ααs

22 ,

(15)

where again we take the real part of all two-loop self-energies.
We remark that Ref. [56] proposes an alternative two-step
procedure to include the momentum-dependent parts of the
O(αtαs) corrections in FeynHiggs, differing from the one
outlined above only by higher-order effects.
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Finally, a comment is in order about the dependence of the
corrections to the Higgs masses on the WFR constants.4 In
principle, the predictions for the physical Higgs masses at a
given order in the perturbative expansion should not depend
directly on the WFR constants (although they could still
depend indirectly on them via the tan β counterterm). Indeed,
if the two-loop contributions to the inverse-propagator matrix
are computed with p2 equal to the tree-level scalar masses
and then rotated to the mass-eigenstate basis via the tree-level
mixing angle, so that the computation is performed strictly
at the two-loop level, the terms in Eqs. (5)–(7) that depend
explicitly on δZ(2)

i drop out of the mass corrections �m2
h,H .

On the other hand, if the loop-corrected scalar masses m2
h and

m2
H and the effective mixing angle α are used, as in Eqs. (12)–

(15) above, or if the zeroes of the inverse-propagator matrix
are determined numerically, the corrections to the scalar
masses retain a dependence on the WFR counterterms. In our
calculation we adopt a DR definition for the WFR; therefore
the terms involving δZ(2)

i are purely divergent and cancel
out against other divergent terms in the individual entries of
the inverse-propagator matrix, hence they do not show up in
Eqs. (12) and (13). If, however, one adopts a non-minimal
definition of the WFR, Higgs-mass corrections computed
as in Eqs. (14) and (15) will contain non-vanishing terms
that depend on the finite part of δZ(2)

i . Albeit formally of
higher order in the perturbative expansion, these terms can be
numerically relevant when the loop-corrected scalar masses
differ significantly from their tree-level values (as is the case
for a SM-like scalar h with mass around 125 GeV).

3 Calculation of two-loop diagrams with nonzero
momentum

The computation of the two-loop corrections to the neutral
MSSM Higgs masses considered in this paper requires the
knowledge of the tadpole and self-energy diagrams entering
Eqs. (5)–(7). While the strategy for the computation in the
zero-momentum approximation is well known, the evalua-
tion of the self-energies with arbitrary external momentum
is more involved. We illustrate in this section the details of
our calculation, which we performed in a fully automated
way.

The relevant diagrams are generated with FeynArts
[67], using a modified version of the original MSSM model
file [68] that implements the QCD interactions in the back-
ground field gauge. The diagrams contributing to the vacuum
polarization of the Z boson are contracted with a suitable pro-
jector in order to single out their transverse part. The color

4 The renormalization of the Higgs fields and of tan β in the calcu-
lation of the Higgs-mass corrections was also recently discussed, in a
somewhat different context, in Refs. [65,66].

factors are simplified with a private package and the Dirac
algebra is handled by FORM [69]. The computation is per-
formed in dimensional reduction, which we can implement
in this case by generating the diagrams in dimensional regu-
larization and replacing, in each diagram involving an inter-
nal d-dimensional gluon, gμν → gμν + gμ̂ν̂ (where gμ̂ν̂

is the 2ε-dimensional metric tensor) in order to include the
corresponding ε-scalar contribution. We are then left with
Feynman integrals of the form

∫
ddk1ddk2

(
k2

1

)α (
k2

2

)β
(k1 · p)γ (k2 · p)δ(k1 · k2)

η

Da1
1 Da2

2 Da3
3 Da4

4 Da5
5

, (16)

where α, . . . , η, a1, . . . , a5 are positive (or zero) integer
exponents and the Di ’s are defined as

D1 = k2
1 − m2

1, D2 = (k1 − p)2 − m2
2, D3 = k2

2 − m2
3,

D4 = (k2 − p)2 − m2
4, D5 = (k1 − k2)

2 − m2
5.

Integrals belonging to the class above are in general not lin-
early independent of each other. When the scalar products
in the numerator are expressed in terms of the denomina-
tors, powers of a Di present in the original integral might
cancel against a Di in the numerator, possibly generating a
Feynman integral in which Di does not appear, i.e. in which
the corresponding line has been shrunk to a point. For given
ai ’s and high enough α, . . . , η, some Di ’s may acquire neg-
ative exponents. The computation of a Feynman integral of
the type in Eq. (16) therefore reduces to the evaluation of a
number of integrals of the form
∫

ddk1ddk2

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

, (17)

where the exponents ni ∈ Z. In the present case, one has to
evaluate O(300) different Feynman integrals.

There exists a convenient procedure for dealing with such
large numbers of different Feynman integrals in a more effi-
cient way than their direct evaluation. Dimensionally regular-
ized integrals, at arbitrary loop order and with arbitrary num-
ber of external legs, satisfy identities of the IBP type [54,55].
These identities are linear relations that connect integrals
with different sets of exponents {n1, . . . , n5}. After a set of
independent integrals, the MIs, has been identified, all the
remaining integrals can then be reduced to linear combina-
tions of the MIs, the coefficients being rational functions
of the masses, the kinematic invariants and the space-time
dimension d. One practical advantage of such a procedure
is its “divide and conquer” spirit. On the one hand few MIs
encode the analyticity properties (singularities, thresholds,
branch cuts) of the problem under consideration. On the other
hand, the evaluation of the large number of different Feyn-
man integrals entering a computation is reduced to a problem
of linear algebra, which can easily be automated, if the MIs
are known. We perform the reduction to MIs with the public
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code REDUZE [70,71], which implements the Laporta algo-
rithm [72] and produces the IBP identities relevant to our
case.

The evaluation of the MIs is in general a complicated prob-
lem and can proceed via different techniques, like the integra-
tion in the Feynman, Schwinger or Mellin–Barnes represen-
tations. A remarkable consequence of the aforementioned
IBP relations is that the MIs obey linear systems of first-
order differential equations (DEs) in the kinematic invari-
ants, which provide an alternative means for their computa-
tion [73,74]. Finding the analytic solution of the DEs for arbi-
trary d is possible only in some simple cases. In more general
cases the MIs are expanded in powers of ε = (4 − d)/2, giv-
ing rise to a (generally coupled) system of DEs for the expan-
sion coefficients. In the limit of vanishing external momen-
tum, two-loop self-energies become two-loop vacuum dia-
grams, which reduce via IBP to linear combinations of only
one genuine two-loop MI and products of the one-loop one-
propagator MI [75]. Two-loop self-energies with arbitrary
external momentum, in the general case with five different
masses in the loops, reduce via IBP to linear combinations of
30 MIs [46]. The finite part of such MIs can be expressed in
terms of four functions, in addition to the well-known one-
loop MIs.5 As already mentioned, analytic solutions for such
functions have been derived only for special patterns of up
to two internal masses (only one function is known in a par-
ticular case with three different masses). On the other hand,
the diagrams that in our approximation contribute to the self-
energies entering Eqs. (5)–(7) require the knowledge of MIs
with up to four different masses, the most complicated ones
being those involving simultaneously m2

t , m2
t̃1
, m2

t̃2
, and m2

g̃ .
In our computation we rely on the package TSIL [52],

which implements (besides all the analytically known cases)
the numerical solution of the DEs for the two-loop self-
energy MIs. The method of Refs. [47–51] is based on the
fact that the value at p2 = 0 (or the expansion for small p2

in the case of logarithmically divergent integrals) is known
for each function and can be used to build the set of initial
conditions needed for the solution of the DEs. In the compu-
tation of the self-energies entering Eqs. (5)–(7) we need to
evaluate the corresponding MIs at p2 = m2

Z , m2
A, m2

h, m2
H .

Given that we include the contribution of light quarks to
�Z Z (in the approximation mq = 0) and that m A is a free
parameter, it is clear that the way thresholds are handled
in the numerical evaluation of the MIs is of particular rel-
evance. In the DEs approach, the physical two- and three-
particle thresholds show up, together with the pseudothresh-
olds, as poles in the coefficients of the DEs.TSIL overcomes

5 In the presence of infrared divergences associated to loops of massless
quarks, the IBP reduction of the considered diagrams to MIs requires
two additional functions. Their expression in terms of logarithms and
polylogarithms can be obtained from the results of Ref. [76].

the numerical instabilities related to such poles by displac-
ing the p2-integration contour in the upper half-plane when
the momentum is above the smallest (pseudo)threshold. The
evaluation at (or very close to) the (pseudo)thresholds is per-
formed through a variant of the algorithm, which is slightly
less efficient but ensures reliable results in such critical cases.
As an example, the time needed on an Intel Core i7-4650U
CPU for the evaluation of the complete set of MIs, for any of
the mass patterns entering the self-energies, ranges between
5 × 10−4 s and 8 × 10−2 s, the latter being the typical time
for

√
p2 close or equal to the heavy stop pair threshold and

to the three-particle (pseudo)thresholds mt̃i + mg̃ ± mt . In
Ref. [52] the relative accuracy of TSIL is claimed to be bet-
ter than 10−10 for generic cases, or worse in cases with large
mass hierarchies. Being TSIL a package dedicated to the
evaluation of the MIs for two-loop self-energy diagrams, it
is not surprising that its speed and accuracy prove much bet-
ter than those quoted in Ref. [56], where the general-purpose
package SecDec is used and, in the most complicated case,
100 s are needed in order to reach a relative accuracy of at
least 10−5 close to a threshold.

4 Numerical examples

In this section we assess the numerical impact of the
momentum-dependent part of the O(αtαs) corrections and
of the whole O(ααs) corrections on the predictions for the
neutral Higgs-boson masses in the MSSM. We focus on six
benchmark scenarios introduced in Ref. [77], which identify
regions in the MSSM parameter space compatible with the
current bounds from SUSY-particle searches and with the
requirement that the predicted value of mh agrees, within the
theoretical uncertainty of ±3 GeV estimated in Refs. [78,79],
with the mass of the SM-like Higgs boson discovered at the
LHC.6

In our numerical examples we adopt the mixed OS–DR
scheme described in Sect. 2. The SM input parameters are
chosen as the pole top mass mt = 173.2 GeV, the run-
ning bottom mass mb(mb) = 4.2 GeV, the Fermi con-
stant G F = 1.16639 × 10−5 GeV−2, the strong gauge cou-
pling αs(m Z) = 0.118, and the pole gauge-boson masses
m Z = 91.1876 GeV and mW = 80.385 GeV. To compute
the scalar masses m2

h,H and the effective mixing angleα enter-
ing the corrections in Eqs. (11)–(15), we call FeynHiggs
version 2.10.2. We use default values for all settings with
the exception of runningMT = 0, i.e. the top mass in the
radiative corrections is identified with the pole mass (to match

6 We omit a seventh scenario from Ref. [77], the so-called low-m H

scenario. Also, the parameters in the light-stop scenario are modified
as in Ref. [80], to account for newer exclusion bounds from direct stop
searches at the LHC.
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Fig. 1 Predictions for the mass
of the lightest scalar h in the six
benchmark scenarios of
Ref. [77], for m A = 500 GeV
and tan β = 20. For each
scenario, the three bars show:
the “unperturbed” mass mh
computed with
FeynHiggs 2.10.2
(upper), the inclusion of the
momentum-dependent part of
the O(αtαs) corrections
(middle) and the additional
inclusion of the whole O(ααs)

corrections (lower). From top to
bottom, the considered scenarios
are mmax

h (red), mh
mod+ (blue),

mh
mod− (green), light stop

(turquoise), light stau (purple),
tau-phobic (orange)

the renormalization conditions imposed both in our OS–DR
calculation and in the one of Ref. [56]). By default, the renor-
malization scale associated to the DR definition of the Higgs
WFR and of tan β is fixed as μR = mt .

In Fig. 1 we present our predictions for the lightest-
scalar mass mh in the six benchmark scenarios. We choose
m A = 500 GeV and tan β = 20, so that the lightest
scalar h is SM-like, the bound on its tree-level mass is satu-
rated, and the corrections controlled by the bottom Yukawa
coupling, which we do not compute beyond the approxi-
mations of FeynHiggs, are not expected to be particu-
larly relevant. For each scenario we show three bars: the
upper one represents the “unperturbed” mass mh , obtained
from FeynHiggs without additional corrections; the mid-
dle bar includes the effect of the momentum-dependent part
of the O(αtαs) corrections, i.e. the (�m2

h)αt αs , p2
defined

in Eq. (12); finally, the lower bar represents our final result
for mh , and includes the effects of both the momentum-
dependent part of the O(αtαs) corrections and the O(ααs)

corrections, i.e. the (�m2
h)ααs defined in Eq. (14).

Figure 1 shows that, in all considered scenarios, the
momentum-dependent part of the O(αtαs) corrections and

the whole O(ααs) corrections can shift the prediction for
mh by several hundred MeV each (the largest shifts, of about
±1 GeV, occur in the mmod−

h scenario). However, in all of our
examples the two classes of corrections happen to be similar
to each other in magnitude, and to enter the prediction for
mh with opposite signs. As a result, their combined effect is
always fairly small, less than ±300 MeV.

In Fig. 2 we illustrate the impact of the momentum-
dependent O(αtαs) corrections and of the O(ααs) correc-
tions on the prediction for the lightest-scalar mass as a func-
tion of m A, and in Fig. 3 we do the same for the heaviest-scalar
mass. In each figure, the MSSM parameters for the left plot
are chosen as in the mmax

h benchmark scenario of Ref. [77],
while for the right plot they are chosen as in the modified
light-stop scenario. In each plot, the dashed lines represent
the contribution of the sole momentum-dependent part of the
O(αtαs) corrections, while the solid lines include both the
momentum-dependent O(αtαs) corrections and the O(ααs)

corrections. The red lines were obtained with tan β = 5 while
the blue lines were obtained with tan β = 20.

Figure 2 shows that the corrections to the lightest-
scalar mass are negligible at low values of m A, but they
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Fig. 2 Corrections to the lightest-scalar mass as a function of m A, for
tan β = 5 (red) and for tan β = 20 (blue). The other MSSM param-
eters are chosen as in the mmax

h scenario (left) or as in the light-stop
scenario (right). The dashed lines represent the contribution of the sole

momentum-dependent part of the O(αtαs) corrections, the solid lines
include both the momentum-dependent O(αtαs) corrections and the
O(ααs) corrections

Fig. 3 Same as Fig. 2 for the corrections to the heaviest-scalar mass

become larger and essentially independent of m A as the lat-
ter increases. The transition to this “decoupling” regime –
where the lightest scalar has SM-like couplings and its mass
is insensitive to the value of m A – is sharper for larger val-
ues of tan β. In both the mmax

h and light-stop scenarios, the
momentum-dependent O(αtαs) effects decrease mh by 300–
400 MeV at large m A. However, as already seen in Fig. 1, the
O(ααs) effects enter the prediction for mh with comparable
magnitude but opposite sign, significantly reducing the total
size of the correction.

Figure 3 shows that for low values of m A, where the heav-
iest scalar is the one with SM-like couplings, the corrections

to its mass are comparable to the ones that affect the lightest-
scalar mass in the decoupling region. On the other hand, for
larger values of the pseudoscalar mass – where m H ≈ m A

– the corrections to the heaviest-scalar mass show a series
of spikes, related to the opening of real-particle thresholds in
diagrams that involve a virtual gluon. The first spike is visible
in correspondence with m A = 2 mt in the plot on the left for
the mmax

h scenario. More-pronounced spikes (note the differ-
ent scale on the y axis) are visible in correspondence with
m H = 2 mt̃1 , m H = mt̃1 +mt̃2 , and m H = 2 mt̃2 in the plot on
the right for the light-stop scenario. Analogous spikes would
appear at larger values of m A in the mmax

h scenario, where the
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stops are heavier. We stress that our results are not reliable
in the vicinity of these thresholds: the two-loop correction to
the heaviest-scalar mass is actually divergent there, and the
height of the spikes in the plots carries no physical meaning.
A more sophisticated analysis, taking into account the widths
of the virtual particles in the loops as well as non-perturbative
QCD effects, would be necessary around the thresholds, but
it is beyond the scope of our calculation.

Figure 3 also shows that, in the decoupling region and
away from the thresholds, the corrections to the heaviest-
scalar mass amount at most to a few hundred MeV, and they
decrease in size with increasing tan β. Moreover, the effect
of the O(ααs) corrections is negligible (the dashed and solid
lines are practically overlapping in the plots). Inspection of
our analytic formulae shows that, in the decoupling limit,
the O(ααs) corrections to m H are suppressed by one or two
powers of tan β, whereas the O(αtαs) corrections contain
unsuppressed contributions proportional to the square of the
superpotential Higgs-mass parameter μ. While corrections
of this size might be considered negligible in comparison
with the value of m H itself, they are not entirely irrelevant
when compared to the difference m H − m A, which can be of
the order of a few GeV and is the quantity of interest when a
large physical mass for the pseudoscalar is taken as input in
the calculation.

5 Comparison with earlier calculations

The way we compute the O(αtαs) and O(ααs) corrections
to the entries of the inverse-propagator matrix for the neutral
scalars allows for a relatively easy comparison with earlier
calculations. We first renormalize all the relevant parame-
ters in the DR scheme, i.e. we introduce minimal countert-
erms that, by definition, subtract only powers of 1/ε, mul-
tiplied by coefficients that should be polynomial in the DR-
renormalized masses and couplings. In a second step, we
convert our results to the mixed OS–DR scheme adopted in
FeynHiggs, replacing the DR top/stop parameters enter-
ing the one-loop part of the corrections with the correspond-
ing OS parameters plus the finite one-loop shifts given in
Ref. [25].

As a first obvious check, we took the limit of vanish-
ing external momentum in the scalar self-energies entering
the O(αtαs) corrections and we compared our results with
those in Ref. [25], finding full agreement. We also success-
fully compared the O(ααs) corrections at vanishing external
momentum with the results of an independent calculation
based on the effective-potential techniques of Ref. [25]. Note,
however, that this comparison does not cover the O(ααs)

contributions to the Z -boson self-energy. Concerning the lat-
ter, we checked that we can reproduce the result of Ref. [81]
for the subset of two-loop diagrams that involve only quarks

and a gluon, taking into account the fact that Ref. [81]
employed dimensional regularization.

We then compared our results for the momentum-
dependent corrections with those of Ref. [53], where the
two-loop calculation of the Higgs masses was performed
entirely in the DR scheme. As mentioned in Sect. 1, the
Higgs-mass corrections in Ref. [53] are organized in a differ-
ent way with respect to our calculation, therefore we could
compare only at the level of individual two-loop self-energies
for scalars and pseudoscalars (the two-loop self-energy for
the Z boson was not computed in Ref. [53]). Rotating our
scalar self-energies from the (S1, S2) basis to the (h, H)

basis with the tree-level mixing angle defined in Ref. [53],
we reproduce perfectly the results for the “top/gluon” and
“top/stop/gluino” contributions to ��hh shown in figure 2 of
that paper. This provides a full cross-check of the momentum-
dependent O(αtαs) contribution to the self-energy, as well
as a partial check of the O(ααs) contribution, restricted to
diagrams involving the stop squarks (the diagrams involv-
ing the other squarks are included in the “others” line in
the above-mentioned figure). We also checked the analogous
contributions to ��h H , ��H H , and ��AA against results
provided by the author of Ref. [53], finding again perfect
numerical agreement. Although our calculation and the one
in Ref. [53] both use TSIL to compute the MIs, and thus
cannot be considered entirely independent, the agreement in
the results for the self-energies gives us confidence that the
computation of two-loop Feynman diagrams in terms of MIs
and the DR subtraction of their divergences are correct in
both papers.

Our results for the momentum-dependent O(αtαs) correc-
tions in the mixed OS–DR scheme can in turn be compared
with those of Ref. [56]. To start with, we compared our two-
loop 1PI contributions to the scalar and pseudoscalar self-
energies with analogous results provided by the authors of
Ref. [56], and we found agreement within the accuracy of the
sector-decomposition procedure used to compute the loop
integrals in that paper. The successful comparison between
two sets of self-energies in which the loop integrals were eval-
uated with TSIL and SecDec, respectively, validates the
results for the two-loop MIs, thus reinforcing our cross-check
of Ref. [53]. On the other hand, our results for the momentum-
dependentO(αtαs) corrections to the Higgs masses, obtained
by combining the 1PI diagrams with all the necessary coun-
terterm contributions, differ significantly from the ones in
Ref. [56]. Considering for example the mmax

h scenario dis-
cussed in the previous section, we find that for large m A

the lightest-scalar mass is subject to a negative correction of
about 350–400 MeV (depending on tan β; see the left plot
in Fig. 2), whereas the corresponding correction in Ref. [56]
is also negative but quite smaller, about 50–60 MeV (see the
upper plot in figure 7 of that paper). We traced the reason for
this discrepancy to an inconsistency in Ref. [56], related to
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the renormalization conditions for the Higgs fields and for
tan β.

In the DR scheme, the WFR counterterm for each field H0
i

can be related to the divergent part of the derivative of the
scalar self-energy with respect to the external momentum:

δZ(�)
i = −

[
d Re �

(�)
i i (p2)

dp2

]div

(� = 1, 2). (18)

Indeed, when all parameters entering the one-loop part of
the scalar self-energies are renormalized in the DR scheme,
Eq. (18) leads to the DR WFR counterterms given in Eq. (9),
in accordance with the anomalous dimensions of the Higgs
fields given in Refs. [59,60]. However, in the mixed OS–DR
scheme of Ref. [56] the top/stop parameters in the one-loop
self-energies are renormalized OS. In that case, the use of
Eq. (18) to determine the WFR counterterms leads to

Z [56]
2 = 1 − αOS

t

4π
Nc · 1

ε
+ αtαs

(4π)2 2 Nc CF

·
(

1

ε2 − 1

ε

)
− αt

2π
Nc

δmt

mt
· 1

ε
, (19)

where αOS
t is a scale-independent coupling extracted from

the pole top mass, and δmt is the finite one-loop shift for
the top mass given in Eq. (B2) of Ref. [25]. By converting
the coupling αOS

t in the one-loop term of Eq. (19) into the
corresponding DR coupling, it is easy to see that Z [56]

2 differs
from the DR WFR constant in Eq. (9) by a finite two-loop
term:

Z [56]
2 = Z DR

2 + αt

2π
Nc

δεmt

mt
, (20)

where δεmt denotes the part proportional to ε in the top self-
energy regularized with dimensional reduction:

δεmt

mt
= αs

4π
CF

{
−3

2
ln2 mt

2

μ2
R

+ 5 ln
mt

2

μ2
R

− π2

4
− 9 −

m2
g̃

mt
2

×
(

1

2
ln2

m2
g̃

μ2
R

− ln
m2

g̃

μ2
R

+ π2

12
+ 1

)

+1

2

[
m2

g̃ + mt
2 − m2

t̃1
− 2 s2θt mg̃ mt

mt
2 Bε(mt

2, m2
g̃, m2

t̃1
)

+
m2

t̃1

mt
2

(
1

2
ln2

m2
t̃1

μ2
R

− ln
m2

t̃1

μ2
R

+ π2

12
+ 1

)

+ (t̃1 → t̃2, s2θt → −s2θt )

]}
. (21)

In the equation above μR is the renormalization scale associ-
ated to the Higgs WFR and to tan β, while Bε(s, x, y) denotes
the coefficient of ε in the expansion of the Passarino–Veltman
function B0. An explicit expression for Bε can be found, e.g.,
in Eq. (2.31) of the TSIL manual [52].

In the calculation of Ref. [56], where the top/stop parame-
ters entering the one-loop part of the corrections are directly
renormalized OS instead of being first renormalized in the
DR scheme and then converted to the OS scheme via a finite
shift, the two-loop self-energies and tadpoles contain terms
proportional to δεmt . Such terms would drop out of the
final result for the renormalized inverse-propagator matrix
if Eq. (20) was used to obtain the correct DR definition for
the WFR constant Z DR

2 , and consequently for δ tan β, but
they survive if the WFR constant is defined as in Eq. (19). To
prove that these terms are indeed at the root of the observed
discrepancies, we modified our own calculation, using Z [56]

2

– as obtained from Eq. (20) – instead of Z DR
2 and then com-

puting a non-minimal counterterm for tan β via Eq. (10). We
checked that, with this modification, we reproduce exactly
the corrections to the renormalized inverse propagator shown
in figures 5 and 10 of Ref. [56]. We also reproduce the cor-
rections to the scalar masses shown in figures 7, 8, 12 and 13
of that paper, although small discrepancies persist in the case
of the heaviest scalar when its mass is above the threshold
m H = 2 mt . These residual discrepancies are formally of
higher order in the perturbative expansion, and they result
from different approximations in the two-step procedure for
the determination of the poles of the propagator (namely, we
drop the imaginary parts of the two-loop self-energies, while
Ref. [56] keeps them).

In summary, we have found that in Ref. [56] the two-loop
renormalization of the Higgs fields and of the parameter tan β

is not performed in the DR scheme as claimed in the paper, but
rather in some non-minimal scheme where the WFR coun-
terterms and δ tan β differ from their DR counterparts by
finite, non-polynomial terms, and neither the Higgs fields
nor tan β obey their usual renormalization-group equations
(because of the explicit scale dependence of the additional
terms). This inconsistency should be taken into account when
comparing the results of Ref. [56] with those of calculations
that actually employ DR definitions for the WFR and for
tan β. First of all, to account for the difference in δ tan β, the
input value for the DR-renormalized parameter tan β should
be converted to the corresponding value in the non-minimal
scheme of Ref. [56], according to

tan β[56] = tan β DR − αt

4π
Nc tan β

δεmt

mt
. (22)

However, Eqs. (5)–(7) show that the contributions of δ tan β(2)

to the entries of the Higgs mass matrix are suppressed by pow-
ers of cos β. Consequently, the effect on the Higgs masses
arising from a two-loop difference in δ tan β is very small
already for tan β = 5. In fact, the bulk of the numerical dis-
crepancy between our results and those of Ref. [56] is due to
higher-order effects that are directly related to the finite shift
in the WFR. As discussed at the end of Sect. 2, such effects
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are included in the Higgs-mass corrections when the latter
are computed in terms of loop-corrected Higgs masses and
mixing, and can become numerically relevant when the loop-
corrected masses differ significantly from their tree-level val-
ues.

6 Conclusions

We computed the two-loop corrections to the neutral MSSM
Higgs masses of O(αtαs) and O(ααs) – i.e., all two-loop
corrections that involve the strong gauge coupling when
the only non-vanishing Yukawa coupling is ht – including
the effect of non-vanishing external momenta in the self-
energies. We relied on an IBPs technique to express the
momentum-dependent loop integrals in terms of a minimal
set of master integrals, and we used the public code TSIL
to evaluate the latter. We obtained results for the Higgs-mass
corrections valid when all parameters in the one-loop part
of the corrections are renormalized in the DR scheme, as
well as results valid in a mixed OS–DR scheme where the
top/stop parameters are renormalized on-shell. Our results for
the scalar and pseudoscalar self-energies in the DR scheme
confirm the results of an earlier calculation, Ref. [53], where
they overlap. In addition, we obtained new results for the two-
loop contributions to the Z -boson self-energy that involve the
strong gauge coupling. The latter, which were not computed
in Ref. [53], enter the O(ααs) corrections to the Higgs masses
when the tree-level mass matrix of the scalars is expressed
in terms of the physical Z -boson mass.

We also compared our results for the momentum-
dependent O(αtαs) corrections in the mixed OS–DR scheme
with those of a recent calculation of the same corrections,
Ref. [56], and found disagreement. We traced the reason
for the discrepancy to the fact that, contrary to what stated
in Ref. [56], in that calculation the Higgs fields and the
parameter tan β are renormalized in a non-minimal scheme
instead of the usual DR scheme. When this difference is taken
into account, we reproduce the results of Ref. [56], provid-
ing in passing a cross-check of the codes used to evaluate
the loop integrals in the two calculations (i.e., TSIL and
SecDec, respectively). However, we noticed that TSIL,
which implements dedicated algorithms for two-loop self-
energy integrals, can be a thousand times faster than a multi-
purpose code such as SecDec in the computation of the
Higgs-mass corrections. This should be taken into considera-
tion when including the momentum-dependent corrections in
phenomenological analyses of the MSSM parameter space.

As to the numerical impact of the corrections computed in
this paper, it could at best be described as moderate. We con-
sidered six benchmark scenarios compatible with the results
of Higgs and SUSY searches at the LHC, and we found that
both the momentum-dependent part of the O(αtαs) correc-

tions and the whole O(ααs) corrections can shift the predic-
tion for the lightest-scalar mass mh by several hundred MeV.
However, we noticed that – at least in the considered scenar-
ios – the two classes of corrections enter the prediction for
mh with opposite sign, and they compensate each other to a
good extent. For what concerns the heaviest-scalar mass m H ,
the impact of the new corrections is also modest, with the
exception of regions around real-particle thresholds where a
fixed-order calculation is not reliable anyway.

The predictions for the lightest-scalar mass, as obtained
from popular codes for the determination of the MSSM mass
spectrum, carry a theoretical uncertainty that has been esti-
mated to be (at least) of the order of ±3 GeV – see, e.g.,
Refs. [78,79] and the more recent discussion in Ref. [82].
Against this backdrop, the corrections presented in this paper
can be considered sub-dominant, and their inclusion in pub-
lic codes might seem less urgent than, e.g., the inclusion of
the dominant three-loop effects [41,42] or the proper resum-
mation of large logarithms in scenarios with multi-TeV stop
masses [39,40,82], both of which can shift the prediction for
the lightest-scalar mass by several GeV. Nevertheless, one
should not forget that the accuracy of the measurement of the
Higgs mass at the LHC has already reached the level of a few
hundred MeV – i.e., comparable to our sub-dominant cor-
rections – and will improve further when more data become
available. If SUSY shows up at last when the LHC operates at
13–14 TeV, the Higgs mass will serve as a precision observ-
able to constrain MSSM parameters that might not be directly
accessible by experiment. To this purpose, the accuracy of
the theoretical prediction will have to match the experimen-
tal one, making a full inclusion of the two-loop corrections
to the Higgs masses unavoidable. Our calculation should be
regarded as a necessary step in that direction.
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