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When the cosmological “constant” is derived frommodern five-dimensional relativity, exact solutions imply that for small systems
it scales in proportion to the square of the mass. However, a duality transformation implies that for large systems it scales as the
inverse square of the mass.

1. Introduction

The cosmological “constant” as it appears in Einstein’s general
relativity has several puzzling aspects, and it is a serious prob-
lem to understand why its value as inferred from cosmology
is much smaller than its magnitude as implied by particle
physics. However, it has been known for a long time that
the cosmological “constant” appears more naturally when
the world is taken to be five-dimensional [1], and recently
there has been intense work on the modern versions of 5D
relativity where the extra dimension is not compactified [2–
4]. The purpose of the present paper is to draw together
various results in the literature which indicate that there
may be simple scaling relations between the values of the
cosmological “constant” Λ and the mass 𝑚 of the system
concerned. Tentatively, we identify Λ ∼ 𝑚

2 for small systems
and Λ ∼ 1/𝑚

2 for large, gravitationally-dominated systems.
While these relations cannot be rigorously established with
our present level of understanding, we believe that it is useful
to point them out as guides for future research.

The subjects which indicate possible relations are diverse
and include the embedding of Λ-dominated solutions of 4D
general relativity in the so-called 5D canonical metric [5–8];
the embeddings which lead to variable values ofΛ [9–13]; the
equations of motion for canonical and related metrics [14–
20]; conformal transformationswhich affectΛ andpossibly𝑚

[21, 22]; the vacuum and gauge fields associated with ele-
mentary particles [23, 24]; and the wave-particle duality
connected with certain Λ-dominated 5D metrics [25–27].
Most of our results are in Section 2. There we will reexamine
the meaning ofΛ, reinterpret two classes of known solutions,
and present a new class with interesting properties. Section 3
is a conclusion.

To streamline the work, we will often absorb the speed
of light 𝑐, the gravitational constant 𝐺, and the quantum of
action ℎ, except in places where they are made explicit to aid
in understanding. As usual, uppercase Latin letters run𝐴, 𝐵 =

0, 1, 2, 3, 4 for time, space and the extra dimension. We label
the last 𝑥

4
= 𝑙 to avoid confusion. Lowercase Greek letters

run 𝛼, 𝛽 = 0, 1, 2, 3. Other notation is standard.

2. The Cosmological ‘‘Constant’’ and Possible
Scaling Relations

In this section, wewill examine certain subjects which involve
the cosmological “constant” Λ of a spacetime and the mass
𝑚 of a test particle moving in it. That these parameters may
be linked can be appreciated by noting that 5D relativity is
broader thanEinstein’s 4D theory, being in general an account
of gravity, electromagnetism, and a scalar field, where the last
is widely believed to be concerned with how particles acquire
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mass [2–4]. However, in 5D neither Λ nor 𝑚 are in general
constants. Rather, they depend on the field equations and
solutions of them. It is common to take the field equations
to be given in terms of the Ricci tensor by

𝑅
𝐴𝐵

= 0 (𝐴, 𝐵 = 0, 1, 2, 3, 4) . (1)

These apparently empty 5D equations actually contain Ein-
stein’s 4D equations with a finite energy-momentum tensor,
a result guaranteed by Campbell’s embedding theorem [5–7].
This means that the 4D theory is smoothly contained in the
5D one and that the latter can be brought into agreement with
observations at some level.

In Einstein’s theory, the cosmological “constant” is usually
introduced by adding a term Λ𝑔

𝛼𝛽
to the field equations:

𝐺
𝛼𝛽

+ Λ𝑔
𝛼𝛽

= (
8𝜋𝐺

𝑐4
)𝑇
𝛼𝛽

(𝛼, 𝛽 = 0, 1, 2, 3) . (2)

Here, 𝑔
𝛼𝛽

is the metric tensor, whose covariant derivative is
zero, hence the acceptability of the noted term. We recognize
that the Λ term is a kind of a gauge term. It is sometimes
moved to the right-hand side of Einstein’s equations, where it
can be viewed as a vacuum fluid with density 𝜌V = Λ𝑐

2
/(8𝜋𝐺)

and equation of state 𝑝 = −𝜌V𝑐
2. However, it should be

recalled that the coupling constant between the left-hand (or
geometrical) side of the Einstein equations and the right-
hand (or matter) side is 8𝜋𝐺/𝑐

4. This, therefore, cancels the
similar coefficient of the vacuum density, leading us back
to the realization that Λ is really a stand-alone parameter
insofar as general relativity is concerned (this is in line with
the fact that its physical dimensions or units are𝐿−2,matching
those of the rest of the field equations, which involve the
second derivatives of the dimensionless metric coefficients
with respect to the coordinates.) An implication of this is that
when Λ is derived from a 5D as opposed to a 4D theory, it
may be connected not with gravity but with the scalar field, a
possibility we will return to later.

The quantum vacuum, as opposed to the classical one, is
frequently attributed an energy density which is calculated
in terms of many simple harmonic oscillators and expressed
in terms of an effective value of Λ [23]. This energy density
is formally divergent, unless it is cut off by introducing
a minimum wavelength or equivalently a maximum wave
number 𝑘. With this being understood, there results Λ ∼

𝜌V ∼ ℎ𝑘
4
/𝑐. If the cutoff in 𝑘 is chosen to be the inverse of

the Planck length, this has the size of 𝜌V𝑐
2

∼ 10
112 erg cm−3.

For comparison, the cosmologically determined value of Λ

(∼10−56 cm−2) corresponds to an energy density of order
10−8 erg cm−3. The discrepancy, of order 10120, is the crux of
the cosmological-constant problem.

An alternative interpretation of the result in the preceding
paragraph is to imagine that the quantum vacuum does not
spread through ordinary 3D space but is concentrated in
particles of mass 𝑚. It is reasonable to suppose that the stuff
of each particle occupies a volume whose size is given by the

Compton wavelength, 𝜆
𝑐
= ℎ/𝑚𝑐. Then, the average density

is approximately

𝜌V ∼
𝑚

𝜆3
𝑐

=
ℎ𝑘
4

𝑐
. (3)

This expression is formally identical to the one above. But
the high-density vacuum is now confined to the particle, as
expected if it is the product of a scalar field which couples to
matter (see below). There is no conflict between (3) and the
all-pervasive cosmological vacuum discussed above, so the
cosmological-constant problem is avoided.

The best way to incorporate a scalar field into physics
is to take its potential Φ to be the extra, diagonal element
of an extended 5D metric tensor. Then, following Kaluza
the extra, nondiagonal elements can be identified with the
potentials of electromagnetism, while the 4D block remains
as a description of the 4D Einsteinian gravity. Since we are
heremainly interested in the scalar field, we can eliminate the
electromagnetic potentials by a suitable use of the coordinate
degrees of freedom of the metric, so the interval for the
gravitational and scalar fields is

𝑑𝑆
2
= 𝑔
𝛼𝛽

𝑑𝑥
𝛼
𝑑𝑥
𝛽
+ 𝜀Φ
2
𝑑𝑙
2
. (4)

Here 𝑔
𝛼𝛽

and Φ depend in general on both the coordinates
of spacetime (𝑥𝛾) and the extra dimension (𝑙). The symbol
𝜀 = ±1 indicates whether the extra dimension is spacelike or
timelike, both being allowed in modern 5D theory (the extra
dimension does not have the physical nature of an extra time,
so for 𝜀 = +1 there is no problem with closed timelike paths).
Many solutions are known of the field equations (1) for the
metric (4) [2–4]. It transpires that the easiest way to approach
the field equations is by splitting the 4Dpart of themetric into
two functions; thus,

𝑑𝑆
2
= 𝑓 (𝑥

𝛾
, 𝑙) 𝑔
𝛼𝛽

(𝑥
𝛾
) 𝑑𝑥
𝛼
𝑑𝑥
𝛽
+ 𝜀Φ
2
𝑑𝑙
2
. (5)

Here, 𝑓 is a gauge function which determines the behavior
in 𝑥
4, while 𝑔

𝛼𝛽
depends only on the spacetime coordinates

𝑥
𝛾. While the form (5) provides a mathematical advantage, it

involves a physical quandary: does an observer experience the
whole 4D space 𝑑𝑠

2
= 𝑓𝑔
𝛼𝛽

𝑑𝑥
𝛼
𝑑𝑥
𝛽 or only the spacetime-

dependent subspace 𝑑𝑠
2

= 𝑔
𝛼𝛽

𝑑𝑥
𝛼
𝑑𝑥
𝛽? This question is

akin to the argument for the so-called Jordan frame versus
the Einstein frame in old 4D scalar-tensor theory, where a
scalar function was applied to the 4D metric with no fifth
dimension. It did not find a definitive answer then and has not
done so today.There is a difference in the physics between the
two frames, but so long as the function 𝑓 is slowly varying,
this will be minor. Cosmological observations may one day
reveal the difference between the two frames, but for now we
proceedwith the view that they yield complementary physics.

An instructive case of the metric (5) has 𝑓 = (𝑙/𝐿)
2 and

Φ = 1, where 𝑔
𝛼𝛽

is any solution of the Einstein equations
without ordinary matter but with a vacuum fluid whose
density is measured by Λ. This is known as the (pure) canon-
ical metric. There is a large literature on this case (see [8]
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for a review). It includes the Schwarzschild-de Sitter metric
for the sun and the solar system and the de Sitter metric
for the universe in its inflationary stage. It turns out that the
equations of motion for a test particle in the 5Dmetric (5) are
the same as those in the 4D theory, a result which enforces
agreement with the classical tests of relativity [28, 29]. The
dynamics may be obtained either by using the 5D geodesic
equation or by putting 𝑑𝑆

2
= 0 in (5). The latter is based on

the fact that null paths in 5D with 𝑑𝑆
2

= 0 reproduce the
timelike paths of massive particles in 4D with 𝑑𝑠

2
> 0, as

well as the paths of photons with 𝑑𝑠
2

= 0. The definition of
dynamics and causality by 𝑑𝑆

2
= 0 matches the null nature

of the field equations (1). It turns out that the nature of the
motion in the extra dimension 𝑙 = 𝑙(𝑠) depends on the choice
of 𝜀 in the metric (5), as does the sign of Λ. Thus introducing
a constant 𝑙

∗
, we find

𝑙 = 𝑙
∗
exp (±

𝑠

𝐿
) , Λ = +

3

𝐿2
, 𝜀 = −1, (6a)

𝑙 = 𝑙
∗
exp (±

𝑖𝑠

𝐿
) , Λ = −

3

𝐿2
, 𝜀 = +1. (6b)

The second of these equations is of particular interest, because
it is the same as the expression for the wave function Ψ =

Ψ
∗
exp(±𝑖𝑚𝑐𝑠/ℎ) in old wave mechanics. In fact, it may be

shown that the 5D geodesic equation for the (pure) canonical
metric reproduces the Klein-Gordon equation with 𝑙 in place
of Ψ and 1/𝐿 in place of 𝑚 [25–27]. We will meet the Klein-
Gordon equation again below. Here, we note that the (pure)
canonical metric suggests the possibility that

|Λ| =
3

𝐿2
= 3(

𝑚𝑐

ℎ
)

2

. (7)

Here, 𝑚 has been written in terms of the Compton wave-
length. This identification presupposes that the observer
experiences the 4D spacetime 𝑔

𝛼𝛽
in (5) rather than the

composite spacetime defined by 𝑓𝑔
𝛼𝛽
. This is a subtle issue,

as noted above, and we will return to it below.
The next most simple case of (5) is when a shift 𝑙 →

(𝑙 − 𝑙
0
) is applied to the extra coordinate in the canonical

metric. This may appear to be close to trivial, but it is not
because of the way in which the 4D Ricci scalar transforms
and with it Λ [9, 10, 21, 22]. The equations of motion and the
mass of a test particle for the shifted canonical metric were
worked out by Ponce de Leon [16–20]. He used the principle
of the least action and the eikonal equation for massive and
massless particles, as opposed to the geodesic equation used
by Mashhoon et al. [14, 15]. As before, it turns out that Λ > 0

for a spacelike extra dimension (𝜀 = −1) and Λ < 0 for a
timelike one (𝜀 = +1). The metric and the expressions for Λ

and 𝑚 are

𝑑𝑆
2
=

(𝑙 − 𝑙
0
)
2

𝐿2
𝑔
𝛼𝛽

(𝑥
𝛾
) 𝑑𝑥
𝛼
𝑑𝑥
𝛽
+ 𝜀𝑑𝑙
2
, (8a)

|Λ| =
3

𝐿2
(

𝑙

𝑙 − 𝑙
0

)

2

= 3(
𝑚𝑐

ℎ
)

2

. (8b)

The second line here requires lengthy calculations for Λ and
𝑚 [9, 10, 16–20], so the fact that we again find |Λ| ∼ 𝑚

2 is
significant.

The third case we present is more complicated than the
canonical metrics studied in the two preceding paragraphs.
In (5), we put 𝑓 = exp(𝑙Φ/𝐿), where Φ = Φ(𝑥

𝛾
). This may

be shown to satisfy the field equations (1), which break
down into sets: ten relations which determine the energy-
momentum tensor 𝑇

𝛼𝛽
necessary to balance Einstein’s equa-

tions; four conservation-type relations which fix a 4-tensor
𝑃
𝛼𝛽

that has an associated scalar 𝑃; and one wave equation
for the scalar field Φ. The work is tedious (see [2–4]; indices
are raised and lowered using 𝑔

𝛼𝛽
= 𝑓𝑔
𝛼𝛽

of (5)). The metric
and final results of the field equations read as follows:

𝑑𝑆
2
= exp(

𝑙Φ

𝐿
)𝑔
𝛼𝛽

(𝑥
𝛾
) 𝑑𝑥
𝛼
𝑑𝑥
𝛽
+ 𝜀Φ
2
(𝑥
𝛾
) 𝑑𝑙
2
, (9a)

8𝜋𝑇
𝛼𝛽

=

Φ
,𝛼;𝛽

Φ
−

𝜀𝑔
𝛼𝛽

2𝐿2
, (9b)

𝑃
𝛽

𝛼
= −

3𝛿
𝛽

𝛼

2𝐿
, (9c)

◻Φ +
𝜀Φ

𝐿2
= 0. (9d)

Here, a comma denotes the partial derivative, a semicolon
denotes the (4D) covariant derivative, and ◻Φ ≡ 𝑔

𝛼𝛽
Φ
,𝛼;𝛽

where 𝑔
𝛼𝛽

= exp(−𝑙Φ/𝐿)𝑔
𝛼𝛽

(𝑥
𝛾
).

There are scalar quantities associated with the above
which are of physical interest. For example,𝑇 can be obtained
by contracting (9b) and using (9d) to simplify it;𝑃 as given by
the contraction of (9c) is a conserved quantity; and the (4D)
Ricci or curvature scalar 𝑅 can be expressed in its general
form and in the special form it takes for themetric (9a).Thus,

8𝜋𝑇 =
◻Φ

Φ
−

2𝜀

𝐿2
= −

3𝜀

𝐿2
, (10a)

𝑃 = −
6

𝐿
, (10b)

𝑅 =
𝜀

4Φ2
[𝑔
𝛼𝛽

,4
𝑔
𝛼𝛽,4

+ (𝑔
𝛼𝛽

𝑔
𝛼𝛽,4

)
2

] =
3𝜀

𝐿2
. (10c)

These relations and (9a), (9b), (9c), and (9d) can be given
physical interpretations along the lines of what has been
done for other solutions in the literature [2–4]. The energy-
momentum tensor (9b) shows that the source consists of the
scalar field plus a term which, because of its proportionality
to 𝑔
𝛼𝛽
, would usually be attributed to a vacuum fluid with

cosmological constant Λ = −𝜀/(2𝐿
2
). The conserved tensor

of (9c) obeys 𝑃
𝛽

𝛼;𝛽
= 0 by the field equations, and its scalar

𝑃 has in other works been linked to the rest mass of a test
particle, which here is𝑚 = 1/𝐿 [25–27]. This is confirmed by
the wave equation (9d), which deserves some discussion.

Relation (9d), depending on the choice for 𝜀 = ±1, is
known either as the Helmholtz equation or as the Klein-
Gordon equation. Many solutions to it are known with
applications to problems in atomic physics (like diffusion)
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and elementary particle physics (like wave mechanics).There
are different modes of behavior, depending on whether 𝜀 =

−1 or 𝜀 = +1, which correspond to the monotonic and
oscillatory modes (6a) and (6b) of the canonical metric
discussed before. For the present metric (9a), the scalar field
Φmay be real or complex, and in the latter case for 𝜀 = +1 the
wave equation (9d) is identical to theKlein-Gordon equation,
with 𝐿 = ℎ/𝑚𝑐 being the Compton wavelength of the test
particle. This is similar to a previous interpretation based on
the shifted-canonical metric [25–27]. (In (9d), the oscillation
is inΦ, whereas in the corresponding equation of [25–27] it is
in 𝑙, because in the canonicalmetric it is presumed thatΦ = 1,
so the physical behavior is moved from one parameter to the
other. In (9a), the problem can bemade explicitly complex by
writing exp(𝑖𝑙Φ/𝐿), if so desired.)

It may seem strange that a classical field theory yields an
equation typical of (old) quantum theory, but it should be
recalled that the wave equation (9d) comes from the field
equation 𝑅

44
= 0, which does not exist in standard general

relativity. In fact, the present interpretation of the metric
(9a) is fully consistent with the approach to noncompactified
5D relativity known as Space-Time-Matter theory, where
matter on the macroscopic and microscopic scales is taken
to be the result of higher-dimensional geometry [2–4]. By
contrast, while the metric (9a) may resemble the warp metric
of the alternative approach to 5D relativity known as the
Membrane theory, in that approach, the “Φ” in the exponent
of the 4D part of the metric is absent, which means that
the metric does not satisfy the field equations in the simple
form (1). Our view is that (9a), (9b), (9c), and (9d) show
the wave-mechanical properties of matter. The scalars (10a),
(10b), and (10c) associated with the solution bear this out.
With conventional units restored, the conserved quantity𝑃 is
inversely proportional to the Compton wavelength 𝐿 = 𝜆

𝑐
=

ℎ/𝑚𝑐 of a test particle moving in the spacetime. Viewed as a
wave which couples to matter, we expect that the Compton
wavelength should be consistent with the radius of curvature
of the spacetime, and this is confirmed by the relation for 𝑅.
Lastly, we note that the aforementioned relationΛ = −𝜀/(2𝐿

2
)

shows once again that Λ ∼ 𝑚
2.

This relation is common to the three classes of solutions
examined above, which come from the different choices of the
gauge function 𝑓(𝑥

𝛾
, 𝑙) in (5). They involve 𝑓 = (𝑙/𝐿)

2 which
gives (6a), (6b), 𝑓 = [(𝑙 − 𝑙

0
)/𝐿]
2 which gives (8a), (8b), and

𝑓 = exp(𝑙Φ/𝐿)which gives (9a), (9b), (9c), and (9d). By com-
parison with known physics, we infer that the constant length
𝐿 is inversely proportional to the particle mass 𝑚, which we
can write in terms of the Compton wavelength as 𝐿 ∼ 𝜆

𝑐
=

ℎ/𝑚𝑐. The exponential gauge, in particular, leads from the
field equation 𝑅

44
= 0 to the Klein-Gordon equation, which

is the basic relation in wave mechanics (its low-energy limit
is the Schrödinger equation which underlies the physics of
the hydrogen atom).The implication is that the scalar field of
5D relativity is connected to the mass of a particle, and with
the phenomenon ofwave-particle duality ([25–27]; theKlein-
Gordon equation can have real or complex forms). These
comments are in accordance with the longstanding view that
theories of Kaluza-Klein type provide a way of unifying the

interactions of particles with gravity. What is, however, of
the latter interaction? It is natural to wonder if there is not
a complementary relation to what we have found above, but
for macroscopic gravity-dominated systems.

This subject will require detailed analysis, but some
comments of a preliminary type may be made. It is useful, in
this context, to reconsider the traditional distinction between
inertial mass (𝑚

𝑖
) and gravitational mass (𝑚

𝑔
). The Kaluza-

Klein equation involves the former, so our previous consider-
ations have concerned 𝐿 = ℎ/𝑚

𝑖
𝑐 and Λ ∼ 𝑚

2

𝑖
as the scaling

relation for the cosmological “constant”. It is clear that this
scaling rule cannot persist to arbitrarily large masses without
leading to excessive curvature of empty spacetime (𝑅 = 4Λ).
We expect, therefore, that it might pass over to some other
scaling relation Λ = Λ(𝑚

𝑔
) for large gravitational masses.

Such a relation is actually implicit in certain works on
the canonical metric [2–4, 8–22]. We recall that the 4D
part of the 5D canonical metric involves the combination
(𝑙/𝐿)𝑑𝑠. This can be compared to the element of action for
classical mechanics, 𝑚𝑑𝑠. Two obvious identifications are
possible: 𝐿 ∼ 1/𝑚 and 𝑙 ∼ 𝑚. We have already explored
the former, so attention is focused on the latter. In fact the
possibility 𝑥

4
∼ 𝑙 ∼ 𝑚

𝑔
has been considered, mainly in

relation to cosmology, and cannot be ruled out [2–4, 11–
13]. As regards Λ, we note that its behavior depends on the
coordinate frame experienced by an observer (see above).
To illustrate this, consider a vacuum spacetime with the
(pure) canonical metric, where the 4D part of the interval is
𝑔
𝛼𝛽

𝑑𝑥
𝛼
𝑑𝑥
𝛽

= (𝑙/𝐿)
2
𝑔
𝛼𝛽

(𝑥
𝛾
)𝑑𝑥
𝛼
𝑑𝑥
𝛽. The effective value of Λ

can be obtained from either the Ricci scalar or the Einstein
tensor and depends onwhether the observer experiences only
𝑔
𝛼𝛽

(𝑥
𝛾
) or the full 𝑔

𝛼𝛽
(𝑥
𝛾
, 𝑙). The results are, respectively,

3/𝐿
2 and 3/𝑙

2, and both appear in the literature. Let us
take the second alternative and combine it with the physical
identification 𝑙 ∼ 𝑚

𝑔
noted above. The obvious parameter

with which to geometrize the gravitational mass is 𝐺𝑚
𝑔
/𝑐
2,

the Schwarzschild radius. Then we find that in total, Λ =

3(𝐺𝑚
𝑔
/𝑐
2
)
−2. That is, for large gravitationally dominated

systems we expectΛ to scale as the inverse square of themass.
The argument of the preceding paragraph is tentative,

but can be checked by combining it with the more detailed
work concerning the inertial mass which went before. For
simplicity, we take the numerical factors to be those of the
canonical case and consider a proton (inertial mass 𝑚

𝑝
) and

the observable part of the universe (gravitational mass 𝑀
𝑢
).

Then, the scaling relations for the cosmological “constant”
read Λ

𝑝
= 3(𝑚

𝑝
𝑐/ℎ)
2 and Λ

𝑢
= 3(𝑐
2
/𝐺𝑀
𝑢
)
2. These can be

combined to give the number of baryons in the observable
universe as

𝑁 =
𝑀
𝑢

𝑚
𝑝

=
3𝑐
3
/𝐺ℎ

(Λ
𝑝
Λ
𝑢
)
1/2

. (11)

In this, we substitute the quantum field theoretical value of
Λ
𝑝

= 2 × 10
26 cm−2 and the cosmological value of Λ

𝑢
=

3 × 10
−56 cm−2 (obtained from Λ

𝑢
= 8𝜋𝐺𝜌V/𝑐

2, where
𝜌V = Ω

Λ
𝜌crit and 𝜌crit=3𝐻

2

0
/8𝜋𝐺, together with current
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observational data giving 𝐻
0

= 74 ± 2 km s−1Mpc−1 and
Ω
Λ

= 0.73 ± 0.04). The result is 𝑁 = 10
80, which is in

agreement with conventional estimates.
The two scaling relations considered in this section

should be regarded as complementary.Thefirst is better based
on theory than the second, since it can be examined in three
gauges rather than one. However, there is in principle no con-
flict between them, and in practice we expect the first to grade
into the second. The Λ ∼ 𝑚

2 rule should be dominant on
the particle scale (∼10−13 cm), and the Λ ∼ 1/𝑚

2 rule should
be dominant on the cosmological scale (∼1028 cm). Theoret-
ically, they should be comparable on scales of order 100 km,
which in practice is rough where quantum interactions and
solid-state forces are superseded by the effects of gravity.

3. Conclusion

We have seen in the preceding section that the cosmological
constant is open to reinterpretation, particularly as ameasure
of the energy density of the vacuum fields of particles. It is
somewhat better understood in cosmology, where its theoret-
ical status is relatively clear in Einstein’s equations, and where
observations establish its approximate value. Unfortunately,
there is a very large mismatch between the microscopic and
the macroscopic domains. This can in principle be alleviated
by using a five-dimensional theory, of the kind indicated by
unification, where in generalΛ is not a universal constant but
a variable. This is shown most clearly by the 5D canonical
gauge, where Λ scales according to the size of the potential
well (𝐿) or the value of the extra coordinate (𝑙). Since the
mass (𝑚) of a test particle also depends on these parameters,
we are tentatively led to suggest scaling relations of the form
Λ = Λ(𝑚). For the canonical gauge in its pure and shifted
forms, the scaling relation is for small 𝑚 and has the form
Λ ∼ 𝑚

2. This is also the form derived from the exponential
gauge, which has the advantage of showing that the extra
field equation resembles the Klein-Gordon equation of wave
mechanics, implying that the scalar field is connected with
particle mass.

There is, however, an alternative interpretation of the
canonical gauge and others like it.The 4Dpart of this involves
a term (𝑙/𝐿)𝑑𝑠, and to match the classical action 𝑚𝑑𝑠, it is
possible to use the gravitational mass with 𝑙 = 𝐺𝑚/𝑐

2 rather
than the inertial mass with 𝐿 = ℎ/𝑚𝑐. The implication is
that when gravity is dominant, for large 𝑚, there is a scaling
relation of the form Λ ∼ 1/𝑚

2. This macroscopic relation
should be viewed as complementary to the microscopic one,
the changeover occurring at a length scale of order 100 km.
When the two relations are combined, it is possible to obtain
an expression for the number of baryons in the observable
universe. This result (11) agrees with conventional estimates,
whichmay be seen as provisional support for the idea that the
cosmological “constant” varies with scale.
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